Оплата        09.05.2019   

Реферат: Каналы связи. Снятие информации с технических каналов связи

1. Белов А. Теория и практика связей с общественностью: учебное пособие. - СПб.: ООО Изд-во "Северо-Запад", 2008.

Ворошилов В. В. Современная пресс-служба. - СПб.: Издательство Михайлова В. А., 2009.

Горохов В. М., Комаровский В. С. Связь с общественностью в органах государственной службы. - М., 2008.

Государственная служба: теория и организация: Курс лекций. - Ростов н/Д., 2010.

Грабельников А. А. СМИ против… общества // Гуманизм на рубеже тысячелетий: идея, судьба, перспектива. - М.,2009.

Егоров В. С. Человек информационный // Человек, наука, управление. - М., 2008.

Зверинцев А. Б. Коммуникационный менеджмент: рабочая книга менеджера PR: 2-е изд., испр. - СПб.: Союз, 2008.

Информационная политика / Под общ. ред. В. Д. Попова. - М.: Изд-во РАГС, 2008.

Использование интернет-технологий в решении коммуникативных проблем в сфере политики и бизнеса: теория и практика. - М. ФЭП. 2009.

Кастельс М. Информационная эпоха: экономика, общество и культура. - М., 2009.

Кондратьев Э. В., Абрамов Р. Н. Связи с общественностью: учебное пособие. 2-е изд., испр. и доп. - М.: Академический проект, 2011.

Коновалова О. В. Основы журналистики. - М.: Март, 2010.

Коновченко С. В. Общество - средства массовой информации - власть. - Ростов н/Д., 2011.

Корконосенко С. Г. Основы журналистики. - М., 2009.

Лисичкин В. А., Шелепин Л. А. Третья информационно-психологическая война. - М., 2008.

Макаревич Э. Общественные связи. - М., 2008.

Мелюхин М. С. Информационное общество: истоки, проблемы, тенденции развития. - М.: Изд-во Моск. Ун-та, 2009.

Московичи С. Век толп. - М., 2008.

Никитов В. А. и др. Информационное обеспечение государственного управления. - М.: Славянский диалог, 2010.

Основы государственной политики в области обеспечения информационно-психологической безопасности. Проект. Разработан по заказу Совета Безопасности Российской Федерации. - М.: Институт психологии РАН, 2009.

Почепцов Г.Г. Информационно-политические технологии. - М.: Центр, 2008.

Расторгуев С.П. Информационная война. - М.: Радио и связь, 2008.

Русаков А. Ю. Связи с общественностью в органах государственной власти. - СПб.: Издательство Михайлова В.А., 2008.

Савинова О. Н. Связи с общественностью в органах регионального управления. - Н. Новгород: Нижполиграф, 2009.

Связи с общественностью в политике и государственном управлении / Под общ. ред. В.С. Комаровского. - М.: Издательство РАГС, 2009.

Связи с общественностью в политике: учебное пособие / В.А. Борисов, И.А. Быков, В.Э. Гончаров, К.А. Гусев, А.Б. Шуршиков. - СПб.: СПбГУТ, 2008.

Средства массовой информации России. Под ред. Я. Н. Засурского. - М.: Аспект-Пресс, 2010.

Управление общественными отношениями: учебник / Под общ. ред. В.С. Комаровского. - М.: Издательство РАГС, 2008.

Хабермас Ю. Демократия, разум, нравственность. - М., 2008.

Чумиков А. Н. Связи с общественностью. - М., 2009.

