Личный кабинет        22.06.2019   

Курсовая работа: Современные системы передачи данных. Системы передачи информации

Чтобы передать информацию из одного пункта и получить ее в другом, телекоммуникационной системе нужно выполнить некоторые операции, которые главным образом скрыты от пользователей. Прежде чем телекоммуникационная система передаст информацию, ей необходимо установить соединение между передающей (sender) и принимающей (receiver) сторонами, рассчитать оптимальный маршрут передачи данных, выполнить первичную обработку передаваемой информации и преобразовать скорость передачи компьютера или иного цифрового устройства системы в скорость, поддерживаемую линией связи. Наконец, телекоммуникационная система управляет потоком передаваемой информации (трафиком).

Рисунок 1.2- Структурная схема простейшей системы передачи информации

Основными элементами такой системы являются:

Источник сообщения (ИС);

Кодирующее устройство (КУ) формирует из сообщения «А» сигнал;

Передатчик-модулятор (ПМ) нужен для преобразования сигнала в вид, удобный для передачи по линии связи;

Линия связи (ЛС) – физическая среда, по которой передаются сигналы;

Приёмник-демодулятор (ПД) – преобразует принятый сигнал в первоначальный вид;

Декодирующее устройство (ДУ), которое формирует из полученного сигнала первоначальное сообщение;

Формирователь сигнала реализации (ФСР) необходим для формирования сигнала управления в зависимости от принятого сигнала;

Исполнительное устройство.

Системы передачи информации бывают одноканальные и многоканальные . На рис. 1.2 приведена одноканальная система. Многоканальная система показана на рис. 1.3.

Рисунок 1.3 – Многоканальная система связи

В многоканальной системе реализация сообщений каждого источника

а 1 (t), а 2 (t),...,а N (t) с помощью индивидуальных передатчиков (модуляторов) М 1 , М 2 , ..., М N преобразуются в соответствующие канальные сигналы s 1 (t), s 2 (t),...,s N (t). Совокупность канальных сигналов на выходе суммирующего устройства S образует групповой сигнал s(t ). Наконец, в групповом передатчике М сигнал s(t) преобразуется в линейный сигнал s Л (t), который и поступает в линию связи ЛС .

Допустим, что линия пропускает сигнал практически без искажений и не вносит шумов. Тогда на приемном конце линии связи линейный сигнал s Л (t) с помощью группового приемника П может быть вновь преобразован в групповой сигнал s(t). Канальными или индивидуальными приемниками П 1 , П 2 , ..., П N из группового сигнала s(t) выделяются соответствующие канальные сигналы s 1 (t), s 2 (t), ...,s N (t) и затем преобразуются в предназначенные получателям сообщения а 1 (t), a 2 (t), ..., a N (t).

Канальные передатчики вместе с суммирующим устройством образуют аппаратуру объединения. Групповой передатчик М , линия связи ЛС и групповой приемник П составляют групповой канал связи (тракт передачи), который вместе с аппаратурой объединения и индивидуальными приемниками составляет систему многоканальной связи.



Индивидуальные приемники системы многоканальной связи ПK наряду с выполнением обычной операции преобразования сигналов s K (t) в соответствующие сообщения а K (t) должны обеспечить выделение сигналов s K (t ) из группового сигнала s(t ). Иначе говоря, в составе технических устройств на передающей стороне многоканальной системы должна быть предусмотрена аппаратура объединения, а на приемной стороне - аппаратура разделения.

В общем случае групповой сигнал может формироваться не только простейшим суммированием канальных сигналов, но также и определенной логической обработкой, в результате которой каждый элемент группового сигнала несет информацию о сообщениях источников. Это так называемые системы с комбинационным разделением.

Чтобы разделяющие устройства были в состоянии различать сигналы отдельных каналов, должны существовать определенные признаки, присущие только данному сигналу. Такими признаками в общем случае могут быть параметры переносчика, например амплитуда, частота или фаза в случае непрерывной модуляции гармонического переносчика. При дискретных видах модуляции различающим признаком может служить и форма сигналов. Соответственно различаются и способы разделения сигналов: частотный, временной, фазовый и др. Об этом мы будем подробнее говорить позже.

Классификация систем электросвязи весьма разнообразна. В основном тип (вид) системы определяется каналом связи . Если система связи построена на однотипных каналах связи, то ее название определяется типовым названием каналов. В противном случае используется детализация классификационных признаков.

Примеры типов связи

Радиосвязь - для передачи используются радиоволны.

ДВ -, СВ -, КВ - и УКВ - радиосвязь связь без применения ретрансляторов

Спутниковая связь - связь с применением космического ретранслятора (ов)

Радиорелейная связь - связь с применением наземного ретранслятора (ов)

Сотовая связь - связь с использованием сети наземных базовых станций

Волоконно-оптическая связь

Дайте формулировку, что такое информационно-коммуникационная система. Нарисуйте обобщенную структуру информационно-коммуникационная системы (ИКС) и дайте характеристику тем задачам, которые она должна решать.

Информационная система - это система обработки информации, включающая связанные с ней ресурсы, такие как людские, технические и финансовые, предназначенная для обеспечения информацией и распространения информации.

Информационной системой называется комплекс, включающий вычислительное и коммуникационное оборудование, программное обеспечение, лингвистические средства и информационные ресурсы, а также системный персонал и обеспечивающий поддержку динамической информационной модели некоторой части реального мира для удовлетворения информационных потребностей пользователей.

Информационная система, ИС (Information System - IS) - это система, предназначенная для реализации и ведения информационной модели какой-либо области человеческой деятельности.

Информационно-коммуникационная система – совокупность вычислительных средств и коммуникационного оборудования, предназначенного для обработки, хранения и передачи информации.

Обобщенная структура ИКС:

Обобщенная структурная схема информационной системы включает в себя следующие основные элементы:

Локальные сети;

Каналы и средства связи;

Узлы коммутации;

Серверы хранения и обработки информации;

Рабочие места операторов;

Рабочие места пользователей;

Абонентские терминалы.

Устройства ввода и отображения различной информации.

Классификация систем и сетей доступа. Дайте общую характеристику этим системам (назначение, скорость передачи информации и т.п.).

По способу обработки информации: цифровые, аналоговые.

По ширине полосы пропускания: узкополосные, широкополосные, сверхширокополосная.

По локализации абонентов: фиксированная, подвижная связь.

