Установка и настройка        28.08.2019   

Статическая оперативная память.


"Научно-технические статьи" - подборка научно-технических статей радиоэлектронной тематики: новинки электронных компонентов , научные разработки в области радиотехники и электроники , статьи по истории развития радиотехники и электроники , новые технологии и методы построения и разработки радиоэлектронных устройств, перспективные технологии будущего, аспекты и динамика развития всех направлений радиотехники и электроники , обзоры выставок радиоэлектронной тематики.

Компания АМIС Technology уже достаточно известна на российском рынке микросхем памяти. Будучи последователем знаменитой UMC Group, компания AMIC Technology продолжает идти "на гребне волны" в производстве полного спектра продукции памяти. Что же касается применения микросхем памяти, то говорить об этом много нет смысла - она применяется везде. И если с постоянной памятью все более или менее понятно, то выбор оперативной памяти является довольно сложной задачей. Сколько существует микросхемотехника, столько же существует вопрос, что лучше - медленная, трудноуправляемая, но дешевая динамическая память, либо быстрая, напрямую сопрягаемая с процессором, но дорогая статическая память? Возможно, теперь есть компромиссное решение.

Принципы работы статической памяти

Статическая память называется статической именно потому, что информация в ней "статична", то есть, что я туда положил, то я оттуда и возьму через любой промежуток времени. Такая статичность достигается за счет использования в качестве базового элемента обычного триггера, собранного, например, на паре транзисторов.

P-N переходы транзисторов, на которые поданы постоянные смещения, надежно держат разность потенциалов, либо питание, либо землю (без учета падения напряжения на самом переходе), и возможно лишь два стабильных состояния, условно называемые "0" и "1". Располагаются транзисторы на кремниевой подложке, внутри которой формируются P-N переходы.

Таким образом, простейшим статическим элементом памяти емкостью 1 бит можно считать триггер, построенный на четырех P-N переходах. Теперь, если эти триггеры рассортировать, скажем, по 8, и на каждый из них вывести ножку дешифратора 3x8, то получится простейшая ячейка памяти емкостью 1 байт, которую уже можно адресовать, подав соответствующее значение на дешифратор. Выстроив линейку из таких дешифраторов, и применив к ней дешифратор более высокого порядка, мы уже получим полноценную микросхему статической памяти. Скорость выборки данных из статической памяти будет определяться лишь временем переходного процесса в полупроводниках, а скорость эта довольно большая. Поэтому время доступа к статической памяти исчисляется единицами наносекунд. Что же касается энергопотребления, то оно будет определяться, в основном, током через P-N переходы. Ну и, наконец, наиболее привлекательной стороной статической памяти является возможность прямого сопряжения с процессором, так как адресация осуществляется напрямую по шине адреса с указанием номера (адреса) ячейки.

При всех плюсах, у статической памяти есть достаточно серьезные недостатки. Что же получится, если мы захотим сделать статическую память очень большого объема? Для этого, помимо монтажа огромного количества триггеров, нужно как-то выворачиваться с дешифратором на огромное количество выводов. Не для кого не секрет, что сложность дешифратора растет с увеличением количества адресуемых объектов. Дешифратор 1x2 выполняется на одном триггере с прямым и инверсным выходами, 2x4, уже на 4-х элементах, а попробуйте сделать дешифратор 10x1024! А это всего 1 килобит! Применяется каскадирование дешифраторов, но от этого страдает скорость. Сделать можно, конечно же, все, но за это надо платить, что и доказывается стоимостью быстрой статической памяти большого объема.

Принципы работы динамической памяти

Еще Майкл Фарадей, проводя опыты по прохождению электрического тока через конденсатор, заметил, что последний способен хранить информацию о начальных условиях. Это свойство конденсатора, или просто емкости, и используется при построении элемента динамической памяти. Рассмотрим незаряженный конденсатор, когда разность потенциалов между его клеммами равна нулю. Приложим на некоторое время к конденсатору напряжение, равное напряжению питания. А что значит "некоторое время"? А это такое время, за которое заряд успеет перетечь с входных клемм на обкладки конденсатора. По истечению этого времени отключим конденсатор от нашего источника. Теоретически этот конденсатор будет хранить наше напряжение бесконечно долго, таким образом становясь подобным триггеру на двух транзисторах.

Все это было бы хорошо, если бы не реальная жизнь. В качестве диэлектрика используется оксидная пленка какого-нибудь металла (скажем, алюминия). Эта диэлектрическая пленка обладает хоть и малой, но проводимостью, а следовательно, конденсатор начинает разряжаться через эту оксидную пленку, тем самым выделяя на ней тепло и теряя информацию. Как только напряжение на емкости достигает минимально допустимого значения, мы вновь подключаем к конденсатору наше напряжение питания и вновь заряжаем его, после чего отводим клеммы. Вот эта процедура и есть всем известная и ненавистная процедура регенерации динамической памяти, которую каждый определенный промежуток времени проводит контроллер динамической памяти.

Для адресации динамической памяти используются не прямые адресные сигналы процессора, а адресные сигналы процессора, пропущенные через контроллер динамической памяти и еще сигналы CAS и RAS, вырабатываемые контроллером. Динамическая память имеет матричный принцип строения, и сигнал CAS стробирует выборку колонки, а сигнал RAS стробирует выборку ряда в этой колонке. Без сигналов CAS и RAS динамическая память становится бесполезной, так как способна хранить информацию без регенерации всего в течение нескольких микросекунд. На первый взгляд, в динамической памяти все плохо: и использование внешнего контроллера, и сложность управления. Но есть и значительные плюсы. Выполнить матрицу конденсаторов значительно проще, чем матрицу триггеров, достаточно "вставить" диэлектрики в нужных местах, а значит, динамическая память будет значительно дешевле статической. При необходимости создания динамической памяти большого объема тоже нет проблем, надо "вставить" диэлектрики чаще и быстрее проводить регенерацию. Поэтому динамическая память и получила большее распространение, чем статическая.

Динамическое ядро + статический интерфейс = SuperRAM

Когда-нибудь все мечты становятся реальностью. Мечтал человек получить динамическую память со статическим интерфейсом - и получил SuperRAM от AMIC Technology. Идея здесь предельно проста. Если для управления динамической памятью требуется дополнительный контроллер, то почему бы не встроить его в саму микросхему памяти. У читателя резонно возникнет вопрос: зачем это нужно? Ведь в современных микропроцессорах и микроконтроллерах есть интерфейсы динамической памяти? Отвечаю: да, вы правы, но микроконтроллеры, имеющие этот интерфейс, резко выделяются ценой, естественно в большую сторону. Далее, в подавляющем большинстве случаев это 32-разрядные процессоры, работающие с большой тактовой частотой, и применение к ним динамической памяти по меньшей мере нецелесообразно (если, конечно, не требуется больших объемов). Третье: большинство приложений до сих пор остались восьми-и шестнадцатиразрядными, где и контроллера DRAM нет, и быстродействие соответствующее, а вот объемы памяти зачастую требуются очень даже значительные. Вот именно для таких применений и существует SuperRAM от компании AMIC Technology.