СПИСОК ЛИТЕРАТУРЫ

1. Пономарёв, Л.И. Антенные системы сотовой связи / Л.И. Пономарёв, А.И. Скородумов, А.Ю. Ганицев. - М.: Вузовская книга, 2015. - 320 c.
2. Скляров, О.К. Волоконно-оптические сети и системы связи / О.К. Скляров. - СПб.: Лань, 2010. - 272 c.
3. Скляров, О.К. Волоконно-оптические сети и системы связи: Учебное пособие / О.К. Скляров. - СПб.: Лань, 2010. - 272 c.
4. Оссовская, М.П. Волоконно-оптические сети и системы связи: Учебное пособиеКПТ / М.П. Оссовская. - СПб.: Лань КПТ, 2016. - 272 c.
5. Фриман, Р. Волоконно-оптические системы связи / Р. Фриман. - М.: Техносфера, 2007. - 512 c.
6. Чаадаев, В.К. Информационные системы компаний связи. Создание и внедрение / В.К. Чаадаев. - М.: Эко-Трендз, 2004. - 256 c.
7. Чаадаев, В.К. Информационные системы компаний связи. Создание и внедрение / В.К. Чаадаев и др. - М.: Эко-Трендз, 2004. - 256 c.
8. Мизайлов, В.Ф. Космические системы связи: Учебное пособие / В.Ф. Мизайлов, .Н. Мошкин, И.В. Брагин. - СПб.: ГУАП, 2012. - 174 c.
9. Андреев, В.А. Направляющие системы электросвязи в 2-х т., т.1-Теория передач и влияния: Учебник для вузов / В.А. Андреев. - М.: ГЛТ, 2011. - 424 c.
10. Андреев, В.А. Направляющие системы электросвязи. В 2 тт. Т. 1. Теория передачи и влияния / В.А. Андреев, Э.Л. Портнов и др. - М.: ГЛТ, 2011. - 424 c.
11. Андреев, В.А. Направляющие системы электросвязи. В 2 тт. Т. 2. Проектирование, строительство и техническая эксплуатация / В.А. Андреев, Э.Л. Портнов и др. - М.: ГЛТ, 2010. - 424 c.
12. Портнов, Э.Л. Направляющие системы электросвязи. В 2-х т. Т. 2. Проектирование, строительство и техническая эксплуатация: Учебник для вузов / Э.Л. Портнов. - М.: Гор. линия-Телеком, 2010. - 424 c.
13. Портнов, Э.Л. Направляющие системы электросвязи. В 2-х т.Т. 1. Теория передачи и влияния: Учебник для вузов / Э.Л. Портнов. - М.: Гор. линия-Телеком, 2011. - 424 c.
14. Ксенофонтов, С.Н. Направляющие системы электросвязи. Сборник задач: Учебное пособие для вузов / С.Н. Ксенофонтов, Э.Л. Портнов. - М.: РиС, 2014. - 268 c.
15. Ксенофонтов, С.Н. Направляющие системы электросвязи. Сборник задач: Учебное пособие для вузов. – , стереотип. / С.Н. Ксенофонтов. - М.: ГЛТ, 2009. - 268 c.
16. Андреев, В.А. Направляющие системы электросвязи: Учебник для вузов. В 2-х томах. Том 1 – Теория передачи и влияния / В.А. Андреев, Э.Л. Портнов, Л.Н. Кочановский. - М.: ГЛТ, 2011. - 424 c.
17. Андреев, В.А. Направляющие системы электросвязи: Учебник для вузов. В 2-х томах. Том 2 – Проектирование, строитель / В.А. Андреев. - М.: ГЛТ, 2010. - 424 c.
18. Андреев, В.А. Направляющие системы электросвязи: Учебник для вузов. В 2-х томах. Том 2 – Проектирование, строительство и техническая эксплуатация / В.А. Андреев, Э.Л. Портнов, Л.Н. Кочановский. - М.: Горячая линия - Телеком, 2010. - 424 c.
19. Маликова, Е.Е. Расчёт оборудования мультисервисных сетей связи. Методические указания по курсовому проектированию по дисциплине «Системы коммутации» / Е.Е. Маликова, Ц.Ц. Михайлова, А.П. Пшеничников. - М.: Горячая линия -Телеком, 2014. - 78 c.
20. Тоискин, В.С. Системы документальной электросвязи: Учебное пособие / В.С. Тоискин, А.П. Жук. - М.: Риор, 2018. - 318 c.
21. Тоискин, В.С. Системы документальной электросвязи: Учебное пособие / В.С. Тоискин, А.П. Жук. - М.: ИЦ РИОР, ИНФРА-М, 2011. - 352 c.
22. Будылдина, Н.В. Системы документальной электросвязи: Учебное пособие для вузов / Н.В. Будылдина, С.В. Тимченко. - М.: ГЛТ, 2011. - 200 c.
23. Будылдина, Н.В. Системы документальной электросвязи: Учебное пособие для вузов. / Н.В. Будылдина. - М.: ГЛТ, 2011. - 200 c.
24. Будылдина, Н.В. Системы документальной электросвязи: Учебное пособие для вузов. / Н.В. Будылдина, С.В. Тимченко. - М.: Горячая линия - Телеком, 2011. - 200 c.
25. Головин, О.В. Системы и устройства коротковолновой радиосвязи. / О.В. Головин, С.П. Простов. - М.: ГЛТ, 2006. - 598 c.
26. Бабков, В.Ю. Системы мобильной связи: термины и определения / В.Ю. Бабков, Г.З. Голант, А.В. Русаков. - М.: ГЛТ, 2009. - 158 c.
27. Бабков, В.Ю. Системы мобильной связи: термины и определения / В.Ю. Бабков. - М.: ГЛТ, 2009. - 158 c.
28. Бабков, В.Ю. Системы мобильной связи: термины и определения. / В.Ю. Бабков, Г.З. Голант, А.В. Русаков. - М.: ГЛТ, 2009. - 158 c.
29. Весоловский, К. Системы подвижной радиосвязи / К. Весоловский. - М.: ГЛТ, 2006. - 536 c.
30. Комашинский, В.И. Системы подвижной радиосвязи с пакетной передачей информации / В.И. Комашинский. - М.: ГЛТ, 2007. - 176 c.
31. Комашинский, В. Системы подвижной радиосвязи с пакетной передачей информации / В. Комашинский. - М.: ГЛТ, 2007. - 176 c.
32. Комашинский, В.И. Системы подвижной радиосвязи с пакетной передачей информации. Основы моделирования. / В.И. Комашинский, А.В. Максимов. - М.: ГЛТ, 2007. - 176 c.
33. Весоловский, К. Системы подвижной радиосвязи. / К. Весоловский. - М.: ГЛТ, 2006. - 536 c.
34. Бабков, В.Ю. Сотовые системы мобильной радиосвязи: Учебное пособие для ВУЗов / В.Ю. Бабков. - СПб.: BHV, 2013. - 432 c.
35. Берлин, А.Н. Сотовые системы связи: Учебное пособие / А.Н. Берлин. - М.: Бином. Лаборатория знаний, 2009. - 360 c.
36. Берлин, А.Н. Сотовые системы связи: Учебное пособие / А.Н. Берлин. - М.: БИНОМ. ЛЗ, ИНТУИТ, 2013. - 360 c.
37. Сомов, А.М. Спутниковые системы связи / А.М. Сомов, С.Ф. Корнев. - М.: ГЛТ, 2012. - 244 c.
38. Сомов, А.М. Спутниковые системы связи. / А.М. Сомов, С.Ф. Корнев. - М.: Горячая линия -Телеком, 2012. - 244 c.
39. Сомов, А.М. Спутниковые системы связи: Учебное пособие для вузов / А.М. Сомов, С.Ф. Корнев. - М.: РиС, 2015. - 244 c.
40. Берлин, А.Н. Цифровые сотовые системы связи / А.Н. Берлин. - М.: Эко-Трендз, 2007. - 296 c.
41. Важенин, Н.А. Электрические ракетные двигатели космических аппаратов и их влияние на радиосистемы космической связи / Н.А. Важенин и др. - М.: Физматлит, 2013. - 432 c.
42. Томаси, У. Электронные системы связи / У. Томаси. - М.: Техносфера, 2007. - 1360 c.