По географической протяженности: персональные, локальные, городские, глобальные.

По виду передаваемой информации: речь, данные, видео.

По прикладным задачам: системы связи, управления, мониторинга.

Технологии проводного абонентского доступа можно разбить на пять основных групп по критерию среды передачи и категориям пользователей:

LAN (Local Area Network) – группа технологий, предназначенных для предоставления корпоративным пользователям услуг доступа к ресурсам локальных вычислительных сетей и использующих в качестве среды передачи структурированные кабельные системы категорий 3, 4 и 5, коаксиальный кабель и оптоволоконный кабель.

DSL (Digital Subscriber Line) – группа технологий, предназначенных для предоставления пользователям ТфОП услуг мультимедиа и использующих в качестве среды передачи существующую инфраструктуру ТфОП.

КТВ (кабельное телевидение) – группа технологий, предназначенных для предоставления пользователям сетей КТВ мультимедийных услуг (за счет организации обратного канала) и использующих в качестве среды передачи оптоволоконный и коаксиальный кабели.

OAN (Optical Access Networks) – группа технологий, предназначенных для предоставления пользователям широкополосных услуг, линии доступа к мультимедийным услугам и использующих в качестве среды передачи оптоволоконный кабель.

СКД (сети коллективного доступа) – группа гибридных технологий для организации сетей доступа в многоквартирных домах; в качестве среды передачи используется существующая в домах инфраструктура ТфОП, радиотрансляционных сетей и сетей электропитания.

3. Какие организации решают вопросы стандартизации в области систем передачи информации. Что дает стандартизация в области систем связи?

Технология или решение + широкое внедрение на рынке = «стандарт»

Для принятия стандарта необходима некоторая критическая масса.

Кто разрабатывает стандарты?

Любой, кто обладает достаточными ресурсами (время, финансы, власть, авторитет и пр.), например:

Государство - ГОСТ-Р, ДСТУ и пр.

International of Electronic and Electrical Engineers (IEEE), ETSI

Society of Automotive Engineers (SAE)

Qualcomm (CDMA), Motorola (iDEN, TETRA, FLEX), Intel (PC architecture), Microsoft (OS), etc.

Чем хороши стандарты?

С рыночной точки зрения:

Обеспечение совместимости как отдельных продуктов, так и систем

За счет конкурентной борьбы снижаются цены

Стандартное решение редко бывает самым оптимальным

Основной целью стандартизации является обеспечение совместимости аппаратуры разных производителей в рамках единой сети связи. В области телекоммуникаций такой ведущей международной организацией по стандартизации является Сектор Стандартизации Телекоммуникаций Международного Союза Электросвязи (ITU – T).

ITU – T модемов хDSL имеют индекс “ G ”. Именно рекомендации этой серии стандартизуют практически все системы передачи, работающие по кабельным линиям связи.

Ведущими национальными организациями по разработке и внедрению телекоммуникационных стандартов в мире являются Американский Национальный Институт Стандартов (ANSI) и Eвропейский Институт Телекоммуникационных стандартов (ETSI).

Кроме трёх указанных организаций активно работают в области стандартизации технологий xDSL Форум ADSL (ADSLF) и Рабочая Группа Универсальной ADSL (UAWG).

4. Указать на основные преимущества (не менее пяти) цифровых систем связи по сравнению с аналоговыми системами. Представить аргументы, за счет чего достигаются эти преимущества?

Основные преимущества цифровых систем:

1) Высокое качество передачи информации (цифровой сигнал может принимать фиксированные значения. Например, если при аналоговой передаче данных сигналы слабого уровня больше подвержены помехам, то в цифровом виде уровень сигнала задается кодом и возможность ошибки при одинаковом шуме и виде модуляции зависит только от степени различия между уровнями символов, которыми передается код. При цифровой связи задача состоит лишь в различении фиксированных уровней. в аналоговой связи любое отклонение при приеме будет ошибкой. а цифровой сигнал, даже если и отклонился от изначального уровня, но это отклонение не достаточно велико, чтоб "угадать" (определить) символ, то он будет принят без ошибки).

2) Стабильность характеристик (в отличие от цифрового, аналоговый фильтр имеет дело с аналоговым сигналом, его свойства не дискретны, соответственно передаточная функция зависит от внутренних свойств составляющих его элементов.).

3) Высокая помехозащищенность (возможность применения помехоустойчивого кодирования).

4) Управление качеством передачи информации (возможность выбора скорости передачи в зависимости от качества канала. (количество позиций многоуровневого кода) большое количество позиций - больше скорость, но выше вероятность ошибки из-за уменьшения "расстояния" между позициями).

5) Экономичность (передача и коммутация сигналов в цифровой форме позволяют реализовывать оборудование на единых аппаратных платформах. Это позволяет резко снижать трудоемкость изготовления оборудования, значительно снижать его стоимость, потребляемую энергию и габариты. Кроме того, существенно упрощается эксплуатация систем и повышается их надежность.).

5. Дайте характеристику ведомственным информационно-коммуникационным системам. Нарисовать обобщенную структуру системы Центра обслуживания вызовов службы «102» МВД и указать, какие задачи она решает?

Постоянно растущие требования к оперативности и точности реагирования в экстремальных ситуациях выдвигают новые концептуальные задачи по техническому оснащению служб общественной безопасности.

Появляется необходимость передачи больших объемов цифровой информации с места чрезвычайной ситуации, обеспечения оперативного доступа к базам данных, идентификации личности по отпечаткам пальцев, фото - и видеоматериалам и т.д. Узкополосные ведомственные системы передачи цифровой информации не могут полностью справиться с передачей больших объемов информации, что часто необходимо в экстремальных ситуациях.

Одним из новых направлений развития ведомственных телекоммуникационных сетей является создание центров обслуживания вызовов (ЦОВ), позволяющих повысить эффективность работы экстренных служб МВД Украины.

Структурная схема ВСС:

Основой станционного оборудования службы «102», является программно-аппаратный комплекс на основе IP-технологий (AVAYA), который предусматривает интеллектуальную маршрутизацию вызовов, поступающих в центр, распределенную архитектуру рабочих мест операторов и управление мультимедийными контактами по IP-сети.