Работа подобной памяти достаточно проста. Процедура регенерации динамического ядра SuperRAM происходит автоматически по истечению определенного времени (когда значения напряжения на емкостях упадут ниже критических), и стробирование происходит постоянно. При запросе процессором определенной ячейки адрес ее приходит на входной буфер микросхемы SuperRAM. И дальше, с первым же сигналом стробирова-ния отправляется к ядру SuperRAM, из которого и происходит выборка значений. Для процессора не имеет значения, что к нему подключена динамическая память, он работает с ней как с менее быстрой статической. Преимущества SuperRAM налицо: прямое сопряжение с совершенно любым процессором или устройством, у которого есть шина данных, адреса и сигналы выбора и записи, не требуется подключения дополнительного контроллера, осуществляющего регенерацию, большой объем за счет присутствия динамического ядра, низкая стоимость. Для примера приведем технические характеристики одного из последних представителей семейства SuperRAM от AMIC Technology - микросхемы A64E16161:

  1. Объем: 32 Мбит, организованных 2 Мх 16 бит.
  2. Время доступа по адресу: 70 нс.
  3. Время доступа к странице: 25 нс.
  4. Рабочий ток 20 мА, ток режима standby 10 мкА.
  5. Полная совместимость с интерфейсом SRAM. Не требуется регенерации или стробирования.
  6. Напряжение питания от 1,65 до 2,2 В.

Будущее SuperRAM

Сказать, что у подобного решения есть будущее - это ничего не сказать. Сейчас компания AMIC Technology достигла рубежа 32 Мбит, но не намерена на этом останавливаться. Уже в начале 2004 года, используя технологию 0,13 мкм, планируется начать серийное производство микросхем серии SuperRAM емкостью 64 Мбит. Время доступа также будет существенно уменьшено, а питание 2,0 В для микросхем памяти является одной из передовых возможностей. По своим возможностям и по стоимости такие продукты могут создать конкуренцию уже имеющимся модулям памяти, таким как SIMM, DIMM, SDRAM и даже DDR, что является немаловажным при проектировании систем нового поколения.

□ tдост - время поиска информации на носителе;

□ Vсчит ~~ скорость считывания смежных байтов информации подряд (трансфер). Напомним общепринятые сокращения: с - секунда, мс - миллисекунда, мкс - микросекунда, нc - наносекунда; 1 с = 106мс = 106мкс = 109нс.

Статическая и динамическая оперативная память

Оперативная память может строиться на микросхемах динамического (Dinamic Random Access Memory - DRAM) или статического (Static Random Access Me­mory - SRAM) типа.

Статический тип памяти обладает существенно более высоким быстродействием, но значительно дороже динамического. В статической памяти элементы (ячейки) построены на различных вариантах триггеров - схем с двумя устойчивыми со­стояниями. После записи бита в такую ячейку она может пребывать в этом состо­янии сколь угодно долго - необходимо только наличие питания. При обращении к микросхеме статической памяти на нее подается полный адрес, который при по­мощи внутреннего дешифратора преобразуется в сигналы выборки конкретных ячеек. Ячейки статической памяти имеют малое время срабатывания (единицы наносекунд), однако микросхемы на их основе имеют низкую удельную емкость (единицы мегабит на корпус) и высокое энергопотребление. Поэтому статическая память используется в основном в качестве микропроцессорной и буферной (кэш­память).

В динамической памяти ячейки построены на основе полупроводниковых облас­тей с накоплением зарядов (своеобразных конденсаторов), занимающих гораздо меньшую площадь, нежели триггеры, и практически не потребляющих энергии при хранении. Конденсаторы расположены на пересечении вертикальных и горизон­тальных шин матрицы; запись и считывание информации осуществляется подачей электрических импульсов по тем шинам матрицы, которые соединены с элемента­ми, принадлежащими выбранной ячейке памяти. При обращении к микросхеме на ее входы вначале подается адрес строки матрицы, сопровождаемый сигналом RAS (Row Address Strobe - строб адреса строки), затем, через некоторое время - адрес столбца, сопровождаемый сигналом С AS (Column Address Strobe - строб адреса столбца). Поскольку конденсаторы постепенно разряжаются (заряд сохраняется в ячейке в течение нескольких миллисекунд), во избежание потери хранимой ин­формации заряд в них необходимо постоянно регенерировать, отсюда и название памяти - динамическая. На подзаряд тратится и энергия и время, и это снижает производительность системы.

Ячейки динамической памяти по сравнению со статической имеют большее время срабатывания (десятки наносекунд), но большую удельную плотность (порядка десятков мегабит на корпус) и меньшее энергопотребление. Динамическая память используется для построения оперативных запоминающих устройств основной памяти ПК.

DIV_ADBLOCK23">

Микропроцессоры, начиная от МП 80486, имеют свою встроенную в основное ядро МП кэш-память (или кэш-память 1-го уровня - L1), чем, в частности, и обуслов­ливается их высокая производительность. Микропроцессоры Pentium имеют кэш­память отдельно для данных и отдельно для команд: у Pentium емкость этой памя­ти небольшая - по 8 Кбайт, у Pentium MMX - по 16 Кбайт. У Pentium Pro и выше кроме кэш-памяти 1-го уровня есть и встроенная на микропроцессорную плату кэш-память 2-го уровня (L2) емкостью от 128 до 2048 Кбайт. Эта встроенная кэш­память работает либо на полной тактовой частоте МП, либо на его половинной тактовой частоте.

Следует иметь в виду, что для всех МП может использоваться дополнительная кэш-память 2-го (L2) или 3-го (L3) уровня, размещаемая на материнской плате вне МП, емкость которой может достигать нескольких мегабайт (кэш на MB отно­сится к уровню 3, если МП, установленный на этой плате, имеет кэш 2-го уровня). Время обращения к кэш-памяти зависит от тактовой частоты, на которой кэш ра­ботает, и составляет обычно 1-2 такта. Так, для кэш-памяти L1 МП Pentium ха­рактерно время обращения 2-5 не, для кэш-памяти L2 и L3 это время доходит до 10 не. Пропускная способность кэш-памяти зависит и от времени обращения, и от пропускной способности интерфейса и лежит в широких пределах от 300 до 3000 Мбайт/с.

Использование кэш-памяти существенно увеличивает производительность систе­мы. Чем больше размер кэш-памяти, тем выше производительность, но эта зависи­мость нелинейная. Имеет место постепенное уменьшение скорости роста общей

производительности компьютера с ростом размера кэш-памяти. Для современных ПК рост производительности, как правило, практически прекращается после 1 Мбайт кэш-памяти L2. Создается кэш-память на основе микросхем статической памяти.