1. Баричев С.Г., Гончаров В.В., Серов Р.Е. Основы современной криптографии. – М.: Горячая линия. Телеком, 2001. – 120с.

2. Березюк Н.Т., Андрущенко А.Г., Мощицкий С.С. и др. Кодирование информации (двоичные коды). / Под ред. Н.Т. Березюка. – Харьков: Вища школа, 1978. – 252 с.

3. Блейхут Р. Теория и практика кодов, контролирующих ошибки. – М.: Мир, 1986.

4. Брейсуэлл Р. Преобразование Хартли. / Пер. с английского А.И. Папкова. – М.: Мир, 1990. – 175с.

5. Борисов В.А., Калмыков В.В., Ковальчук Я.М. и др. Радиотехнические системы передачи информации. / Под ред. В.В. Калмыкова. – М.: Радио и связи, 1990. – 304с.

6. Бураченко Д.Л., Клюев Н.Н., Коржик В.И., Финк Л.М. и др. Общая теория связи. / Под ред. Л.М.Финка. – Л.: ВАС, 1970. – 412с.

7. Вальд А. Статистически решающие функции. Позиционные игры.. – М.: Наука, 1967. – 522с.

8. Варакин Л. Е. Теория систем сигналов. – М.: Сов. радио, 1978. – 304с.

9. Васильев К.К. Методы обработки сигналов: Учебное пособие. – Ульяновск: УлГТУ, 2001. – 80с.

10. Васильев К. К., Новосельцев Л. Я., Смирнов В. Н. Основы теории помехоустойчивых кодов: Учеб. пособие. – Ульяновск: УлГТУ, 2000. – 91с.

11. Винер Н.Я. Математика. – М.: Наука, 1967. – 300с.

12. Галлагер Р. Теория информации и надежная связь / Пер. с англ. под ред. М.С. Пинскера и Б.С. Цыбакова. – М.: Сов. радио, 1974. – 720с.

13. Глушков В.А., Нестеренко А.Г. Теория электрической связи. Часть 1. Дискретные сигналы. Учебное пособие. Ульяновск: УФВУС, 2003. – 96с.

14. Глушков В.А., Нестеренко А.Г., Попов Н.А. Теория электрической связи. Учебное пособие. Часть 2. Помехоустойчивость. – Ульяновск: УВВИУС, 2007. – 78с.

15. Глушков В.А., Нестеренко А.Г., Попов Н.А. Телекоммуникационные системы. Учебное пособие. Часть 1. Аналоговые и цифровые сигналы. – Ульяновск: УВВИУС, 2007. – 131с.

16. Глушков В.А., Нестеренко А.Г., Чикалев С.Б. Телекоммуникационные системы. Учебное пособие. Часть 2. Принципы построения систем связи. – Ульяновск: УВВИУС, 2007. – 118с.

