Личный кабинет        19.08.2019   

Обратный тиристор. Современные силовые запираемые тиристоры

Тиристор это полупроводниковый прибор, предназначенный для работы в качестве ключа. Он имеет три электрода и структуру p-n-p-n из четырёх слоёв полупроводника. Электроды именуются как анод, катод и управляющий электрод. Структура p-n-p-n функционально аналогична нелинейному резистору, который способен принимать два состояния:

  • с очень большим сопротивлением, выключенное;
  • с очень малым сопротивлением, включенное.

Виды

На включенном тиристоре сохраняется напряжение около одного или нескольких Вольт, которое незначительно увеличивается с возрастанием силы тока, протекающего через него. В зависимости от вида тока и напряжения, приложенного к электрической цепи с тиристором, в ней используется одна из трёх современных разновидностей этих полупроводниковых приборов. На постоянном токе работают:

  • включаемые тринисторы;
  • три разновидности запираемых тиристоров, именуемых как

На переменном и постоянном токе работают симисторы. Все эти тиристоры содержат управляющий электрод и два других электрода, через которые тёчёт ток нагрузки. Для тринисторов и запираемых тиристоров это анод и катод, для симисторов наименование этих электродов обусловлено правильностью определения свойств управляющего сигнала, подаваемого на управляющий электрод.

Наличие в тиристоре структуры p-n-p-n позволяет разделить её условно на две области, каждая из которых является биполярным транзистором соответствующей проводимости. Таким образом, эти взаимосвязанные транзисторы являются эквивалентом тиристора, что имеет вид схемы на изображении слева. Первыми на рынке появились тринисторы.

Свойства и характеристики

По сути это аналог самоблокирующегося реле с одним нормально разомкнутым контактом, роль которого выполняет полупроводниковая структура, расположенная между анодом и катодом. Отличие от реле состоит в том, что для этого полупроводникового прибора может быть применено несколько способов включения и выключения. Все эти способы объясняются транзисторным эквивалентом тринистора.

Два эквивалентных транзистора охвачены положительной обратной связью. Она многократно усиливает любые изменения тока в их полупроводниковых переходах. Поэтому существует несколько видов воздействия на электроды тринистора для его включения и выключения. Первые два способа позволяют выполнить включение по аноду.

  • Если напряжение на аноде увеличивать, при его определённом значении начнут сказываться эффекты начинающегося пробоя полупроводниковых структур транзисторов. Появившийся начальный ток лавинообразно усилится положительной обратной связью и оба транзистора включатся.
  • При достаточно быстром увеличении напряжения на аноде происходит заряд межэлектродных ёмкостей, которые присутствуют в любых электронных компонентах. При этом в электродах появляются зарядные токи этих ёмкостей, которые подхватывает положительная обратная связь и всё заканчивается включением тринистора.

Если перечисленные выше изменения напряжения отсутствуют, включение обычно происходит током базы эквивалентного n-p-n транзистора. Выключить тринистор можно одним из двух способов, которые также становятся понятны из-за взаимодействия эквивалентных транзисторов. Положительная обратная связь в них действует, начиная с некоторых величин токов, протекающих в структуре p-n-p-n. Если величину тока сделать меньше этих величин, положительная обратная связь сработает на быстрое исчезновение токов.

Другой способ выключения использует прерывание положительной обратной связи импульсом напряжения, который меняет полярность на аноде и катоде. При таком воздействии направления токов между электродами изменяется на противоположные и тринистор выключается. Поскольку для полупроводниковых материалов характерно явление фотоэффекта, существуют фото- и оптотиристоры, у которых включение может быть обусловлено освещением либо приёмного окошка, либо светодиодом в корпусе этого полупроводникового прибора.

Существуют ещё и так называемые динисторы (неуправляемые тиристоры). В этих полупроводниковых приборах нет управляющего электрода конструктивно. По своей сути это тринистор с одним отсутствующим выводом. Поэтому их состояние зависит только от напряжения анода и катода и они не могут включиться управляющим сигналом. В остальном процессы в них аналогичны обычным тринисторам. То же относится и к симисторам, которые по сути являются двумя тринисторами соединёнными параллельно. Поэтому они применяются для управления переменным током без дополнительных диодов.