Примечание------ -

В современных ПК часто применяется и кэш-память между внешними запоминаю­щими устройствами на дисках и оперативной памятью, обычно относящаяся к 3-му уровню, реже, если есть кэш L3 на системной плате, к 4-му. Кэш-память для ВЗУ создается либо в поле оперативной памяти, либо непосредственно в модуле само­го ВЗУ.

DIV_ADBLOCK25">

Считываемая или записываемая информация поступает в регистр данных (Рег.-данных), непосредственно связанный с кодовыми шинами данных. Управляющие сигналы, определяющие, какую операцию следует выполнить, поступают по кодо­вым шинам инструкций. Куб памяти содержит набор запоминающих элементов - собственно ячеек памяти.

Основная память (ОП) содержит оперативное (RAM - Random Access Memory) и постоянное (ROM - Read Only Memory) запоминающие устройства.

Оперативное запоминающее устройство (ОЗУ) предназначено для хранения ин­формации (программ и данных), непосредственно участвующей в вычислитель­ном процессе в текущий интервал времени. ОЗУ - энергозависимая память: при отключении напряжения питания информация, хранящаяся в ней, теряется. Ос­нову ОЗУ составляют микросхемы динамической памяти DRAM. Это большие интегральные схемы, содержащие матрицы полупроводниковых запоминающих

элементов - полупроводниковых конденсаторов. Наличие заряда в конденсаторе обычно означает «1», отсутствие заряда- «О». Конструктивно элементы опера­тивной памяти выполняются в виде отдельных модулей памяти - небольших плат с напаянными на них одной или, чаще, несколькими микросхемами. Эти модули вставляются в разъемы - слоты на системной плате. На материнской плате может быть несколько групп разъемов (банков) для установки модулей памяти; в один банк можно ставить только блоки одинаковой емкости; блоки разной емкости можно устанавливать в разных банках.

DIV_ADBLOCK26">

Модули памяти характеризуются конструктивом, емкостью, временем обращения и надежностью работы. Важным параметром модуля памяти является его надеж­ность и устойчивость к возможным сбоям. Надежность работы современных мо-

дулей памяти весьма высокая - среднее время наработки на отказ составляет сот­ни тысяч часов, но тем не менее предпринимаются и дополнительные меры повы­шения надежности. Вопросы обеспечения надежности и достоверности ввиду их важности специально рассмотрены в части 6 учебника. Здесь лишь укажем, что одним из направлений, повышающих надежность функционирования подсисте­мы памяти, является использование специальных схем контроля и избыточного кодирования информации.

Модули памяти бывают с контролем четности (parity) и без контроля четности (nоn parity) хранимых бит данных. Контроль по четности позволяет лишь обнару­жить ошибку и прервать исполнение выполняемой программы. Существуют и бо­лее дорогие модули памяти с автоматической коррекцией ошибок - ЕСС-память, использующие специальные корректирующие коды с исправлением ошибок (см. раздел «Обеспечение достоверности информации» главы 20).

ПРИМЕЧАНИЕ

Некоторые недобросовестные фирмы (китайские, например) с целью повышения кон­курентоспособности своих изделий в глазах неопытных покупателей ставят в модули специальный имитатор четности - микросхему-сумматор, выдающую при считыва­ нии ячейки всегда правильный бит четности. В этом случае никакого контроля нет, а лишь имитируется его выполнение. Надо сказать, что эта имитация иногда и полез­на, ибо существуют системные платы, требующие для своей корректной работы при­ сутствия бита контроля четности.

https://pandia.ru/text/78/135/images/image006_129.gif" width="491">микросхемами памяти типа DIP. SIMM бывают двух разных типов: короткие на 30 контактов (длина 75 мм) и длинные на 72 контакта (длина 100 мм). Модули SIMM имеют емкость 256 Кбайт, 1,4, 8, 16, 32 и 64 Мбайт. Модули SIMM выпус­каются с контролем и без контроля по четности и с эмуляцией контроля по четно­сти. SIMM отличаются также быстродействием - обычно они имеют время обраще­ния 60 и 70 нc. Сейчас такое время обращения считается нежелательным, поэтому модули SIMM встречаются только в устаревших ПК.

DIMM (Dual In line Memory Module) - более современные модули, имеющие 168-контактные разъемы (длина модуля 130 мм); могут устанавливаться только на те типы системных плат, которые имеют соответствующие разъемы. Появление DIMM стимулировалось использованием процессоров Pentium, имеющих шину данных 64 бит. Необходимое число модулей памяти для заполнения шины называется бан­ком памяти. В случае 64-разрядной шины для этого требуется два 32-битных 72-контактных модуля SIMM или один 64-битный модуль DIMM, имеющий 168 кон­тактов. Модуль DIMM может иметь разрядность 64 бита (без контроля четности), 72 бита (с контролем четности) и 80 бит (память ЕСС). Емкость модулей DIMM: 16, 32, 64,128, 256 и 512 Мбайт. Время обращения, характерное для современных модулей DIMM, работающих на частоте 100 и 133 МГц (модули РС100, РС133), лежит в пределах 6-10 нc.

RIMM (Rambus In line Memory Module) - новейший тип оперативной памяти. Появление памяти Direct Rambus DRAM потребовало нового конструктива для модулей памяти. Микросхемы Direct RDRAM собираются в модули RIMM, внешне подобные стандартным DIMM, что, кстати, и нашло отражение в названии моду­лей нового конструктива. На плате модуля RIMM может быть до 16 микросхем памяти Direct RDRAM, установленных по восемь штук с каждой стороны платы. Модули RIMM могут быть использованы на системных платах с форм-фактором ATX, BIOS и чипсеты которых рассчитаны на использование данного типа памя­ти. Среди микросхем фирмы Intel это чипсеты i820, i840, i850 и их модификации. На системной плате может быть до четырех разъемов под данные модули. Необхо­димо отметить, что модули RIMM требуют интенсивного охлаждения. Это связа­но со значительным энергопотреблением и, соответственно, тепловыделением, что обусловлено высоким быстродействием данных модулей памяти (время обраще­ния 5 не и ниже). Хотя внешне модули RIMM напоминают модули DIMM, они имеют меньшее число контактов и с обеих сторон закрыты специальными металли­ческими экранами, которые защищают модули RIMM, работающие на больших ча­стотах, экранируя их чувствительные электронные схемы от внешних электромаг­нитных наводок. В настоящее время спецификации определяют три типа модулей, отличающихся рабочими частотами и пропускной способностью. Обозначаются они как RIMM PC800, RIMM PC700, RIMM PC600. Наиболее быстродействующими являются модули RIMM PC800, работающие с чипсетом i850, на внешней такто­вой частоте 400 МГц и имеющие пропускную способность 1,6 Гбайт/с. Модули

RIMM PC600 и RIMM PC700 предназначены для работы на повышенных часто­тах шины памяти, например на частоте 133 МГц, поддерживаемой современными чипсетами.

Типы оперативной памяти

Различают следующие типы оперативной памяти:

□ DRDRAM и. д.т.