17. Гоноровский И.С., Демин М.П. Радиотехнические цепи и сигналы. – М.: Радио и связь, 1994. – 480с.

18. Григорьев В.А., Григорьев С.В. Передача сообщений. / Под ред. В.А. Григорьева. – СПб.: ВУС, 2002. – 460с.

19. Жельников В. Криптография от папируса до компьютера. – М.: ABF, 1996. – 336с.

20. Зюко А.Г., Кловский Д.Д., Назаров М.В., Финк Л.М.. Теория передачи сигналов. – М.: Радио и связь, 1986. – 304с.

21. Зюко А.Г., Кловский Д.Д., Коржик В.И., Назаров М.В. Теория электрической связи. Учебник для вузов. / Под ред. Д.Д. Кловского. – М.: Радио и связь, 1999. – 432с.

22. Зюко А.Г., Фалько А.И., Панфилов И.П., Банкет В.Л., Иващенко П.В. Помехоустойчивость и эффективность систем передачи информации. / Под ред. А.Г. Зюко. – М.: Радио и связь, 1985. – 272с.

23. Игнатов В. А. Теория информации и передачи сигналов: Учебник для вузов. – М.: Радио и связь, 1991. – 280с.

24. Каганов В.И. Радиотехнические цепи и сигналы. Компьютеризированный курс: Учебное пособие. – М.: ФОРУМ: ИНФРА-М, 2005. – 432с.

25. Кассами Т., Токура Н., Ивадари Е., Инагаки Я. Теория кодирования/ Пер. с япон. под ред. Б. С. Цыбакова и С. И. Гельфанда. – М.: Мир, 1978. – 576с.

26. Кларк Дж. мл., Кейн Дж. Кодирование с исправлением ошибок в системах цифровой связи / Пер. с англ. под ред. Б.С. Цыбакова. – М.: Радио и связь, 1987. – 392с.

27. Колмогоров А.Н. Интерполирование и экстраполирование стационарных последовательностей. – М.: Изв. АН СССР. Сер. Матем., 1941, №5. С. 3–14.

28. Котельников В.А. Теория потенциальной помехоустойчивости. – М.: Госэнергоиздат, 1956. – 152с.

29. Левин Б.Р. Теоретические основы статистической радиотехники. – М.: Радио и связь, 1989. – 653с.

30. Мак-Вильямс Ф.Дж., Слоэн Н.Дж.А. Теория кодов, исправляющих ошибки. – М.: Связь, 1979. – 744с.

31. Оков И.Н. Криптографические системы защиты информации. – СПб.: ВУС, 2001. – 236с.

32. Панфилов И.П., Дырда В.Е. Теория электрической связи. – М.: Радио и связь, 1991. – 344с.

33. Питерсон У., Уэлдон Э. Коды, исправляющие ошибки / Пер. с англ. под ред. РЛ. Добрушина и С.И. Самойленко. – М.: Мир, 1976. – 596с.

34. Прокис Джон. Цифровая связь / Пер. с англ. под ред. Д.Д. Кловского. – М.: Радио и связь, 2000.

35. Ройтенберг Я.Н. Автоматическое управление. – М.: Наука, 1978. – 552с.

36. Романец Ю.В., Тимофеев П.А., Шаньгин В.Ф. Защита информации в компьютерных системах и сетях/ Под ред. В.Ф. Шаньгина. – М.: Радио и связь, 2001. – 376с.

37. Сифоров В.И. О влиянии помех на прием импульсных сигналов «Радиотехника», 1947, № 1.

38. Скляр Б. Цифровая связь. Теоретические основы и практическое применение. – М.: Изд. Дом «Вильямс», 2003. – 1104с.

39. Теплов Н.Л. Теория передачи сигналов по электрическим каналам связи. – М.: МО СССР, 1976. – 424с.

40. Тихонов В.И. Оптимальный прием сигналов. – М.: Радио и связь, 1983. – 320с.

41. Фано Р. Передача информации. Статистическая теория связи: Пер. с англ. под ред. Р. Л. Добрушина. – М.: Мир, 1965. – 438с.

42. Финк Л.М. Теория передачи дискретных сообщений. – М.: Советское радио, 1970. – 728с.

43. Харкевич А.А Избранные труды. Т.3. Теория информации. Опознание образов. – М.: Наука, 1972. – 524с.

44. Хартли Р. Передача информации. Сборник: Теория информации и ее применение. / Под ред. А.А. Харкевича. – М.: Физматгиз, 1959.

45. Хелстром К. Статистическая теория обнаружения сигналов. – М.: ИЛ, 1963.

46. Хинчин А.Я. Понятия энтропии в теории вероятностей. Успехи мат. наук, 1953, №3.