Программно-аппаратный IP комплекс объединяет в себе сразу несколько устройств:

полнофункциональную телефонную станцию;

коммутатор/концентратор локальной сети;

маршрутизатор и межсетевой экран;

средства доступа к Интернет и поддержки VPN;

сервер приложений (call-centre, интеграция с CRM).

Задачи : с внедрением ЦОВ появляются новые возможности приема и обработки тревожных сообщений: прием и учет каждого звонка службы «102», обеспечение взаимодействия экстренных служб с населением и между собой, регистрация всей необходимой информации по происшествиям, а также незамедлительное оповещение соответствующих подразделений и служб.

6. Как решаются задачи защиты информации в ведомственных информационно-коммуникационных системах? Какие виды угроз информации в ИКС вы знаете?

Под угрозой безопасности данных будем понимать потенциально существующую возможность случайного или преднамеренного действия или бездействия, в результате которого может быть нарушена безопасность данных.

Пояснение - Все каналы утечки данных можно разделить на косвенные и прямые. Косвенные каналы не требуют непосредственного доступа к техническим средствам информационной системы. Прямые соответственно требуют доступа к аппаратному обеспечению и данным информационной системы.

Информационная безопасность - защищенность информации и поддерживающей инфраструктуры от случайных или преднамеренных воздействий естественного или искусственного характера, чреватых нанесением ущерба владельцам или пользователям информации.

Безопасность данных - такое состояние хранимых, обрабатываемых и принимаемых данных, при которых невозможно их случайное или преднамеренное получение, изменение или уничтожение.

Защита данных - совокупность целенаправленных действий и мероприятий по обеспечению безопасности данных.

Таким образом, защита данных есть процесс обеспечения безопасности данных, а безопасность - состояние данных, конечный результат процесса защиты. Защита данных осуществляется с использованием методов (способов) защиты.

Метод (способ) защиты данных - совокупность приемов и операций, реализующих функции защиты данных. Например, методы шифрования и паролирования. На основе методов защиты создаются средства защиты (например, устройства шифрации/дешифрации, программы анализа пароля, датчики охранной сигнализации и т.д.).

Система обеспечения безопасности данных (СОБД) - совокупность средств и механизмов защиты данных. Механизм защиты - совокупность средств защиты, функционирующих совместно для выполнения определенной задачи по защите информации.

7. Какие каналы утечки информации вы знаете и каковы основные причины их возникновения?

С учетом физической природы путей переноса информации технические каналы утечки можно классифицировать на следующие группы:

Электромагнитные;

Визуально-оптические;

Виброакустические;

Материально-вещественные (бумага, фото, магнитные носители

Применительно к автоматизированным системам (АС) выделяют следующие каналы утечки:

Электромагнитный канал.

Причиной его возникновения является электромагнитное поле, связанное с протеканием электрического тока в аппаратных компонентах АС.

Электромагнитное поле может индуцировать токи в близко расположенных проводных линиях (наводки).

Электромагнитный канал в свою очередь делится на следующие каналы:

Радиоканал (высокочастотное излучение);

Низкочастотный канал;

Сетевой канал (наводки на сеть электропитания);

Канал заземления (наводки на провода заземления);

Линейный канал (наводки на линии связи между компьютерными системами).

Виброакустический канал.

Связан с распространением звуковых волн в воздухе или упругих колебаний в других средах, возникающих при работе устройств отображения информации АС.

Визуальный канал.

Связан с возможностью визуального наблюдения злоумышленником за работой устройств отображения информации АС без проникновения в помещения, где расположены компоненты системы. В качестве средства выделения информации в данном случае могут рассматриваться фото-, видеокамеры и т. п.

Информационный канал. Связан с доступом (непосредственным и телекоммуникационным) к элементам АС, к носителям информации, к самой вводимой и выводимой информации (и результатам), к программному обеспечению (в том числе к операционным системам), а также с подключением к линиям связи.

Информационный канал может быть разделен на следующие каналы:

Канал коммутируемых линий связи;

Канал выделенных линий связи;

Канал локальной сети;

Канал машинных носителей информации;

Канал терминальных и периферийных устройств.

8. Нарисуйте структуру модели защищенного канала по Шеннону. Какие предположения и допущения приняты в этой модели?

В этой схеме К. Шеннона используется модель пассивного противника (нарушителя), наблюдающего только шифр-текст (Cryptogram ) (пассивная атака на основе знания шифр-текста), вероятностная модель криптографического преобразования – криптосистема (Encipherer - Decipherer ) – используется для защиты передаваемой информации (Message ) от нарушения конфиденциальности.

Предположения, которые приняты в модели К. Шеннона:

– передача информации от источника к приемнику происходит без ошибок (идеальный канал связи);

– понятие совершенной стойкости вводится при условии, что вероятностное распределение ключей

(Key ) на множестве ключей равномерно (идеально- случайный ключ);

обратная связь между приемником и источником сообщения отсутствует;

– источник информации описывается с помощью теории информации Шеннона;

– все вычисления, используемые в процессе обработки информации (в том числе и при криптографическом преобразовании), совершаются без ошибок (безошибочная модель вычислений).

9. В чем выражается концепция отводного канала Вайнера?

Модель отводного канала - модель системы передачи информации по каналу связи с отводом, включающая в себя формальное описание способа надежной передачи дискретных сообщений законному получателю при наличии отводного канала утечки информации. Под этим понимается то, что легитимный приемник должен иметь возможность нормального функционирования, а приемник отводного канала не иметь возможности принимать достоверную информацию.

Модель отводного канала позволяет учесть возможности нарушителя как по перехвату сообщений, так и постановке помех, нарушающих работу основного канала.

10. Что такое семиуровневая модель взаимодействия открытых систем (OSI)? Назовите уровни этой модели и какие задачи решаются на каждом уровне? На каких уровнях решаются задачи защиты информации?

Базовая эталонная модель OSI является наиболее общим описанием структуры построения стандартов, обеспечивающих взаимодействие прикладных процессов работающих друг с другом систем.

На рисунке схематически изображен принцип OSI. Передаваемое сообщение перед отправкой “спускается” уровням модели и на каждом уровне к нему прикрепляется служебная информация, предназначенная для соответствующего уровня на принимающей стороне. Принимающая сторона последовательно “поднимает” принятое сообщение. При этом каждый уровень, работая с предназначенной ему информацией, извлекает из своей “упаковки” сообщение и передает на следующий уровень.