Запираемые тиристоры

Если определённым образом изготовить области структуры p-n-p-n вблизи баз эквивалентных транзисторов можно достичь полной управляемости тиристором со стороны управляющего электрода. Такая конструкция структуры p-n-p-n показана на изображении слева. Включать и выключать такой тиристор можно соответствующими сигналами в любой момент времени подавая их на управляющий электрод. Остальные способы включения, применяемые к тринисторам, для запираемых тиристоров так же годятся.

Однако эти способы не применяются к таким полупроводниковым приборам. Они наоборот исключаются теми или иными схемотехническими решениями. Целью является получение надёжного включения и выключения только по управляющему электроду. Это необходимо для использования таких тиристоров в мощных инверторах повышенной частоты. GTO работают на частотах до 300 Герц, а IGCT способны на существенно более высокие частоты, достигающие 2 кГц. Номинальные значения токов могут быть несколько тысяч ампер, а напряжение – несколько киловольт.

Сравнение различных тиристоров приведено в таблице ниже.

Разновидность тиристора Преимущества Недостатки Где используется
Тринистор Минимальное напряжение во включенном состоянии при максимально больших токах и перегрузках. Наиболее надёжен из всех. Хорошая масштабируемость схем путём совместной работы нескольких тринисторв соединяемых либо параллельно, либо последовательно Отсутствует возможность произвольного управляемого отключения только управляющим электродом. Наиболее низкие рабочие частоты. Электроприводы, источники электропитания питания большой мощности; сварочные инверторы; управление мощными нагревателями; статические компенсаторы; коммутаторы в цепях с переменным током
GTO Возможность произвольного управляемого выключения. Относительно высокая способность к перегрузкам по току. Способность надёжно работать при последовательном соединении. Рабочая частота до 300 Гц, напряжение до 4000 В. Значительно напряжение во включенном состоянии при максимально больших токах и перегрузках и соответствующие им потери, в том числе и в системах управления. Сложная схемотехника построения системы в целом. Большие динамические потер.
IGCT Возможность произвольного управляемого выключения. Относительно высокая способность к перегрузкам по току. Относительно малое напряжение во включенном состоянии при максимально больших токах и перегрузках. Рабочая частота — до 2000 Гц. Простое управление. Способность надёжно работать при последовательном соединении. Наиболее дорогие из всех тиристоров Электроприводы; статические компенсаторы реактивной мощности; источники электропитания питания большой мощности, индукционные нагреватели

Тиристоры изготавливаются для широкого диапазона токов и напряжений. Конструкция их определяется размерами структуры p-n-p-n и необходимостью получения надёжного отвода тепла от неё. Современные тиристоры, а также их обозначения на электрических схемах показаны на изображениях ниже.

Тиристор - электронный компонент, изготовленный на основе полупроводниковых материалов, может состоять из трёх или более p-n-переходов и имеет два устойчивых состояния: закрытое (низкая проводимость), открытое (высокая проводимость).

Это сухая формулировка, которая для тех, кто только начинает осваивать электротехник у, абсолютно ни о чём не говорит. Давайте разберём принцип работы этого электронного компонента для обычных людей, так сказать, для чайников, и где его можно применить. По сути, это электронный аналог выключателей, которыми вы каждый день пользуетес

Есть много типов этих элементов, обладающие различными характеристиками и имеющие различные области применения. Рассмотрим обычный однооперационный тиристор.

Способ обозначения на схемах показан на рисунке 1.

Электронный элемент имеет следующие выводы:

  • анод положительный вывод;
  • катод отрицательный вывод;
  • управляющий электрод G.

Принцип действия тиристора

Основное применение этого типа элементов это создание на их основе силовых тиристорных ключей для коммутации больших токов и их регулирования. Включение выполняется сигналом, переданным на управляющий электрод. При этом элемент является не полностью управляемым, и для его закрытия необходимо применение дополнительных мер, которые обеспечат падение величины напряжения до нуля.

Если говорить, как работает тиристор простым языком, то он, по аналогии с диодом, может проводить ток только в одном направлении, поэтому при его подключении нужно соблюдать правильную полярность . При подаче напряжения к аноду и катоду этот элемент будет оставаться закрытым до момента, когда на управляющий электрод будет подан соответствующий электрический сигнал. Теперь, независимо от наличия или отсутствия управляющего сигнала, он не изменит своего состояния и останется открытым.