47. Хинчин А.Я. Об основных теоремах теории информации. Успехи мат. наук, 1956, №1.

48. Хинчин А. Работы по математической теории массового обслуживания. – М.: Физмат, 1963. – 236с.

49. Шеннон К. Работы по теории информации и кибернетике / Пер. с англ. под ред. Н.А. Железнова. – М.: ИЛ, 1963. – 829с.

50. Harry Nyquist. Certain factors affecting telegraph speed. – Bell System Technical Journal, 3, 1924. С.324–346.

    Гроднев И.И., Мурадян А.Г., Шарафутдинов P.M. и др. «Волоконно-оптические системы передачи и кабели». Справочник, «Радио и связь», М., 1993.

    Андреев В.А., Бурдин В.А., Попов В.В., Полыгаков А.И. Строительство и техническая эксплуатация волоконно-оптических линий связи. Учебник для ВУЗов - М., Радио и связь, 1995.

    Алексеев Е.Б. Особенности внедрения ВОСП на ВСС РФ, «Вестник связи», 1995, № 2.

    Алексеев Е.Б., Заркевич Е.А., Макеев О.Н., Устинов С.А. Концепция развития современных высокоскоростных ВОСП, «Электросвязь», 1996, № 9.

    Убайдуллаев P.P. «Волоконно-оптические сети». ЭКО-ТРЕНДЗ, М., 1998.

    Алексеев Е.Б., Заркевич Е.А., Устинов С.А. Концепция построения сетей доступа ВСС РФ на элементах фотонной технологии, «Электросвязь», ! 998, 10.

    Алексеев Е.Б. «Принципы построения и технической эксплуатации фотонных сетей связи». Учебное пособие, ИПК МТУ СИ, ЗАО «Информсвязьиздат», М. 2000.

    Алексеев Е.Б., Заркевич Е.А., Скляров O.K., Устинов С.А. Эволюция сети доступа на основе применения волоконно-оптических технологий, «Электросвязь», 2003, № 9.

    Алексеев Е.Б., Заркевич Е.А., Скляров O.K., Павлов Н.М. Атмосферные оптические линии передачи на местной сети связи России и проблемы их внедрения, «Электросвязь», 2003, №9.

    Алексеев Е.Б. «Основы проектирования и технической эксплуатации цифровых волоконно-оптических систем передачи». Учебное пособие, ИПК МТУСИ, ООО «Оргсервис-2000», М., 2004.

    Алексеев Е.Б. «Транспортные сети СЦИ. Проектирование, техническая эксплуатация и управление». Учебное пособие, ИПК МТУСИ, ООО «Оргсервис-2000», М., 2004.

    Алексеев Е.Б., Скляров O.K., Устинов С.А. Оптические сети операторов связи DWDM и CWDM в России, «Технологии и средства связи», 2004, № 2.

    Алексеев Е.Б., Скляров O.K., Устинов С.А. Спектральное уплотнение в оптических сетях связи, «ФОТОН-ЭКСПРЕСС», 2004, № 1.

    Алексеев Е.Б., Скляров O.K., Устинов С.А. Спектральное уплотнение оптических каналов в современных ВОСП, «ФОТОН-ЭКСПРЕСС», 2004, № 1.

    Петренко И.И., Убайдуллаев P.P. Пассивные оптические сети PON. Часть 1. Архитектура и стандарты, «LIGHTWAVE RUSSIAN EDITION», 2004, № 1.

    Петренко И.И., Убайдуллаев P.P. Пассивные оптические сети PON. Часть 1. Архитектура и стандарты, «LIGHTWAVE RUSSIAN EDITION», 2004, № I.

    Петренко И.И., Убайдуллаев P.P. Пассивные оптические сети PON. Часть 2. ETHERNET на первой миле, «LIGHTWAVE RUSSIAN EDITION», 2004, № 2.

    Петренко И.И., Убайдуллаев P.P. Пассивные оптические сети PON. Часть 3. Проектирование оптимальных сетей, «LIGHTWAVE RUSSIAN EDITION», 2004, № 3.

    Долотов Д.В. Оптические технологии в сетях доступа, «Технологии и средства связи», спецвыпуск «Системы абонентского доступа», 2004.

    РД 45.047-99 Линии передачи волоконно-оптические па магистральной и внутризоновых первичных сетях ВСС России. Техническая эксплуатация. Руководящий технический материал. "

    ОСТ 45.178-2000 Системы передачи с оптическими усилителями и спектральным уплотнением. Стыки оптические. Классификация и основные параметры.

    РД 45.036-99 Технические требования на аппаратуру атмосферного оптического цифрового линейного тракта плезиохронной цифровой иерархии.

    РД 45.186-2001 Аппаратура волоконно-оптических усилителей для применения на Взаимоувязанной сети связи Российской Федерации. Технические требования.

    РД 45.200-2001 Применение волоконно-оптических средств на сетях доступа. Руководящий технический материал.