FPM DRAM

FPM DRAM (Fast Page Mode DRAM) - динамическая память с быстрым стра­ничным доступом, активно используется с микропроцессорами 80386 и 80486. Память со страничным доступом отличается от обычной динамической памяти тем, что после выбора строки матрицы и удержании RAS допускает многократную ус­тановку адреса столбца, стробируемого CAS. Это позволяет ускорить блочные пе­редачи, когда весь блок данных или его часть находятся внутри одной строки мат­рицы, называемой в этой системе страницей. Существует две разновидности FPM DRAM, отличающиеся временем обращения: 60 и 70 нc. Ввиду своей медлитель­ности они не эффективны в системах с процессорами уровня Pentium II. Модули FPM DRAM в основном выпускались в конструктиве SIMM.

RAM EDO

RAM EDO (EDO - Extended Data Out, расширенное время удержания данных на выходе), фактически представляет собой обычные микросхемы FPM, к которым добавлен набор регистров-«защелок», благодаря чему данные на выходе могут удер­живаться в течение следующего запроса к микросхеме. При страничном обмене такие микросхемы работают в режиме простого конвейера: удерживают на выходе содержимое последней выбранной ячейки, в то время как на их входы уже подает­ся адрес следующей выбираемой ячейки. Это позволяет примерно на 15 % по срав­нению с FPM ускорить процесс считывания последовательных массивов данных. При случайной адресации такая память никакого выигрыша в быстродействии не дает. Память типа RAM EDO имеет минимальное время обращения 45 нc и макси­мальную скорость передачи данных по каналу процессор-память 264 Мбайт/с. Модули RAM EDO выпускались в конструктивах SIMM и DIMM.

BEDO DRAM

BEDO DRAM (Burst Extended Data Output, EDO с блочным доступом). Совре­менные процессоры благодаря внутреннему и внешнему кэшированию команд

и данных обмениваются с основной памятью преимущественно блоками слов мак­симальной длины. Этот вид памяти позволяет читать данные пакетно (блоками), так что данные считываются блоками за один такт. В случае памяти ВЕDО отпа­дает необходимость постоянной подачи последовательных адресов на входы мик­росхем с соблюдением необходимых временных задержек - достаточно строби-ровать переход к очередному слову блока. Этот метод позволяет BEDO DRAM работать очень быстро. Память BEDO DRAM поддерживают некоторые чипсеты фирм VIA Apollo (580VP, 590VP, 680VP) и Intel (i480TX и т. д.) на частоте шины не выше 66 МГц. Активную конкуренцию этому виду памяти составляет память SDRAM, которая постепенно ее и вытесняет. BEDO DRAM представлена модуля­ми и SIMM и DIMM.

SDRAM (Synchronous DRAM - синхронная динамическая память), память с син­хронным доступом, увеличивает производительность системы за счет синхрони­зации скорости работы ОЗУ со скоростью работы шины процессора. SDRAM так­же осуществляет конвейерную обработку информации , выполняется внутреннее разделение массива памяти на два независимых банка, что позволяет совмещать выборку из одного банка с установкой адреса в другом банке. SDRAM также под­держивает блочный обмен. Основная выгода от использования SDRAM состоит в поддержке последовательного доступа в синхронном режиме, где удается исклю­чить дополнительные такты ожидания. Память SDRAM может устойчиво рабо­тать на высоких частотах: выпускаются модули, рассчитанные на работу при час­тотах 100 МГц (спецификация РС100) и 133 МГц (РС133). В начале 2000 года фирма Samsung объявила о выпуске новых чипов SDRAM с рабочей частотой 266 МГц. Время обращения к данным в этой памяти зависит от внутренней такто­вой частоты МП и достигает 5-10 нc, максимальная скорость передачи данных процессор-память при частоте шины 100 МГц составляет 800 Мбайт/с (фактиче­ски равна скорости передачи данных по каналу процессор-кэш). Память SDRAM дает общее увеличение производительности ПК примерно на 25 %. Правда, эта циф­ра относится к работе ПК без кэш-памяти - при наличии мощной кэш выигрыш в производительности может составить всего несколько процентов. SDRAM обыч­но выпускается в 168-контактных модулях типа DIMM. Используется не только в качестве оперативной памяти, но и как память видеоадаптеров, где она полезна при просмотре живого видео и при работе с трехмерной графикой.

DDR SDRAM

DDR SDRAM (Double Data Rate SDRAM - SDRAM 2). Вариант памяти SDRAM, осуществляющий передачу информации по обоим фронтам тактового сигнала. Это позволяет удвоить пропускную способность по сравнению с традиционной памя­тью SDRAM (до 1,6 Гбайт/с при частоте шины 100 МГц). Кроме того, DDR SDRAM может работать на более высокой частоте - в начале 2000 года были выпущены 143, 166 и 183 МГц 64-мегабитные модули DDR SDRAM. Модули DDR DRAM конструктивно совместимы с традиционными 168-контактными DIMM. Исполь-

зуется не только в качестве элементов оперативной памяти, но и в высокопроизво­дительных видеоадаптерах. Сейчас они ориентированы в первую очередь на ры­нок видеоадаптеров.

DRDRAM (Direct Rambus DRAM - динамическая память с прямой шиной для RAM). DRDRAM - перспективный тип оперативной памяти, обеспечивающий зна­чительный рост производительности компьютеров. Высокое быстродействие па­мяти Direct RDRAM достигается рядом особенностей, не встречающихся в других типах. В частности, применением собственной двухбайтовой шины RAM Bus с ча­стотой 800 МГц, обеспечивающей пиковую пропускную способность до 1,6 Гбайт/с. Контроллер памяти Direct RDRAM управляет шиной Rambus и обеспечивает пре­образование ее протокола с частотой 800 МГц в стандартный 64-разрядный интер­фейс с частотой шины до 200 МГц. Фирма Intel выпустила чипсеты i820, i840, i850 с поддержкой. DRDRAM Модули Direct RDRAM - RIMM внешне подобны мо­дулям DIMM. Массовый выпуск памяти DRDRAM и ее интенсивное использова­ние в компьютерах ожидается в ближайшем будущем.

Постоянные запоминающие устройства

Постоянное запоминающее устройство (ПЗУ или ROM - Read Only Memory , па­мять только для чтения) также строится на основе установленных на материн­ской плате модулей (кассет) и используется для хранения неизменяемой инфор­мации: загрузочных программ операционной системы, программ тестирования устройств компьютера и некоторых драйверов базовой системы ввода-вывода (BIOS) и т. д.

К ПЗУ принято относить энергонезависимые постоянные и полупостоянные за­поминающие устройства, из которых оперативно можно только считывать инфор­мацию, запись информации в ПЗУ выполняется вне ПК в лабораторных условиях или при наличии специального программатора и в компьютере. По технологии записи информации можно выделить ПЗУ следующих типов:

□ микросхемы, программируемые только при изготовлении - классические или масочные ПЗУ или ROM;

□ микросхемы, программируемые однократно в лабораторных условиях - про­
граммируемые ПЗУ (ППЗУ) или programmable ROM (PROM);

□ микросхемы, программируемые многократно, - перепрограммируемые ПЗУ
или erasable PROM (EPROM). Среди них следует отметить электрически пе­
репрограммируемые микросхемы EEPROM (Electrical Erasable PROM), в том
числе ФЛЭШ-память (FLASH-память).