Физический уровень (Physical Layer )

Обеспечивает передачу потока битов по физической среде. К этому уровню имеют отношение: Характеристики физических сред передачи данных, такие как полоса пропускания, помехозащищенность, волновое сопротивление и другие; Характеристики электрических сигналов, передающих дискретную информацию, например, крутизна фронтов импульсов, уровни напряжения или тока передаваемого сигнала, тип кодирования, скорость передачи сигналов. Кроме этого, здесь стандартизуются типы разъемов и назначение каждого контакта.

-Физические характеристики интерфейсов и среды передачи

-Представление битов.

-Скорость передачи данных.

-Битовая синхронизация.

Канальный уровень (Data Link Layer )

Преобразует ненадежную среду передачи физического уровня в более надежный канал для доставки данных к следующему сетевому уровню. Поток битов, поступающих с физического уровня, разбивается на кадры. Обеспечивается корректность передачи каждого кадра.

-Кадровая синхронизация.

-Физическая адресация.

-Управление потоком.

-Коррекция ошибок.

Сетевой уровень (Network Layer)

Отвечает за доставку пакета от источника к пункту назначения между различными сетями с произвольной топологией (в то время как канальный отвечает за доставку данных между любыми узлами одной сети с соответствующей типовой топологией).

-Логическая адресация.

-Маршрутизация.

Транспортный уровень (Transport Layer)

Отвечает за доставку всего сообщения от процесса к процессу. Он гарантирует, что полное сообщение поступает потерь отдельных пакетов и в верном порядке, обеспечивая как коррекцию ошибок, так и управление потоком на уровне «от процесса к процессу».

-Адресация процессов.

-Сегментация и сборка.

-Управление соединением.

Сеансовый уровень (Session Layer).

Устанавливает, поддерживает и синхронизирует сеансы связи (взаимодействие) между оконечными компьютерами. Здесь обеспечивается управление диалогом и предоставляются средства синхронизации, где внутри длинных сообщений вставляются служебные метки. Они позволяют в случае отказа вернуться назад к последней метке и продолжить передачу не сначала, а с того места, на котором она оборвалась.

-Управление диалогом.

-Синхронизация.

Уровень представления (Presentation Layer)

Bмеет дело с формой представления передаваемой по сети информации, не меняя при этом ее содержания. Различные форматы данных преобразуются в некий стандартизованный вид для передачи по сети. На этом уровне может выполняться шифрование и дешифрование данных.

-Трансляция (кодирование).

-Шифрование.

-Компрессия.

Прикладной уровень (Application Layer)

Это набор разнообразных протоколов, с помощью которых пользователи (человек или программа) получают доступ к сети и ее разделяемым ресурсам. Приложения ко нечного пользователя (различные программы доступа к службам сети) используют протоколы прикладного уровня. Единица данных этого уровня обычно называется сообщением (message).

-Услуги электронной почты.

-Передача файлов и доступ.

-Удаленная регистрация (логин).

-Доступ к WWW.

Протоколы, отвечающие за безопасность, существуют на всех уровнях модели. Например:

На транспортном уровне применяется протоколы SSL TLS (англ. Secure Sockets Layer - уровень защищённых сокетов) и TLS использующий симметричное шифрование и асимметричную криптографию для аутентификации ключей обмена.

На сетевом уровне в настоящее время используется комплект протоколов IP-Security (IPSec), который решает вопросы шифрования, аутентификации и обеспечения защиты информации при транспортировке IP-пакетов по сети.

На канальном уровне протокол WEP (Wired Equivalent Privacy), разработанный для защиты информации в проводных каналах связи долгое время использовался беспроводный технологиях передачи данных Wi-Fi. Но в последнее время используется усовершенствованный протокол WPA и WPA2 .

Технологии физического уровня, такие как, например, FHSS и OFDM создают значительные трудности для несанкционированного доступа к информации.


Похожая информация.


До недавнего времени в телекоммуникациях существовало четкое разделение на системы коммутации и системы передачи. Однако сейчас, с развитием и повсеместным внедрением цифровой техники, наблюдается взаимопроникновение этих областей телекоммуникаций, что приводит к необходимости рассматривать передачу и коммутацию сигналов в системах электросвязи совместно. Для системного изложения последующего материала, введем неко­торые определения.

Системой электросвязи будем называть совокупность технических средств, обеспе­чивающую образование линейного тракта и каналов передачи. В состав любой системы электросвязи входит передатчик, канал передачи и приемник. Системы электросвязи делят­ся на две группы: односторонние (передача информации осуществляется только от источ­ника информации к абоненту, примером может служить радиовещание) и двухсторонние (примером может служить телефония).

Линейный тракт системы передачи включает совокупность технических средств, обес­печивающих передачу сигналов: 1) в пределах системы передачи; 2) в полосе частот; 3) со скоростью, определяемой номинальным числом каналов данной системы передачи.

Каналом передачи будем называть средство односторонней передачи сигналов. Не­сколько однонаправленных каналов могут использовать общий путь передачи, как в систе­мах с объединением разделенных по частоте или по времени каналов, где каждому каналу выделяется отдельная полоса частот или отдельный временной интервал.

Часто каналы объединяются в пучки каналов - совокупность каналов, технически вы­полненные как единица направления обмена между частями системы электросвязи. В свою очередь, пучки каналов могут подразделяться на подпучки - определенное количество каналов с близкими характеристиками (например, типом сигнализации, типом пути и др.).

Линией передачи телефонной сети называется совокупность цепей, линейных трактов однотипных или разнотипных систем передачи, имеющих общую среду распространения, а также линейных сооружений и устройств их обслуживания. Линия передачи может содер­жать один или несколько каналов.

В настоящее время в связи используются типовые каналы передачи, параметры кото­рых нормализованы. Например, в телефонии: канал тональной частоты с эффективно пере­даваемой полосой частот 300...3400 Гц и цифровой канал со скоростью передачи 64 Кбит/с.

Задачей системы коммутации является создание требуемого пути (в телекоммуникаци­ях - информационного тракта) между двумя любыми оконечными устройствами. Коммутацией называется установление по заявке индивидуального соединения заданного входа систе­мы с заданным ее выходом на время, необходимое для передачи информации между ними.



В зависимости от формы представления передаваемой через систему информации раз­личают коммутацию цифровую и аналоговую. Цифровой коммутацией называется процесс, при котором соединения между вводом и выводом системы устанавливаются с помощью операций над цифровым сигналом без преобразования его в аналоговый сигнал.