    РЛ 45 286-2002 Аппаратура волоконно-оптической системы передачи со спектральным разделением. Общие технические

    Скляров O.K., Заркевич Е.А., Устинов С.А. Волоконно-оптические технологии как основа развития широкополосных сетей доступа, «Технологии и средства и связи», №3, 2003

    Павлов Н.М. Параметры атмосферного кнала и надежность АОЛП, «Технологии и средства и связи», №2, 2003

    Основные положения развития Взаимоувязанной сети связи Российской Федерации на перспективу до 2005 года, кн.1, 2, М, 1996 г.

    Правила технической эксплуатации первичной сети Взаимоувязанной сети связи Российской Федерации», кн. 1,2,3. Введены в действие приказом Минсвязи России от 19.10.98 г., N 187.

    РД 45.180-2001 Руководство по проведению планово-профилактических и аварийно-восстановительных работ на линейно-кабельных сооружениях связи волоконно-оптической линии передач.

    ГОСТ 26599-85 Системы передачи волоконно-оптические. Термины и определения.

    ОСТ 45.201-2003 Системы передачи волоконно-оптические. Усилители оптические. Термины и определения.

    ОСТ 45.202-2003 Системы передачи волоконно-оптические со спектральным разделением. Основные компоненты. Термины и определения.

    Стандарт МЭК 60875-1 Generic Specification for Fibre-optic Branching Devices (Основная спецификация для волоконно-оптических устройств разветвления)

    Стандарт МЭК 60869-(Generic Specification for Fibre-optic Attenuators (Основная спецификация для волоконно-оптических аттенюаторов).

    Стандарт МЭК 6)931-1 Fibre-optic Terminology (Терминология по волоконной оптике).

    Стандарт МЭК 61202-1 Generic Specification for Fibre-optic solators (Основная спецификация для волоконно-оптических изоляторов).

    Стандарт МЭК 60876-1 Generic Specification for Fibre-optic Switches (Основная спецификация для волоконно-оптических переключателей).

    Стандарт МЭК 60874-1 Generic Specification for Fibre-optic Connectors (Основная спецификация для волоконно-оптических разъемных соединителей).

    Стандарт МЭК 61073-1 Generic Specification for Splices for Optical Fibres and Cables (Основная спецификация для волоконно-оптических соединителей).


На рис. 1 приняты следующие обозначения: X, Y, Z, W – сигналы, сообщения; f – помеха; ЛС – линия связи; ИИ, ПИ – источник и приемник информации; П – преобразователи (кодирование, модуляция, декодирование, демодуляция).

Существуют различные типы каналов, которые можно классифицировать по различным признакам:

1.По типу линий связи: проводные; кабельные; оптико-волоконные;

линии электропередачи; радиоканалы и т.д.

2. По характеру сигналов: непрерывные; дискретные; дискретно-непрерывные (сигналы на входе системы дискретные, а на выходе непрерывные, и наоборот).

3. По помехозащищенности: каналы без помех; с помехами.

Каналы связи характеризуются:

1. Емкость канала определяется как произведениевремени использования канала T к, ширины спектра частот, пропускаемых каналом F к и динамического диапазона D к . , который характеризует способность канала передавать различные уровни сигналов


V к = T к F к D к. (1)

Условие согласования сигнала с каналом:

V c £ V k ; T c £ T k ; F c £ F k ; V c £ V k ; D c £ D k .

2.Скорость передачи информации – среднее количество информации, передаваемое в единицу времени.

3.

4. Избыточность – обеспечивает достоверность передаваемой информации (R = 0¸1).

Одной из задач теории информации является определение зависимости скорости передачи информации и пропускной способности канала связи от параметров канала и характеристик сигналов и помех.

Канал связи образно можно сравнивать с дорогами. Узкие дороги – малая пропускная способность, но дешево. Широкие дороги – хорошая пропускная способность, но дорого. Пропускная способность определяется самым «узким» местом.

Скорость передачи данных в значительной мере зависит от передающей среды в каналах связи, в качестве которых используются различные типы линий связи.

Проводные:

1. Проводные витая пара (что частично подавляет электромагнитное излучение других источников). Скорость передачи до 1 Мбит/с. Используется в телефонных сетях и для передачи данных.

2. Коаксиальный кабель. Скорость передачи 10–100 Мбит/с – используется в локальных сетях, кабельном телевидении и т.д.

3. Оптико-волоконная. Скорость передачи 1 Гбит/с.

В средах 1–3 затухание в дБ линейно зависит от расстояния, т.е. мощность падает по экспоненте. Поэтому через определенное расстояние необходимо ставить регенераторы (усилители).