Устанавливаемые на системной плате ПК модули и кассеты ПЗУ имеют емкость, как правило, не превышающую 128 Кбайт. Быстродействие у постоянной памяти меньшее, нежели у оперативной, поэтому для повышения производительности содержимое ПЗУ копируется в ОЗУ, и при работе непосредственно используется только эта копия, называемая также теневой памятью ПЗУ (Shadow ROM).

В настоящее время в ПК используются полупостоянные, перепрограммируемые запоминающие устройства - FLASH-память. Модули или карты FLASH-памяти могут устанавливаться прямо в разъемы материнской платы и имеют следующие параметры: емкость от 32 Кбайт до 15 Мбайт (в ПЗУ используется до 128 Кбайт), время обращения по считыванию 0,035-0,2 мкс, время записи одного байта 2-10 мкс; FLASH-память - энергонезависимое запоминающее устройство. Примером такой памяти может служить память NVRAM - Non Volatile RAM со скоростью записи 500 Кбайт/с. Обычно для перезаписи информации необходимо подать на специ­альный вход FLASH-памяти напряжение программирования (12 В), что исклю­чает возможность случайного стирания информации. Перепрограммирование FLASH-памяти может выполняться непосредственно с дискеты или с клавиатуры ПК при наличии специального контроллера либо с внешнего программатора, под­ключаемого к ПК. FLASH-память может быть весьма полезной как для создания весьма быстродействующих, компактных, альтернативных НМД запоминающих устройств - «твердотельных дисков», так и для замены ПЗУ, хранящего програм­мы BIOS, позволяя «прямо с дискеты» обновлять и заменять эти программы на более новые версии при модернизации ПК.

Логическая структура основной памяти

Структурно основная память состоит из миллионов отдельных ячеек памяти, емкостью 1 байт каждая. Общая емкость основной памяти современных ПК обычно лежит в пределах от 16 до 512 Мбайт. Емкость ОЗУ на один-два поряд­ка превышает емкость ПЗУ: ПЗУ занимает 128 Кбайт, остальной объем - это ОЗУ. Каждая ячейка памяти имеет свой уникальный (отличный от всех дру­гих) адрес. Основная память имеет для ОЗУ и ПЗУ - единое адресное про­странство.

Адресное пространство определяет максимально возможное количество непо­средственно адресуемых ячеек основной памяти. Адресное пространство зависит от разрядности адресных шин, ибо максимальное количество разных адресов опре­деляется разнообразием двоичных чисел, которые можно отобразить в п разря­дах, то есть адресное пространство равно 2", где п - разрядность адреса. За осно­ву в ПК взят 16-разрядный адресный код, равный по длине размеру машинного слова. При наличии 16-разрядного кода адреса можно непосредственно адресо­вать всего 4 К (К = 1024) ячеек памяти. Вот это 64-килобайтное поле памяти, так называемый сегмент, также является базовым в логической структу­ре ОП. Следует заметить, что в защищенном режиме размер сегмента может быть иным и значительно превышать 64 Кбайта.

Современные ПК (кроме простейших бытовых компьютеров) имеют основную память, емкостью существенно больше 1 Мбайт: память, емкостью 1 Мбайт явля­ется еще одним важным структурным компонентом ОП - назовем ее непосред­ственно адресуемой памятью (справедливо полностью только для реального ре- жима). Для адресации 1 Мбайт = 220= 1 ячеек непосредственно адресуемой памяти необходим 20-разрядный код, получаемый в ПК путем использования спе­циальных приемов структуризации адресов ячеек ОП.

Абсолютный (полный, физический) адрес (Аабс) формируется в виде суммы не­скольких составляющих, чаще всего используемыми из которых являются: адрес сегмента и адрес смещения.

Адрес сегмента (АССгм) - это начальный адрес 64-килобайтного поля, внутри кото­рого находится адресуемая ячейка.

Адрес смещения (Аасм) - это относительный 16-разрядный адрес ячейки внутри сегмента.

Асегм должен быть 20-разрядным, но если принять условие, что АсеГм должен быть обязательно кратным параграфу (в последних четырех разрядах должен содержать нули), то однозначно определять этот адрес можно 16-разрядным кодом, увеличен­ным в 16 раз, что равносильно дополнению его справа четырьмя нулями и превра­щению его, таким образом, в 20-разрядный код. То есть условно можно записать:

Аабс = 16 Х Асегм + Аасм.

Программисты иногда используют еще две составляющие адреса смещения: адрес базы и адрес индекса. Следует отметить, что процессор ПК может обращаться к ос­новной памяти, используя только абсолютный адрес, в то время как программист может использовать все составляющие адреса, рассмотренные выше.

В современных ПК существует режим виртуальной адресации (Virtual - кажу­щийся, воображаемый). Виртуальная адресация используется для увеличения ад­ресного пространства ПК при наличии ОП большой емкости (простая виртуаль­ная адресация) или при организации виртуальной памяти, в которую наряду с ОП включается и часть внешней (обычно дисковой) памяти. При виртуальной адреса­ции вместо начального адреса сегмента Ассгм в формировании абсолютного адреса Аабе принимает участие многоразрядный адресный код, считываемый из специаль­ных таблиц. Принцип простой виртуальной адресации можно пояснить следую­щим образом. В регистре сегмента (обычно регистр DS) содержится не АсеГм, а не­кий селектор, имеющий структуру:

https://pandia.ru/text/78/135/images/image011_103.gif" width="490 height=2" height="2">Здесь СЛ - вспомогательная служебная информация; F - идентификатор, опре­деляющий тип дескрипторной таблицы для формирования АсеГм (дескрипторные таблицы создаются в ОП при виртуальной адресации автоматически):

□ если F = 0, то используется глобальная дескрипторная таблица (GDT), общая
для всех задач, решаемых в ПК при многопрограммном режиме;

□ если F = 1, то используется локальная дескрипторная таблица (LDT), создава­
емая для каждой задачи отдельно;

□ ИНДЕКС - адрес строки в дескрипторной таблице.

В соответствии с индексом и идентификатором из GLT или LDT считывается 64-битовая строка, содержащая, в частности, и адрес сегмента. Разрядность этого ад­реса зависит от размера адресного пространства микропроцессора, точнее равна разрядности его адресной шины. Подобная виртуальная адресация используется при защищенном режиме работы микропроцессора. Для большей плотности раз-

мещения информации в оперативной памяти (уменьшения сегментированности, характерной для многопрограммного режима) часто используется сегментно-стра- ничная адресация, при которой поля памяти выделяются программам внутри сег­ментов страницами, размером от 2 до 4 Кбайт. Формирование сегментно-странич-ной структуры адресов выполняется автоматически операционной системой.