ГОСТ 22670-77 вводит понятия однокоординатной и многокоординатной коммутации цифрового сигнала. Однокоординатной называется коммутация, при которой соединительные пути в системе отделены друг от друга по одному разделительному признаку (под раздели­тельным признаком понимается параметр, по которому в системе происходит разделение со­единительных путей между вводом и выводом системы). Если для осуществления коммута­ции используется две и более координаты, то говорят о многокоординатной коммутации.

Существует два принципа коммутации - с переключением трактов (коммутация каналов) и с запоминанием информации (коммутация с запоминанием). Коммутация каналов применя­ется в основном на сетях, к которым предъявляются два основных требования: время на уста­новление соединения должно быть значительно меньше времени сеанса связи, и, кроме того, задержки информации при передаче должны быть минимальны. Обычно это сети, где необхо­димо обеспечить диалоговую работу. При этом способе соединительный путь между вводом и выводом системы предоставляется на время, необходимое для передачи всей информации. Коммутация каналов может быть реализована в системах с объединением частотно-разделенных каналов (ЧРК), системах с объединением время - разделенных каналов (ВРК) и др. (рис. 1.1). В системах передачи с объединением ЧРК для передачи сигналов по каждому кана­лу в диапазоне частот линейного тракта отводится определенная полоса частот.



Рис. 1.1. Виды коммутации

Чаще всего системы с объединением ЧРК передают аналоговые сигналы, поэтому ино­гда их называют аналоговыми системами передачи. В системе передачи с объединением ВРК для передачи сигнала по каждому каналу в линейном тракте отводится определенный интервал времени. Если в эти интервалы времени по каждому каналу передаются цифровые сигналы, то такие системы передачи с ВРК называются цифровыми системами передачи. Как правило, в таких системах применяется синхронное мультиплексирование.

Коммутация с запоминанием основана на передаче информации, заранее записанной в память узла коммутации. При этом данные могут быть преобразованы (изменена скорость передачи, изменен код, добавлена или удалена служебная информация). Коммутация с за­поминанием применяется, как правило, на цифровых сетях и подразделяется на коммута­цию сообщений и коммутацию пакетов. В первом случае сообщение передается целиком, согласно адресной части, помещаемой в заголовке сообщения. При коммутации пакетов со­общение разбивают на части определенной длины - пакеты, с целью минимизировать оче­реди в узлах коммутации и время обработки информации. Каждый пакет при этом получает свой заголовок. Сети с коммутацией пакетов (сети Х.25, Frame Relay, ATM) значительно превосходят сети с коммутацией сообщений в скорости, что позволяет использовать их в настоящее время не только для служб передачи данных, но и служб, работающих в инте­рактивном режиме. В системах коммутации с запоминанием применяется, как правило, асинхронное (статистическое) мультиплексирование, позволяющее в любой момент време­ни предоставить абоненту требуемую полосу пропускания цифрового тракта (при условии ее наличия).

Весь последующий материал (кроме особо оговоренных случаев) излагается для систем коммутации каналов.

Для передачи и распространения электронных данных используются различные средства и системы связи и телекоммуникации.

Приведем виды связи и используемые в них виды информации. Это:

  1. почтовая (буквенно-цифровая и графическая информация),
  2. телефонная (передача речи (включая буквенно-цифровые данные),
  3. телеграфная (буквенно-цифровые сообщения),
  4. факсимильная (буквенно-цифровая и графическая информация),
  5. радио и радиорелейная (речевая, буквенно-цифровая и графическая информация),
  6. спутниковая связь (тоже и видио информация).

Связь в организации подразделяется на:
проводную и беспроводную,
внутреннюю (местную) и внешнюю,
симплексную, дуплексную и полудуплексную.

Дуплексный режим – это когда можно одновременно говорить и слышать собеседника.
Полудуплексная передача (Half-Duplex) — метод двунаправленной передачи данных (в двух направлениях по одному каналу), при котором в каждый момент времени информация может передаваться только в одну сторону. Это двухчастотный симплекс, или полудуплекс. С точки зрения конечного пользователя он эквивалентен симплексу.
Симплексный режим – это когда абоненты говорят между собой по очереди.

Линия связи – физические провода или кабели, соединяющие пункты (узлы) связи между собой, а абонентов – с ближайшими узлами.

Каналы связи образуется различным образом.
Канал может создаваться на время соединения двух абонентов телефонной или радиосвязи и проведения между ними сеанса голосовой связи. В радиосвязи этот канал может представлять среду передачи данных, в которой одновременно может работать несколько абонентов, а также в ней может одновременно осуществляться несколько сеансов связи.

При этом:
1) проводная связь включает: телефонную, телеграфную связь и системы передачи данных;
2) беспроводная связь включает:
а) подвижную радиосвязь (радиостанции, сотовая и транковая связь и др.);
б) стационарную радиосвязь (радио-релейная и космическая (спутниковая) связь);
3) оптическая неподвижная связь по воздуху и волоконно-оптическим кабелям связи.

Кабели связи

Витая пара – изолированные проводники, попарно свитые между собой для уменьшения наводок между ними. Существует пять категорий витых пар: первая и вторая используются при низкоскоростной передаче данных; третья, четвертая и пятая – при скоростях передачи, до 16, 25 и 155 Мбит/с.

Коаксиальный кабель – медный проводник внутри цилиндрической экранирующей защитной оболочки свитой из тонких медных проводников, изолирован-ной от проводника диэлектриком. Скорость передачи до 300 Мбит/с. Значительная стоимость и сложность прокладки ограничивают его использование.
Волновое сопротивление кабеля (отношение между амплитудами падающих волн напряжения и тока) составляет 50 Ом.

Оптоволоконный кабель состоит из прозрачных волокон оптически прозрачного материала (пластик, стекло, кварц) диаметром в несколько микрон, окружённых твердым заполнителем и помещённых в защитную оболочку. Коэффициент преломления этих материалов изменяется по диаметру таким образом, чтобы отклонившийся к краю луч возвращался обратно к центру.
Передача информации осуществляется преобразованием электрических сигналов в световые с помощью, например, светодиода. При этом обеспечивается устойчивость к электромагнитным помехам и дальность до 40 км.