Радиолинии:

1.Радиоканал. Скорость передачи 100–400 Кбит/с. Использует радиочастоты до 1000 МГц. До 30 МГц за счет отражения от ионосферы возможно распространение электромагнитных волн за пределы прямой видимости. Но этот диапазон сильно зашумлен (например, любительской радиосвязью). От 30 до 1000 МГц – ионосфера прозрачна и необходима прямая видимость. Антенны устанавливаются на высоте (иногда устанавливаются регенераторы). Используются в радио и телевидении.

2.Микроволновые линии. Скорости передачи до 1 Гбит/с. Используют радиочастоты выше 1000 МГц. При этом необходима прямая видимость и остронаправленные параболические антенны. Расстояние между регенераторами 10–200 км. Используются для телефонной связи, телевидения и передачи данных.

3. Спутниковая связь . Используются микроволновые частоты, а спутник служит регенератором (причем для многих станций). Характеристики те же, что у микроволновых линий.

2. Пропускная способность дискретного канала связи

Дискретный канал представляет собой совокупность средств, предназначенных для передачи дискретных сигналов .

Пропускная способность канала связи – наибольшая теоретически достижимая скорость передачи информации при условии, что погрешность не превосходит заданной величины.Скорость передачи информации – среднее количество информации, передаваемое в единицу времени. Определим выражения для расчета скорости передачи информации и пропускной способности дискретного канала связи.

При передаче каждого символа в среднем по каналу связи проходит количество информации, определяемое по формуле

I (Y, X) = I (X, Y) = H(X) – H (X/Y) = H(Y) – H (Y/X) , (2)

где: I (Y, X) – взаимная информация, т.е.количество информации, содержащееся в Y относительно X ; H(X) – энтропия источника сообщений; H (X/Y) – условная энтропия, определяющая потерю информации на один символ, связанную с наличием помех и искажений.

При передаче сообщения X T длительности T, состоящего из n элементарных символов, среднее количество передаваемой информации с учетом симметрии взаимного количества информации равно:

I(Y T , X T) = H(X T) – H(X T /Y T) = H(Y T) – H(Y T /X T) = n . (4)

Скорость передачи информации зависит от статистических свойств источника, метода кодирования и свойств канала.

Пропускная способность дискретного канала связи

. (5)

Максимально-возможное значение, т.е. максимум функционала ищется на всем множестве функций распределения вероятности p(x) .

Пропускная способность зависит от технических характеристик канала (быстродействия аппаратуры, вида модуляции, уровня помех и искажений и т.д.). Единицами измерения пропускной способности канала являются: , , , .

2.1 Дискретный канал связи без помех

Если помехи в канале связи отсутствуют, то входные и выходные сигналы канала связаны однозначной, функциональной зависимостью.

При этом условная энтропия равна нулю, а безусловные энтропии источника и приемника равны, т.е. среднее количество информации в принятом символе относительно переданного равно


I (X, Y) = H(X) = H(Y); H (X/Y) = 0.

Если Х Т – количество символов за время T , то скорость передачи информации для дискретного канала связи без помех равна

где V = 1/ – средняя скорость передачи одного символа.

Пропускная способность для дискретного канала связи без помех

(7)

Т.к. максимальная энтропия соответствует для равновероятных символов, то пропускная способность для равномерного распределения и статистической независимости передаваемых символов равна:

. (8)

Первая теорема Шеннона для канала:Если поток информации, вырабатываемый источником, достаточно близок к пропускной способности канала связи, т.е.

, где - сколь угодно малая величина,

то всегда можно найти такой способ кодирования, который обеспечит передачу всех сообщений источника, причем скорость передачи информации будет весьма близкой к пропускной способности канала.

Теорема не отвечает на вопрос, каким образом осуществлять кодирование.

Пример 1. Источник вырабатывает 3 сообщения с вероятностями:

p 1 = 0,1; p 2 = 0,2 и p 3 = 0,7.

Сообщения независимы и передаются равномерным двоичным кодом (m = 2 ) с длительностью символов, равной 1 мс. Определить скорость передачи информации по каналу связи без помех.

Решение: Энтропия источника равна

[бит/с].

Для передачи 3 сообщений равномерным кодом необходимо два разряда, при этом длительность кодовой комбинации равна 2t.

Средняя скорость передачи сигнала

V =1/2 t = 500 .

Скорость передачи информации

C = vH = 500 × 1,16 = 580 [бит/с].

2.2 Дискретный канал связи с помехами

Мы будем рассматривать дискретные каналы связи без памяти.

Каналом без памяти называется канал, в котором на каждый передаваемый символ сигнала, помехи воздействуют, не зависимо от того, какие сигналы передавались ранее. То есть помехи не создают дополнительные коррелятивные связи между символами. Название «без памяти» означает, что при очередной передаче канал как бы не помнит результатов предыдущих передач.