Виртуальная память создается при недостаточном объеме оперативной памяти, не позволяющем разместить в ней сразу всю необходимую информацию для выпол­няемого задания. При загрузке очередной задачи в оперативную память необходи­мо выполнить распределение машинных ресурсов, в частности оперативной памя­ти между компонентами одновременно решаемых задач (в принципе, оперативной памяти может не хватить и для решения одной сложной задачи). При подготовке программ используются условные адреса, которые должны быть затем привязаны к конкретному месту в памяти. Распределение памяти может выполняться или в статическом режиме до загрузки программы в ОП, или в динамическом режиме автоматически в момент загрузки программы. Статическое распределение памяти весьма трудоемко, поэтому применяется редко. Если очевидно, что реальная па­мять меньше требуемого программой адресного пространства, программист может вручную разбить программу на части, вызываемые в ОП по мере необходимос­ти, - создать оверлейную структуру программы. Обычно же используется режим динамического распределения памяти.

При динамическом распределении памяти в случае недостаточной емкости ОП по­лезно воспользоваться виртуальной памятью. В режиме виртуальной памяти пользо­ватель имеет дело не с физической ОП, действительно имеющейся в ПК, а с виртуаль­ ной (кажущейся) одноуровневой памятью, емкость которой равна всему адресному пространству микропроцессора. На всех этапах подготовки программы, включая ее загрузку в оперативную память, в программе используются виртуальные адреса и лишь при непосредственном исполнении машинной команды выполняется пре­образование виртуальных адресов в реальные физические адреса ОП. При этом ре­ально программа может размещаться частично в ОП, частично во внешней памяти. Технология организации виртуальной памяти следующая. Физические оператив­ная и дисковая (привлеченная к задаче) память и виртуальная память разбивают­ся на страницы одинакового размера по 4 Кбайта. Страницам виртуальной и фи­зической памяти присваиваются номера, которые сохраняются одними и теми же на весь период решения задачи. Операционная система формирует две таблицы:

□ страниц виртуальной памяти;

□ физического размещения страниц,

и устанавливает логические связи между ними (рис. 6.2).

На рисунке видно, что физические страницы могут находиться в текущий момент времени как в оперативной, так и во внешней памяти. Из внешней памяти вирту­альные страницы автоматически перемещаются в оперативную только тогда, ког­да к ним происходит обращение. При этом они замещают уже отработавшие стра­ницы. Страничные таблицы для каждой программы формируются операционной системой в процессе распределения памяти и изменяются каждый раз, когда фи­зические страницы перемещаются из ВЗУ в ОП. Виртуальная память может иметь

и сегментно-страничную организацию. В этом случае виртуальная память делится сначала на сегменты, а внутри них на страницы. Принцип организации такой па­мяти аналогичен рассмотренному выше.

Таблица страниц физической памяти

Расположена в памяти

№ физической страницы


Рис. 6.2.Таблица страниц

Большинство из применяемых в настоящее время типов микросхем оперативной памяти не в состоянии сохранять данные без внешнего источника энергии, т.е. являются энергозависимыми (volatile memory). Широкое распространение таких устройств связано с рядом их достоинств по сравнению с энергонезависимыми типами ОЗУ (non-volatile memory): большей емкостью, низким энергопотреблением, более высоким быстродействием и невысокой себестоимостью хранения единицы информации.

Энергозависимые ОЗУ можно подразделить на две основные подгруппы: динамическую память (DRAM - Dynamic Random Access Memory) и статическую память (SRAM - Static Random Access Memory).

Статическая и динамическая оперативная память

В статических ОЗУ запоминающий элемент может хранить записанную информацию неограниченно долго (при наличии питающего напряжения). Запоминающий элемент динамического ОЗУ способен хранить информацию только в течение достаточно короткого промежутка времени, после которого информацию нужно восстанавливать заново, иначе она будет потеряна. Динамические ЗУ, как и статические, энергозависимы.

Роль запоминающего элемента в статическом ОЗУ исполняет триггер. Такой триггер представляет собой схему с двумя устойчивыми состояниями, обычно состоящую из четырех или шести транзисторов (рис. 5.7). Схема с четырьмя транзисторами обеспечивает большую емкость микросхемы, а следовательно, меньшую стоимость, однако у такой схемы большой ток утечки, когда информация просто хранится. Также триггер на четырех транзисторах более чувствителен к воздействию внешних источников излучения, которые могут стать причиной потери информации. Наличие двух дополнительных транзисторов позволяет в какой-то мере компенсировать упомянутые недостатки схемы на четырех транзисторах, но, главное - увеличить быстродействие памяти.

Рис. 5.7. Запоминающий элемент статического ОЗУ

Запоминающий элемент динамической памяти значительно проще. Он состоит из одного конденсатора и запирающего транзистора (рис. 5.8).

Рис. 5.8. Запоминающий элемент динамического ОЗУ

Наличие или отсутствие заряда в конденсаторе интерпретируются как 1 или 0 соответственно. Простота схемы позволяет достичь высокой плотности размещения ЗЭ и, в итоге, снизить стоимость. Главный недостаток подобной технологии связан с тем, что накапливаемый на конденсаторе заряд со временем теряется. Даже при хорошем диэлектрике с электрическим сопротивлением в несколько тераом (10 12 Ом) используемом при изготовлении элементарных конденсаторов ЗЭ, заряд теряется достаточно быстро. Размеры у такого конденсатора микроскопические, а емкость имеет порядок 1СГ 15 Ф. При такой емкости на одном конденсаторе накапливается всего около 40 000 электронов. Среднее время утечки заряда ЗЭ динамической памяти составляет сотни или даже десятки миллисекунд, поэтому заряд необходимо успеть восстановить в течение данного отрезка времени, иначе хранящаяся информация будет утеряна. Периодическое восстановление заряда ЗЭ называется регенерацией и осуществляется каждые 2-8 мс,

В различных типах ИМС динамической памяти нашли применение три основных метода регенерации:

Одним сигналом RAS (ROR - RAS Only Refresh);

Сигналом CAS, предваряющим сигнал RAS (CBR - CAS Before RAS);

Автоматическая регенерация (SR - Self Refresh).

Регенерация одним RAS использовалась еще в первых микросхемах DRAM. На шину адреса выдается адрес регенерируемой строки, сопровождаемый сигналом RAS. При этом выбирается строка ячеек и хранящиеся там данные поступают на внутренние цепи микросхемы, после чего записываются обратно. Так как сигнал CAS не появляется, цикл чтения/записи не начинается. В следующий раз на шину адреса подается адрес следующей строки и т. д., пока не восстановятся все ячейки, после чего цикл повторяется. К недостаткам метода можно отнести занятость шины адреса в момент регенерации, когда доступ к другим устройствам ВМ блокирован.