Телефонная связь – самый распространённый вид оперативно-управленческой связи.
Официально появилась 14 февраля 1876 г., когда Александр Белл (США) запатентовал изобретение первого телефонного аппарата.
Диапазон передаваемых звуковых сигналов по отечественным телефонным каналам составляет полосу частот 300 Гц–3,4 кГц.

Автоматическая телефонная связь образуется с помощью узлов коммутации, роль которых выполняют автоматические телефонные станции (АТС), и соединяющих эти узлы каналов (линий) связи.
В совокупности с абонентскими линиями (телефонная линия от абонента к ближайшей АТС) она составляет телефонную сеть. Телефонная сеть имеет иерархическую структуру – оконечные (внутриучрежденческие, местные, районные и т.п.), городские, региональные (областные, краевые, республиканские), государственные и международные АТС. АТС соединяются между собой с помощью соединительных линий.

Телефонная станция (АТС) – здание с комплексом технических средств, предназначенных для коммутации телефонных каналов.
На АТС производится соединение телефонных каналов абонентов на время их переговоров, а затем, по окончании пере-говоров, их разъединение. Современные ТС являются автоматическими техническими устройствами (в том числе – компьютерными).

Учрежденческие АТС , как правило, обеспечивают не только внутреннюю связь подразделений между собой с возможностью выхода во внешние сети, но и различные виды производственной связи (диспетчерскую, технологическую, громкоговорящую и директорскую) для связи директора с подчинёнными, проведения совещаний и конференций, а также функционирование систем охранной и пожарной сигнализации.
Особенность современных АТС заключается в возможности использования компьютерных техники и технологии; организации соединения с радиотелефонами и пейджерами. В учреждениях для преодоления высоких уровней электромагнитных полей и перегородок используются радиотелефоны, образующие инфракрасные каналы связи.

Местные, внутриучрежденческие или офисные телефонные системы (УАТС или ЭАТС) широко применяются в организациях. Кроме большого набора сервисных возможностей они позволяют значительно сократить количество городских телефонных номеров, а также не загружать городские линии и АТС для ведения местных переговоров. Всё чаще находят себе применение мини- и микроофисные АТС.

Беспроводные каналы связи

Выделяют три основных типа беспроводных сетей:

  1. радиосети свободного радиочастотного диапазона (сигнал передаётся сразу по нескольким частотам);
  2. микроволновые сети (дальняя и спутниковая связь);
  3. инфракрасные сети (лазерные, передаваемые когерентными пучками света).

Современные беспроводные сети включают:

  • радиорелейную связь;
  • пейджинговую связь;
  • сотовую и ячеистую связь;
  • транковую связь;
  • спутниковую связь;
  • телевидение и др.

Радиорелейная связь образуется путём строительства протяжённых линий с приёмо-передающими станциями и антеннами.
Она обеспечивает узкополосную высокочастотную передачу данных на расстоянии между ближайшими антеннами в пределах прямой видимости (примерно 50 км). Скорость передачи данных в такой сети достигает 155 Мбит/с.

Транкинговая (англ. «trunking») или транковая (англ. «trunked») связь – (ствол, канал связи) — организуемый между двумя станциями или узлами сети канал связи для передачи информации группы пользователей в одном радиостволе (до 50 и более абонентов) с радиусом действия от 20 до 35, 70 и 100 км.
Это профессиональная мобильная радиосвязь (ПМР) с автоматическим распределением ограниченного количества свободных каналов среди большого числа подвижных абонентов, позволяющая эффективно использовать частотные каналы, существенно повышая пропускную способность системы.

Сотовая радиотелефонная связь (сотовая подвижная связь, СПС) появилась в конце 1970-х годов. Её также называют мобильной. Промышленно системы СПС начинают эксплуатироваться в США с 1983 года, а в России – с 1993 года.
Принцип организации СПС заключается в создании сети равноудалённых антенн с собственным радиооборудованием, каждая из которых обеспечивает вокруг себя зону устойчивой радиосвязи (англ. «cell» – сота).

В СПС используются методы разделения каналов по частоте (FDMA), времени (TDMA) и коду (CDMA).
FDMA частотное разделение, TDMA – мультидоступ с временным разделением каналов (используется в мобильные системах стандарта GSM), CDMA – кодовое разделение каналов (сигналы других пользователей воспринимаются абонентом такой сети как «белый шум», не мешающий работе приёмного устройства).

Другим способом беспроводной связи являются оптические линии связи (лазерная или оптическая связь), использующие топологию «точка–точка».
Метод передачи звука с помощью модулированного пучка света предложен в начале XX в., а первые коммерческие устройства появились в середине 1980-х г. Эта связь имеет высокую пропускную способность и помехозащищенность, не требует разрешения на использование радиочастотного диапазона и др.
Такие лазерные системы поддерживают любые протоколы передачи данных. Исходный сигнал модулируется оптическим лазерным излучателем и в виде узкого светового луча передатчиком и оптической системой линз передается в атмосферу.

На приемной стороне этот пучок света возбуждает фотодиод, регенерирующий модулированный сигнал.

Распространяясь в атмосфере лазерный луч подвергается воздействию микроскопических частиц пыли, паров и капель жидкости (в т.ч. осадков), температуры и др. Эти воздействия снижают дальность связи, составляющую от единиц, до 10–15 км. Расстояние зависит также и от мощности передающих устройств, которая колеблется от десятков до сотен мВт и обусловлена потребностью обеспечения устойчивой связи. Система обеспечивает достоверность связи более чем на 99,9%.

Спутниковая связь

Она образуется между специальными наземными станциями спутниковой связи и спутником с антеннами и приёмо-передающим оборудованием.

Она используется с целью циркулярного информационного обеспечения большого числа абонентов, как система широкополосного вещания (телевидение, звуковое вещание, передача газет), для организации виртуальных магистральных линий связи большой протяженности и др. Спутниковая связь позволяет охватить территории со слабо развитой инфраструктурой связи, расширить сферу и набор услуг, в т.ч. мультимедийных, радионавигационных и др.

Спутники располагаются на одной из трех орбит.
Спутник, использующий геостационарную орбиту (англ. «Geostationary Earth Orbit», GEO ), находится на высоте 36 тыс. км от Земли, и является неподвижным для наблюдателя. Он охватывает значительные области (территории) планеты.
Средние орбиты (англ. «Mean Earth Orbit», MEO ) обитания спутников характеризуются высотой 5–15 тыс. км, а на низких орбитах (англ. «Low Earth Orbit», LEO ) высота размещения спутников не превышает 1,5 тыс. км. В этом случае они охватывают небольшие, локальные территории.