Условия закрытия тиристора:

  1. Снять сигнал с управляющего электрода;
  2. Снизить до нуля напряжение на катоде и аноде.

Для сетей переменного тока выполнение этих условий не вызывает особых трудностей. Синусоидальное напряжение, изменяясь от одного амплитудного значения до другого, снижается до нулевой величины, и если в этот момент управляющего сигнала нет, то тиристор закроется.

В случае использования тиристоров в схемах постоянного тока для принудительной коммутации (закрытия тиристора) используют ряд способов, наиболее распространённым является использование конденсатора, который был предварительно заряжен. Цепь с конденсатором подключается к схеме управления тиристором. При подключении конденсатора в цепь произойдёт разряд на тиристор, ток разряда конденсатора будет направлен встречно прямому току тиристора, что приведёт к уменьшению тока в цепи до нулевого значения и тиристор закроется.

Можно подумать, что применение тиристоров неоправданно, не проще ли использовать обычный ключ? Огромным плюсом тиристора является то, что он позволяет коммутировать огромные токи в цепи анода-катода при помощи ничтожно малого управляющего сигнала, поданного в цепь управления. При этом не возникает искрения, что немаловажно для надёжности и безопасности всей схемы.

Схема включения

Схема управления может выглядеть по-разному, но в простейшем случае схема включения тиристорного ключа имеет вид, показанный на рисунке 2.

К аноду присоединена лампочка L, а к ней выключателем К2 подключается плюсовая клемма источника питания G. B. Катод соединяется с минусом питания.

После подачи питания выключателем К2 к аноду и катоду будет приложено напряжение батареи, но тиристор остаётся закрытым, лампочка не светится. Для того чтобы включить лампу, необходимо нажать на кнопку К1, сигнал через сопротивление R будет подан на управляющий электрод, тиристорный ключ изменит своё состояние на открытое, и лампочка загорится. Сопротивление ограничивает ток, подаваемый на управляющий электрод. Повторное нажатие на кнопку К1 никакого влияния на состояние схемы не оказывает.

Для закрытия электронного ключа нужно отключить схему от источника питания выключателем К2. Этот тип электронных компонентов закроется, и в случае снижения напряжения питания на аноде до определённой величины, которая зависит от его характеристик. Вот так можно описать, как работает тиристор для чайников.

Характеристики

К основным характеристикам можно отнести следующие:

Рассматриваемые элементы, кроме электронных ключей, часто применяются в регуляторах мощности, которые позволяют изменять подводимую к нагрузке мощность за счёт изменения среднего и действующего значений переменного тока. Величина тока регулируется изменением момента подачи на тиристор открывающего сигнала (за счёт варьирования угла открывания). Углом открытия (регулирования) называется время от начала полупериода до момента открытия тиристора.

Типы данных электронных компонентов

Существует немало различных типов тиристоров, но наиболее распространены, помимо тех что мы рассмотрели выше, следующие:

  • динистор элемент, коммутация которого происходит при достижении определённого значения величины напряжения, приложенного между анодом и катодом;
  • симистор;
  • оптотиристор, коммутация которого осуществляется световым сигналом.

Симисторы

Хотелось бы более подробно остановиться на симисторах. Как говорилось ранее, тиристоры могут проводить ток только в одном направлении, поэтому при установке их в цепи переменного тока, такая схема регулирует один полупериод сетевого напряжения. Для регулирования обоих полупериодов необходимо установить встречно-параллельно ещё один тиристор либо применить специальные схемы с использованием мощных диодов или диодных мостов. Все это усложняет схему, делает её громоздкой и ненадёжной.

Вот для таких случаев и был изобретён симистор. Поговорим о нем и о принципе работы для чайников. Главное отличие симисторов от рассмотренных выше элементов заключается в способности пропускать ток в обоих направлениях. По сути, это два тиристора с общим управлением, подключённые встречно-параллельно (рисунок. 3 А).