При наличии помехи среднее количество информации в принятом символе сообщении Y , относительно переданного – X равно:

Для символа сообщения X T длительностиT , состоящегоиз n элементарных символов среднее количество информации в принятом символе сообщении – Y T относительно переданного – X T равно:

I(Y T , X T) = H(X T) – H(X T /Y T) = H(Y T) – H(Y T /X T) = n = 2320 бит/с

Пропускная способность непрерывного канала с помехами определяется по формуле


=2322 бит/с.

Докажем, что информационная емкость непрерывного канала без памяти с аддитивным гауссовым шумом при ограничении на пиковую мощность не больше информационной емкости такого же канала при той же величине ограничения на среднюю мощность.

Математическое ожидание для симметричного равномерного распределения

Средний квадрат для симметричного равномерного распределения

Дисперсия для симметричного равномерного распределения

При этом, для равномерно-распределенного процесса .

Дифференциальная энтропия сигнала с равномерным распределением


Разность дифференциальных энтропий нормального и равномерно распределенного процесса не зависит от величины дисперсии

= 0,3 бит/отсч.

Таким образом, пропускная способность и емкость канала связи для процесса с нормальным распределением выше, чем для равномерного.

Определим емкость (объем) канала связи

V k = T k C k = 10 × 60 × 2322 = 1,3932 Мбит.

Определим количество информации, которое может быть передано за 10 минут работы канала

10× 60× 2322=1,3932 Мбит.

Задачи

1. В канал связи передаются сообщения, составленные из алфавита x 1, x 2 и x 3 с вероятностями p ( x 1 )=0,2; p ( x 2) =0,3 и p ( x 3 )=0,5 .

Канальная матрица имеет вид:

при этом .

Вычислить:

1.Энтропию источника информации H ( X ) и приемника H ( Y ) .

2. Общую и условную энтропию H ( Y / X ).

3. Потери информации в канале при передаче к символов (к = 100 ).

4. Количество принятой информации при передаче к символов.

5. Скорость передачи информации, если время передачи одного символаt = 0,01 мс .

2. По каналу связи передаются символы алфавита x 1 , x 2 , x 3 и x 4 с вероятностями . Определить количество информации принятой при передаче 300 символов, если влияние помех описывается канальной матрицей:

.

3. Определить потери информации в канале связи при передаче равновероятных символов алфавита, если канальная матрица имеет вид


.

t = 0,001 сек.

4.Определить потери информации при передаче 1000 символов алфавита источникаx 1 , x 2 и x 3 с вероятностями p =0,2; p =0,1 и p ()=0,7 , если влияние помех в канале описывается канальной матрицей:

.

5. Определить количество принятой информации при передаче 600 символов, если вероятности появления символов на выходе источника X равны: а влияние помех при передаче описывается канальной матрицей:

.

6. В канал связи передаются сообщения, состоящие из символов алфавита , при этом вероятности появления символов алфавита равны:

Канал связи описан следующей канальной матрицей:


.

Определить скорость передачи информации, если время передачи одного символа мс .

7.По каналу связи передаются сигналы x 1 , x 2 и x 3 с вероятностями p =0,2; p =0,1 и p ()=0,7. Влияние помех в канале описывается канальной матрицей:

.

Определить общую условную энтропию и долю потерь информации, которая приходится на сигнал x 1 (частную условную энтропию).

8. По каналу связи передаются символы алфавита x 1 , x 2 , x 3 и x 4 с вероятностями .

Помехи в канале заданы канальной матрицей

.

Определить пропускную способность канала связи, если время передачи одного символа t = 0,01 сек.

Определить количество принятой информации при передаче 500 символов, если вероятности появления символов на входе приемника Y равны: , а влияние помех при передаче описывается канальной матрицей:


.

Список литературы

1 Гринченко А.Г. Теория информации и кодирование: Учебн. пособие. – Харьков: ХПУ, 2000.

2 Куприянов М.С., Матюшкин Б.Д. – Цифровая обработка сигналов: процессоры, алгоритмы, средства проектирования. – СПб: Политехника, 1999.

3 Хемминг Р.В. Цифровые фильтры: Пер. с англ. / Под ред. А.М. Трахтмана. – М.: Сов. радио, 1980.

4 Сиберт У.М. Цепи, сигналы, системы: В 2-х ч. / Пер. с англ. – М.: Мир, 1988.

5 Скляр Б. Цифровая связь. Теоретические основы и практическое применение: Пер. с англ. – М.: Издательский дом «Вильямс», 2003. – 1104 с.

6 Kalinin, V.I. Microwave & Telecommunication Technology, 2007. CriMiCo 2007. 17th International Crimean ConferenceVolume, Issue, 10–14 Sept. 2007 Page(s):233 – 234

7 Феер К. Беспроводная цифровая связь. Методы модуляции и расширения спектра. Пер. с англ. – М.: Радио и связь, 2000.

8 Игнатов В.А. Теория информации и передачи сигналов: Учебник для вузов. – 2-е изд., перераб. и доп. – М.: Радио и связь, 1991;