Станции спутниковой связи делятся на: стационарные, переносные (перевозимые) и портативные.

По видам передаваемых сигналов средства связи делят на аналоговые и цифровые или дискретные.
К аналоговым относят непрерывные сигналы (электрические колебания), как правило, плавно меняющие амплитуду своих значений в течение сеанса передачи информации, например, речь в телефонном канале.
При передаче любых сведений по сетям передачи данных их преобразуют в цифровую форму. Например, по телеграфу передаются закодированные последовательности импульсов. То же происходит при передаче информации между компьютерами по любым телекоммуникациям. Такие сигналы называются дискретными (цифровыми) .
При передаче информации из ЭВМ в качестве кода используют восьми разрядный двоичный код.

Способы передачи данных по коммуникационным сетям

В настоящее время существует большое количество способов передачи данных. Но во всех способах передача данных происходит по принципу электрических сигналов. Электрические сигналы – это, переводя на компьютерный язык, биты , которые представляют собой цифровые, либо аналоговые сигналы, переходящие в электрические импульсы.

Совокупность всех видов передачи данных называется канал передачи данных . В него входят такие средства передачи данных, как: интернет сети, стационарные линии, точки приёма и передачи данных. Каналы передачи данных разделяют на два вида: аналоговые и дискретные.
Основное различие заключается в том, что аналоговый тип представляет собой непрерывный сигнал, а дискретный , в свою очередь, представляет собой прерывистый поток данных.

Для обеспечения наилучшей производительности все устройства производят работу с устройствами в дискретном виде. В дискретном виде применяются цифровые коды, которые преобразовываются в электрические сигналы. А для передачи дискретных данных с помощью аналогового сигнала требуется модуляция дискретного сигнала.

При использовании информации на устройстве происходит обратное преобразование сигнала. Обратное преобразование сигнала называется демодуляцией . Таким образом, существует два процесса преобразования сигнала: модуляция и демодуляция. В процессе модуляции информация представляет собой синусоидальный сигнал с определённой частотой.

Для преобразования данных используются такие способы модуляции :

  1. Амплитудная модуляция данных;
  2. Частотная модуляция данных;
  3. Фазовая модуляция данных.

Для передачи данных дискретного типа по цифровому каналу используется система кодирования . В основном, различают два типа кодирования.

  1. Потенциальное кодирование;
  2. Импульсное кодирование.

Стоит отметить то, что, представленные выше, методы кодирования используются на каналах высокого качества передачи информации. А к модуляции разумнее прибегать только тогда, когда при передачи данных возникает искажение сигнала.

В большинстве случаев, модуляцию используют в работе с крупными информационными сетями. Так как основная часть информации передаётся по аналоговой линии . Это связанно с тем, что данные линии были разработаны задолго до появления цифровых сигналов.

Также каждый вид канала имеет свой способ синхронизации данных . Выделяют два главных вида синхронизации данных: асинхронный и синхронный . Синхронизация используется для того, чтобы произвести точную передачу данных от источника к потребителю.

Синхронизация требует дополнительное оборудование. Например, для выполнения процесса синхронизации необходима дополнительная линия для передачи синхронизирующих импульсов в канал связи. С помощью синхронизации производиться беспрерывная и четкая передача данных. Процесс передачи данных начинается с появления синхронизирующих импульсов.

Главной особенностью асинхронной передачи данных является то, что дополнительный канал связи не требуется. В данном типе при передаче используются байты, которые сопровождают передаваемый байт информации.

  1. Симплексная (однонаправленная);
  2. Полудуплексная;
  3. Дуплексная (двунаправленная).

Перед тем, как отправить информацию в вычислительную сеть, отправитель разделяет информацию на маленькие блоки, которые чаще всего называют пакетами данных . На конечном пункте отправки все пакеты собираются в единый последовательный список. Затем происходит процесс преобразования всех частей в единый исходный материал.

Для правильной работы, с пакетом данных должна быть указана такая информация, как:

  1. Передаваемые файлы;
  2. Ссылки на файл, информация о файле;
  3. Коды управления файлом. Представляют собой список сведений о файле.

Дополнительные операции по увеличению эффективности коммуникационного канала.
Существуют три типа коммутации вычислительной системы :

  1. Коммутация каналов;
  2. Коммутация пакетов;
  3. Коммутация сообщений.

Коммутация каналов служит для создания непрерывного канала из последовательно соединённых линий. После того как данный канал образовался, вся информация и файлы могут передаваться на высокой скорости.
Коммутация сообщений служит для работы с почтовыми файлами и серверами. Эта операция включает в себя ряд возможностей таких как: передача, приём, хранение. Большое количество сообщений, как правило, передаётся блоками. При отправке группы сообщений блок переходит от одного коммуникационного узла к другому и в конечном итоге доходит до адресата. Если произошла ошибка передачи блока (сбой связи, технические неполадки и т.д.), то весь блок сообщений начнёт передаваться заново. До того момента пока весь блок сообщений не достигнет получателя, будет невозможно совершить новую передачу.

Процесс передачи пакетов сообщений полностью идентичен процессу передачи сообщений. Благодаря меньшему размеру, пакет с информацией быстро проходит коммуникационные узлы. Поэтому канал занят только при передаче пакетных данных, а после завершения освобождается для дальнейших загрузок. Подобный тип передачи данных является признанным стандартом для сети Интернет.

Современные коммуникационные сети обладают технологией цифровой передачи данных, что позволят передавать любой тип информации по данному каналу. А новейшие современные материалы и высокое качество установки позволяют добиться высоких скоростей соединения.

Основные понятия по передаче информации

Информация это совокупность сведений об окружающем нас мире. Эти сведения человек получает в процессе взаимодействия с окружающим миром, изучения различных явлений посредством книг, радио, телевидения и других средств общения. Всякий обмен информацией предполагает тот или иной язык, знаки которого и правила применения получателю и отправителю информации. Совокупность знаков содержащих некоторую информацию называют сообщением. Материальными носителями сообщений и следовательно информации может быть магнитная лента или диск с записями, бумага с текстом, механические колебания некоторой среды, колебания эл. тока и напряжения, электромагнитные волны, оптическое излучение и т.д. Все возможные носители сообщений называют сигналами в широком смысле.