Условное графическое обозначение этого электронного компонента показано на Рис. 3 В. Следует заметить, что называть силовые выводы анодом и катодом будет не корректно, так как ток может проводиться в любом направлении, поэтому их обозначают Т1 и Т2. Управляющий электрод обозначается G. Для того чтобы открыть симистор, необходимо подать управляющий сигнал на соответствующий вывод. Условия для перехода симистора из одного состояния в другое и обратно в сетях переменного тока не отличаются от способов управления, рассмотренных выше.

Применяется этот тип электронных компонентов в производственной сфере, бытовых устройствах и электроинструментах для плавного регулирования тока. Это управление электродвигателями, нагревательными элементами, зарядными устройствами.

В завершение хотелось бы сказать, что и тиристоры и симисторы, коммутируя значительные токи, обладают весьма скромными размерами, при этом на их корпусе выделяется значительная тепловая мощность. Проще говоря, они сильно греются, поэтому для защиты элементов от перегрева и теплового пробоя используют теплоотвод, который в простейшем случае представляет собой алюминиевый радиатор.

Тиристоры - это силовые электронные ключи, управляемые не полностью. Нередко в технических книгах можно увидеть еще одно название этого прибора - однооперационный тиристор. Другими словами, под воздействием управляющего сигнала он переводится в одно состояние - проводящее. Если конкретизировать, то он включает цепь. Чтобы она выключалась, необходимо создать специальные условия, которые обеспечивают падение прямого тока в цепи до нулевого значения.

Особенности тиристоров

Тиристорные ключи проводят электрический ток только в прямом направлении, причем в закрытом состоянии он выдерживает не только прямое, но и обратное напряжение. Структура тиристора четырехслойная, имеется три вывода:

  1. Анод (обозначается буквой А).
  2. Катод (буквой С или К).
  3. Управляющий электрод (У или G).

У тиристоров есть целое семейство вольт-амперных характеристик, по ним можно судить о состоянии элемента. Тиристоры - это очень мощные электронные ключи, они способны проводить коммутацию цепей, в которых напряжение может достигать 5000 вольт, а сила тока - 5000 ампер (при этом частота не превышает 1000 Гц).

Работа тиристора в цепях постоянного тока

Обычный тиристор включается путем подачи токового импульса на управляющий вывод. Причем он должен быть положительным (по отношению к катоду). Длительность переходного процесса зависит от характера нагрузки (индуктивная, активная), амплитуды и скорости нарастания в цепи управления импульса тока, температуры кристалла полупроводника, а также приложенного тока и напряжения на имеющиеся в схеме тиристоры. Характеристики схемы напрямую зависят от вида используемого полупроводникового элемента.

В той цепи, в которой находится тиристор, недопустимо возникновение большой скорости нарастания напряжения. А именно такого значения, при котором происходит самопроизвольное включение элемента (даже если нет сигнала в цепи управления). Но одновременно с этим у сигнала управления должна быть очень высокая крутизна характеристики.

Способы выключения

Можно выделить два типа коммутации тиристоров:

  1. Естественная.
  2. Принудительная.

А теперь более подробно о каждом виде. Естественная возникает тогда, когда тиристор работает в цепи переменного тока. Причем происходит эта коммутация тогда, когда ток падает до нулевого значения. А вот осуществить принудительную коммутацию можно большим количеством различных способов. Какое управление тиристором выбрать, решать разработчику схемы, но стоит поговорить о каждом типе отдельно.

Самым характерным способом принудительной коммутации является подключение конденсатора, который был заранее заряжен при помощи кнопки (ключа). LC-цепь включается в схему управления тиристором. Эта цепочка и содержит заряженный полностью конденсатор. При переходном процессе в нагрузочной цепи происходят колебания тока.

Способы принудительной коммутации

Существует еще несколько типов принудительной коммутации. Нередко применяют схему, в которой используется коммутирующий конденсатор, имеющий обратную полярность. Например, этот конденсатор может включаться в цепь при помощи какого-либо вспомогательного тиристора. При этом произойдет разряд на основной (рабочий) тиристор. Это приведет к тому, что у конденсатора ток, направленный навстречу прямому току основного тиристора, будет способствовать снижению тока в цепи вплоть до нуля. Следовательно, произойдет выключение тиристора. Это случается по той причине, что устройство тиристора имеет свои особенности, характерные только для него.