Особенность метода CBR в том, что если в обычном цикле чтения/записи сигнал RAS всегда предшествует сигналу CAS, то при появлении сигнала CAS первым начинается специальный цикл регенерации. В этом случае адрес строки не передается, а микросхема использует свой внутренний счетчик, содержимое которого увеличивается на единицу при каждом очередном CBR-цикле. Режим позволяет регенерировать память, не занимая шину адреса, то есть более эффективен.

Автоматическая регенерация памяти связана с энергосбережением, когда система переходит в режим «сна» и тактовый генератор перестает работать. При отсутствии внешних сигналов RAS и CAS обновление содержимого памяти методами ROR или CBR невозможно, и микросхема производит регенерацию самостоятельно, запуская собственный генератор, который тактирует внутренние цепи регенерации.

Область применения статической и динамической памяти определяется скоростью и стоимостью. Главным преимуществом SRAM является более высокое быстродействие (примерно на порядок выше, чем у DRAM). Быстрая синхронная SRAM может работать со временем доступа к информации, равным времени одного тактового импульса процессора. Однако из-за малой емкости микросхем и высокой стоимости применение статической памяти, как правило, ограничено относительно небольшой по емкости кэш-памятью первого (L1), второго (L2) или третьего (L3) уровней. В то же время самые быстрые микросхемы динамической памяти на чтение первого байта пакета все еще требуют от пяти до десяти тактов процессора, что замедляет работу всей ВМ. Тем не менее благодаря высокой плотности упаковки ЗЭ и низкой стоимости именно DRAM используется при построении основной памяти ВМ.

Статическая оперативная память с произвольным доступом (SRAM, static random access memory) -- полупроводниковая оперативная память, в которой каждый двоичный или троичный разряд хранится в схеме с положительной обратной связью, позволяющей поддерживать состояние сигнала без постоянной перезаписи, необходимой в динамической памяти (DRAM). Тем не менее, сохранять данные без перезаписи SRAM может только пока есть питание, то есть SRAM остается энергозависимым типом памяти. Произвольный доступ (RAM -- random access memory) -- возможность выбирать для записи/чтения любой из битов (тритов) (чаще байтов (трайтов), зависит от особенностей конструкции), в отличие от памяти с последовательным доступом (SAM -- sequental access memory).

Двоичная SRAM

Рис. 1.

Типичная ячейка статической двоичной памяти (двоичный триггер) на КМОП-технологии состоит из двух перекрёстно (кольцом) включённых инверторов и ключевых транзисторов для обеспечения доступа к ячейке (рис. 1.). Часто для увеличения плотности упаковки элементов на кристалле в качестве нагрузки применяют поликремниевые резисторы. Недостатком такого решения является рост статического энергопотребления.

Линия WL (Word Line) управляет двумя транзисторами доступа. Линии BL и BL (Bit Line) -- битовые линии, используются и для записи данных и для чтения данных.

Запись. При подаче «0» на линию BL или BL параллельно включенные транзисторные пары (M5 и M1) и (M6 и M3) образуют логические схемы 2ИЛИ, последующая подача «1» на линию WL открывает транзистор M5 или M6, что приводит к соответствующему переключению триггера.

Чтение. При подаче «1» на линию WL открываются транзисторы M5 и M6, уровни записанные в триггере выставляются на линии BL и BL и попадают на схемы чтения.

Восьмитранзисторная ячейка двоичной SRAM описана в .

Переключение триггеров через транзисторы доступа является неявной логической функцией приоритетного переключения, которая в явном виде, для двоичных триггеров, строится на двухвходовых логических элементах 2ИЛИ-НЕ или 2И-НЕ. Схема ячейки с явным переключением является обычным RS-триггером. При явной схеме переключения линии чтения и записи разделяются, отпадает нужда в транзисторах доступа (по 2 транзистора на 1 ячейку), но в самой ячейке требуются двухзатворные транзисторы.

В настоящее время появилась (!) усовершенствованная схема с отключаемой сигналом записи обратной связью, которая не требует транзисторов нагрузки и соответственно избавлена от высокого потребления энергии при записи.

Троичная SRAM

Рис. 2. Проект троичной SRAM на трёхразрядных однозначных троичных триггерах

Один логический элемент 2ИЛИ-НЕ состоит из двух двухзатворных транзисторов, три -- из шести, плюс три транзистора доступа, всего -- девять транзисторов на одну трёхразрядную ячейку памяти.

Преимущества

· Быстрый доступ. SRAM -- это действительно память произвольного доступа, доступ к любой ячейке памяти в любой момент занимает одно и то же время.

· Простая схемотехника -- SRAM не требуются сложные контроллеры.

· Возможны очень низкие частоты синхронизации, вплоть до полной остановки синхроимпульсов.

Недостатки

· Высокое энергопотребление.

· Невысокая плотность записи (шесть элементов на бит , вместо двух у DRAM).

· Вследствие чего -- дороговизна килобайта памяти.

Тем не менее, высокое энергопотребление не является принципиальной особенностью SRAM, оно обусловлено высокими скоростями обмена с данным видом внутренней памяти процессора. Энергия потребляется только в момент изменения информации в ячейке SRAM.

Применение

SRAM применяется в микроконтроллерах и ПЛИС, в которых объём ОЗУ невелик (единицы килобайт), зато нужны низкое энергопотребление (за счёт отсутствия сложного контроллера динамической памяти), предсказываемое с точностью до такта время работы подпрограмм и отладка прямо на устройстве.

В устройствах с большим объёмом ОЗУ рабочая память выполняется как DRAM. SRAM"ом же делают регистры и кеш-память.

DRAM (dynamic random access memory) -- тип энергозависимой полупроводниковой памяти с произвольным доступом (RAM), также запоминающее устройство, наиболее широко используемое в качестве ОЗУ современных компьютеров.

Физически память DRAM состоит из ячеек, созданных в полупроводниковом материале, в каждой из которых можно хранить определённый объём данных, от 1 до 4 бит. Совокупность ячеек такой памяти образуют условный «прямоугольник», состоящий из определённого количества строк и столбцов. Один такой «прямоугольник» называется страницей, а совокупность страниц называется банком. Весь набор ячеек условно делится на несколько областей.

Как запоминающее устройство, DRAM-память представляет собой модуль различных конструктивов, состоящий из электрической платы, на которой расположены микросхемы памяти и разъём, необходимый для подключения модуля к материнской плате.


Рис. 3. Рис. 3.1

Физически DRAM-память представляет собой набор запоминающих ячеек, которые состоят из конденсаторов и транзисторов, расположенных внутри полупроводниковых микросхем памяти.

При отсутствии подачи электроэнергии к памяти этого типа происходит разряд конденсаторов, и память опустошается (обнуляется). Для поддержания необходимого напряжения на обкладках конденсаторов ячеек и сохранения их содержимого, их необходимо периодически подзаряжать, прилагая к ним напряжения через коммутирующие транзисторные ключи. Такое динамическое поддержание заряда конденсатора является основополагающим принципом работы памяти типа DRAM. Конденсаторы заряжают в случае, когда в «ячейку» записывается единичный бит, и разряжают в случае, когда в «ячейку» необходимо записать нулевой бит.