Наиболее употребимыми сигналами являются колебания эл. тока и напряжения, э.м. волны и механические колебания упругой среды несущие сообщения. Если информация от некоторого источника воспринимается непосредственно органами чувств человека, то говорят о непосредственной передаче сообщения. Если же информация не может быть непосредственно воспринята органами чувств человека, то прибегают к преобразованию сообщения в некоторые сигналы. Таким образом, сигнал – это некоторый физический процесс, однозначно отображающий информацию и пригодный для передачи ее на расстояние. Общим свойством любых сигналов является информативность, которая определяется степенью новизны сообщения. Сигналы не несущие получателю новой информации не обладают для него информативностью.

Наибольшую информацию человек получает посредством зрения и слуха. Поэтому широко распространена передача информация с помощью световых и звуковых сигналов. Такие методы передачи информации называют прямыми. Однако эти методы обладают ограниченными возможностями из-за рассеяния и поглощения энергии световых и звуковых колебаний в пространстве и ограниченной чувствительностью органов чувств человека. Для передачи информации на большие расстояния применяются электрические и электромагнитные сигналы.

Классификация систем связи

По физической природе сигнала системы связи подразделяются на: 1) акустические 2) электрические 3) электромагнитные 4) оптические

По технической реализации системы связи подразделяются на: 1) телефонные 2) телеграфные 3) радиотехнические 4) телевизионные 5) спутниковые 6) волоконно-оптические 7) компьютерные 8) факсимильные

По направленности потока информации они могут быть: 1) односторонними 2) двусторонними 3) разветвленной сетью

По виду использования линий связи системы связи делятся на: 1) проводные 2) кабельные 3) радиоволновые 4) волоконно-оптические

По способу обработки информации системы связи делятся на: 1) аналоговые 2) цифровые

Радиосвязь Радиоволновой диапазон и его классификация

В основе радиосвязи лежит использование для передачи информации э.м. волн (ЭМВ) свободно распространяющихся в пространстве. Скорость распространения ЭМВ обеспечивает практически мгновенную передачу различных сообщений на большие расстояния. Из всего спектра ЭМВ в радиосвязи используются э.м. волны частоты которых лежат в пределах от 3·10 3 до 3*10 12 Гц. Если изобретатель радиосвязи Попов использовал радиоволны с λ=200-500м, то сейчас используется и оптический диапазон э.м. колебаний. Официально к радиоволнам относят э.м. волны с λ>5*10 -5 , т.е. с частотой ν<6*10 12 Гц. Под длиной волны понимают расстояние, проходимое волной за один период колебания: λ=c*T=c/f, где c=3*10 8 м/c - скорость распространения э.м. волны. Согласно международному регламенту связи радиоволны разделены на 12 диапазонов. Столбцы в таблице – 1) f, Гц 2) λ, м 3) нумерация и наименование радиодиапазонов (международный регламент) 4) наименование частот (международный регламент) 5) Внерегламентные термины. Данные таблицы: 1-ая строка:

1) 3 2) 10 8 3) 1 декаметровый 4) крайне низкие (КНЧ) 5) сверхдлинные волны (СДВ) 2-ая строка: 1) 30 2) 10**7 3) 2 мегаметровый 4) сверхнизкие (СНЧ) 5) СДВ. 3-ая строка: 1) 300 2) 10**6 3) 3 Гектометровый 4) Инфранизкие (ИНЧ) 5) СДВ 4-ая строка: 1) 3*10**3 2) 10**5 3) 4 мериаметровый 4) очень низкие (ОНЧ) 5) СДВ 5-ая строка: 1) 3*10**4 2) 10**4 3) 5 километровый 4) низкие (НЧ) 5) длинные 6-ая строка: 1) 3*10**5 2) 10**3 3) 6 гектометровый 4) средние (СЧ) 5) средние (СВ) 7-ая строка: 1) 3*10**6 2) 10**2 3) 7 Гектометровый 4) высокие (ВЧ) 5) короткие (КВ) 8-ая строка: 1) 3*10**7 2) 10 3) 8 метровый 4) очень высокие (ОВЧ) 5) УКВ 9-ая строка: 1) 3*10**8 2) 1 3) 9 дециметровый 4) ультравысокие (УВЧ) 5) УКВ 10-ая строка: 1) 3*10**9 2) 10**-1 3) 10 сантиметровый 4) сверхвысокие (СВЧ) 5) УКВ 11-ая строка: 1) 3*10**10 2) 10**-2 3) 11 миллиметровый 4) крайневысокие (КВЧ) 5) УКВ 12-ая строка: 1) 3*10**11 2) 10**-3 3) 12 дециметровый 4) гипервысокие (ГВЧ) 5) субмиллиметровые волны 13-ая строка: 1) 3*10**12 2) 10**-4 3) Инфракрасные лучи 14-ая строка: 1) 3*10**13 2) 10**-5 3) инфракрасные лучи 15-ая строка: 1) 3*10**14 2) 10**-6 3) видимые лучи 16-ая строка: 1) 3*10**15 2) 10**-7 3) видимые и ультрафиолетовые лучи 17-ая строка: 1) 3*10**16 2) 10**-8 3) рентгеновские лучи 18-ая строка: 1) 3*10**17 2) 10**-9 3) рентгеновские лучи 19-ая строка: 1) 3*10**-18 2) 10**-10 3) рентгеновские лучи.

Деление радиоволн производится с учетом особенности получения и условий их распространения над земной поверхностью. Надо помнить, нет резкой границы между свойствами радиоволн лежащих в смежных диапазонах. Излучение и прием ЭМВ производится с помощью передающей и приемной антенн. В простейшем случае возбуждение радиоволн осуществляется в передающей антенне при протекании в ней тока высокой частоты. i A =I m *cos(ωt-φ). Γде I m - амплитуда тока; ω=2πf – частота колебаний; t – время; φ – нач. фаза.

При протекании такого тока в антенне происходит преобразование энергии колебания высокой частоты в энергию возбуждаемых в пространстве ЭМВ. Эффективность такого преобразования зависит от частоты питающего тока. Излучаемая мощность тем больше чем выше частота тока в антенне. Э.м. колебания оптического диапазона малой мощности возбуждается светодиодами, а средней и большей мощности с помощью оптических квантовых генераторов (лазеров).