Существуют также схемы, в которых подключаются LC-цепочки. Они разряжаются (причем с колебаниями). В самом начале ток разряда течет навстречу рабочему, а после уравнивания их значений происходит выключение тиристора. После из колебательной цепочки ток перетекает через тиристор в полупроводниковый диод. При этом, покуда течет ток, к тиристору прикладывается некоторое напряжение. Оно по модулю равно падению напряжения на диоде.

Работа тиристора в цепях переменного тока

Если тиристор включить в цепь переменного тока, можно осуществить такие операции:

  1. Включить или отключить электрическую цепь с активно-резистивной или активной нагрузкой.
  2. Изменить среднее и действующее значение тока, который проходит через нагрузку, благодаря возможности регулировать момент подачи сигнала управления.

У тиристорных ключей имеется одна особенность - они проводят ток только в одном направлении. Следовательно, если необходимо использовать их в цепях приходится применять встречно-параллельное включение. Действующие и средние значения тока могут изменяться из-за того, что момент подачи сигнала на тиристоры различный. При этом мощность тиристора должна соответствовать минимальным требованиям.

Фазовый метод управления

При фазовом методе управления с коммутацией принудительного типа происходит регулировка нагрузки благодаря изменению углов между фазами. Искусственную коммутацию можно осуществить при помощи специальных цепей, либо же необходимо использовать полностью управляемые (запираемые) тиристоры. На их основе, как правило, изготавливают которое позволяет регулировать в зависимости от уровня зарядки аккумуляторной батареи.

Широтно-импульсное управление

Называют еще его ШИМ-модуляцией. Во время открытия тиристоров подается сигнал управления. Переходы открыты, а на нагрузке имеется некоторое напряжение. Во время закрытия (в течение всего переходного процесса) не подается сигнал управления, следовательно, тиристоры не проводят ток. При осуществлении фазового управления токовая кривая не синусоидальна, происходит изменение формы сигнала напряжения питания. Следовательно, происходит также нарушение работы потребителей, которые чувствительны к высокочастотным помехам (появляется несовместимость). Несложную конструкцию имеет регулятор на тиристоре, который без проблем позволит изменить необходимую величину. И не нужно применять массивные ЛАТРы.

Тиристоры запираемые

Тиристоры - это очень мощные электронные ключи, используются для коммутации высоких напряжений и токов. Но есть у них один огромный недостаток - управление неполное. А если конкретнее, то это проявляется тем, что для отключения тиристора нужно создавать условия, при котором прямой ток будет снижаться до нуля.

Именно эта особенность накладывает некоторые ограничения на использование тиристоров, а также усложняет схемы на их основе. Чтобы избавиться от такого рода недостатков, были разработаны специальные конструкции тиристоров, которые запираются сигналом по одному электроду управления. Их называют двухоперационными, или запираемыми, тиристорами.

Конструкция запираемого тиристора

Четырехслойная структура р-п-р-п у тиристоров имеет свои особенности. Они придают им отличия от обычных тиристоров. Речь сейчас идет о полной управляемости элемента. Вольт-амперная характеристика (статическая) при прямом направлении такая же, как и у простых тиристоров. Вот только прямой ток тиристор может пропускать куда больший по значению. Но функции блокировки больших обратных напряжений у запираемых тиристоров не предусмотрено. Поэтому необходимо соединять его встречно-параллельно с

Характерная особенность запираемого тиристора - это значительное падение прямых напряжений. Чтобы произвести отключение, следует осуществить подачу на управляющий вывод мощного импульса тока (отрицательного, в соотношении 1:5 к прямому значению тока). Но только длительность импульса должна быть как можно меньшей - 10... 100 мкс. Запираемые тиристоры обладают более низким значением предельного напряжения и тока, нежели обычные. Разница составляет примерно 25-30 %.