Важным элементом памяти этого типа является чувствительный усилитель (англ. sense amp), подключенный к каждому из столбцов «прямоугольника». Он, реагируя на слабый поток электронов, устремившихся через открытые транзисторы с обкладок конденсаторов, считывает всю страницу целиком. Именно страница является минимальной порцией обмена с динамической памятью, потому что обмен данными с отдельно взятой ячейкой невозможен.

Регенерация

В отличие от статической памяти типа SRAM (англ. static random access memory), которая является конструктивно более сложным и более дорогим типом памяти и используется в основном в кэш-памяти, память DRAM изготавливается на основе конденсаторов небольшой ёмкости, которые быстро теряют заряд, поэтому информацию приходится обновлять через определённые промежутки времени во избежание потерь данных. Этот процесс называется регенерацией памяти. Он реализуется специальным контроллером, установленным на материнской плате или же на кристалле центрального процессора. На протяжении времени, называемого шагом регенерации, в DRAM перезаписывается целая строка ячеек, и через 8-64 мс обновляются все строки памяти.

Процесс регенерации памяти в классическом варианте существенно тормозит работу системы, поскольку в это время обмен данными с памятью невозможен. Регенерация, основанная на обычном переборе строк, не применяется в современных типах DRAM. Существует несколько более экономичных вариантов этого процесса -- расширенный, пакетный, распределённый; наиболее экономичной является скрытая (теневая) регенерация.

память компьютерный триггер кэш

Триггеры

Триггер (триггерная система) -- класс электронных устройств, обладающих способностью длительно находиться в одном из двух или более устойчивых состояний и чередовать их под воздействием внешних сигналов. Каждое состояние триггера легко распознаётся по значению выходного напряжения.

По характеру действия триггеры относятся к импульсным устройствам -- их активные элементы (транзисторы, лампы) работают в ключевом режиме, а смена состояний длится очень короткое время.

ОЗУ, собранное на триггерах, называется статической памятью с произвольным доступом или просто статической памятью. Достоинство этого вида памяти -- скорость. Поскольку триггеры собраны на вентилях, а время задержки вентиля очень мало, то и переключение состояния триггера происходит очень быстро. Данный вид памяти не лишён недостатков. Во-первых, группа транзисторов, входящих в состав триггера, обходится дороже, даже если они вытравляются миллионами на одной кремниевой подложке. Кроме того, группа транзисторов занимает гораздо больше места, поскольку между транзисторами, которые образуют триггер, должны быть вытравлены линии связи. Используется для сверхбыстрого ОЗУ.


Статическая и динамическая оперативная память

Оперативная память - совокупность специальных электронных ячеек, каждая из которых может хранить конкретную 8-значную комбинацию из нулей и единиц - 1 байт (8 бит). Каждая такая ячейка имеет адрес (адрес байта) и содержимое (значение байта). Адрес нужен для обращения к содержимому ячейки, для записи и считывания информации. Оперативное запоминающее устройство (ОЗУ) хранит информацию только во время работы компьютера. Емкость оперативной памяти современного компьютера 32-138 Мбайт.
При выполнении микропроцессором вычислительных операций должен быть в любой момент обеспечен доступ к любой ячейке оперативной памяти. Поэтому ее называют памятью с произвольной выборкой - RAM (Random Access Memory). Оперативная память выполнена обычно на микросхемах динамического типа с произвольной выборкой (Dynamic Random Access Memory, DRAM). Каждый бит такой памяти представляется в виде наличия (или отсутствия) заряда на конденсаторе, образованном в структуре полупроводникового кристалла. Другой, более дорогой тип памяти - статический (Static RAM, SRAM) в качестве элементарной ячейки использует так называемый статический триггер (схема которого состоит из нескольких транзисторов). Статический тип памяти обладает более высоким быстродействием и используется, например, для организации кэш-памяти.

Статическая память
Статическая память (SRAM) в современных ПК обычно применяется в качестве кэш-памяти второго уровня для кэширования основного объема ОЗУ. Статическая память выполняется обычно на основе ТТЛ-, КМОП- или БиКМОП-микросхем и по способу доступа к данным может быть как асинхронной, так и синхронной. Асинхронным называется доступ к данным, который можно осуществлять в произвольный момент времени. Асинхронная SRAM применялась на материнских платах для третьего - пятого поколения процессоров. Время доступа к ячейкам такой памяти составляло от 15 нс (33 МГц) до 8 нс (66 МГц).
Для описания характеристик быстродействия оперативной памяти применяются так называемые циклы чтения/записи. Дело в том, что при обращении к памяти на считывание или запись первого машинного слова расходуется больше тактов, чем на обращение к трем последующим словам. Так, для асинхронной SRAM чтение одного слова выполняется за 3 такта, запись - за 4 такта, чтение нескольких слов определяется последовательностью 3-2-2-2 такта, а запись - 4-3-3-3.
Синхронная память обеспечивает доступ к данным не в произвольные моменты времени, а синхронно с тактовыми импульсами. В промежутках между ними память может готовить для доступа следующую порцию данных. В большинстве материнских плат пятого поколения используется разновидность синхронной памяти - синхронно-конвейерная SRAM (Pipelined Burst SRAM), для которой типичное время одиночной операции чтения/записи составляет 3 такта, а групповая операция занимает 3-1-1-1 такта при первом обращении и 1-1-1-1 при последующих обращениях, что обеспечивает ускорение доступа более, чем на 25%.

Динамическая память
Динамическая память (DRAM) в современных ПК используется обычно в качестве оперативной памяти общего назначения, а также как память для видеоадаптера. Из применяемых в современных и перспективных ПК типов динамической памяти наиболее известны DRAM и FPM DRAM, EDO DRAM и BEDO DRAM, EDRAM и CDRAM, Synchronous DRAM, DDR SDRAM и SLDRAM, видеопамять MDRAM, VRAM, WRAM и SGRAM, RDRAM.
В памяти динамического типа биты представляются в виде отсутствия и наличия заряда на конденсаторе в структуре полупроводникового кристалла. Конструктивно она выполняется в виде модуля SIMM (Single in line memory module). Каждый бит информации записывается в отдельной ячейке памяти, состоящей из конденсатора и транзистора. Наличие заряда на конденсаторе соответствует 1 в двоичном коде, отсутствие - 0. Транзистор при переключении дает возможность считывать бит информации или записывать новый бит в пустую ячейку памяти.
Поиск ячейки по адресу осуществляется специальными дешифрующими схемами, которые образуют матрицу, то есть пересекают кристалл памяти двумя полосами - по горизонтали и вертикали. Когда центральный процессор сообщает адрес ячейки, горизонтальные дешифраторы указывают нужный столбец, а вертикальные - строку. На пересечении находится искомая ячейка. После нахождения ячейки происходит выборка их нее байта данных.