Виды тиристоров

Выше были рассмотрены запираемые, но существует еще немало типов полупроводниковых тиристоров, о которых также стоит упомянуть. В самых различных конструкциях (зарядные устройства, переключатели, регуляторы мощности) используются определенные типы тиристоров. Где-то требуется, чтобы управление проводилось путем подачи потока света, значит, используется оптотиристор. Его особенность заключается в том, что в цепи управления используется кристалл полупроводника, чувствительный к свету. Параметры тиристоров различны, у всех свои особенности, характерные только для них. Поэтому нужно хотя бы в общих чертах представлять, какие виды этих полупроводников существуют и где они могут применяться. Итак, вот весь список и основные особенности каждого типа:

  1. Диод-тиристор. Эквивалент этого элемента - тиристор, к которому подключен встречно-параллельно полупроводниковый диод.
  2. Динистор (диодный тиристор). Он может переходить в состояние полной проводимости, если превышается определенный уровень напряжения.
  3. Симистор (симметричный тиристор). Его эквивалент - два тиристора, включенных встречно-параллельно.
  4. Тиристор инверторный быстродействующий отличается высокой скоростью коммутации (5... 50 мкс).
  5. Тиристоры с управлением Часто можно встретить конструкции на основе МОП-транзисторов.
  6. Оптические тиристоры, которые управляются потоками света.

Осуществление защиты элемента

Тиристоры - это приборы, которые критичны к скоростям нарастания прямого тока и прямого напряжения. Для них, как и для полупроводниковых диодов, характерно такое явление, как протекание обратных токов восстановления, которое очень быстро и резко падает до нулевого значения, усугубляя этим вероятность возникновения перенапряжения. Это перенапряжение является следствием того, что резко прекращается ток во всех элементах схемы, которые имеют индуктивность (даже сверхмалые индуктивности, характерные для монтажа - провода, дорожки платы). Для осуществления защиты необходимо использовать разнообразные схемы, позволяющие в динамических режимах работы защититься от высоких напряжений и токов.

Как правило, источника напряжения, который входит в цепь работающего тиристора, имеет такое значение, что его более чем достаточно для того, чтобы в дальнейшем не включать в схему некоторую дополнительную индуктивность. По этой причине в практике чаще используется цепочка формирования траектории переключения, которая значительно снижает скорость и уровень перенапряжения в схеме при отключении тиристора. Емкостно-резистивные цепочки наиболее часто используются для этих целей. Они включаются с тиристором параллельно. Имеется довольно много видов схемотехнических модификаций таких цепей, а также методик их расчетов, параметров для работы тиристоров в различных режимах и условиях. А вот цепь формирования траектории переключения запираемого тиристора будет такая же, как и у транзисторов.

— устройство, обладающее свойствами полупроводника, в основе конструкции которого лежит монокристалический полупроводник, имеющий три или больше p-n-переходов.

Его работа подразумевает наличие двух стабильных фаз:

  • «закрытая» (уровень проводимости низкий);
  • «открытая» (уровень проводимости высоки).

Тиристоры — устройства, выполняющие функции силовых электронных ключей. Другое их наименование — однооперационные тиристоры. Данный прибор позволяет осуществлять регуляцию воздействия мощных нагрузок посредством незначительных импульсов.

Согласно вольт-амперной характеристике тиристора, увеличение силы тока в нём будет провоцировать снижение напряжения, то есть появится отрицательное дифференциальное сопротивление.

Кроме того, эти полупроводниковые устройства могут объединять цепи с напряжением до 5000 Вольт и силой тока до 5000 Ампер (при частоте не более 1000 Гц).

Тиристоры с двумя и тремя выводами пригодны для работы как с постоянным, так и с переменным током. Наиболее часто принцип их действия сравнивается с работой ректификационного диода и считается, что они являются полноценным аналогом выпрямителя, в некотором смысле даже более эффективным.

Разновидности тиристоров отличаются между собой:

  • Способом управления.
  • Проводимостью (односторонняя или двусторонняя).

Общие принципы управление

В структуре тиристора имеется 4 полупроводниковых слоя в последовательном соединении (p-n-p-n). Контакт, подведённый к наружному p-слою — анод, к наружному n-слою — катод. Как результат, при стандартной сборке в тиристоре максимально может быть два управляющих электрода, которые крепятся к внутренним слоям. Соответственно подключённому слою проводники, по типу управления устройства делятся на катодные и анодные. Чаще используется первая разновидность.

Ток в тиристорах течёт в сторону катода (от анода), поэтому соединение с источником тока осуществляет между анодом и плюсовым зажимом, а также между катодом и минусовым зажимом.

Тиристоры с управляющим электродом могут быть:

  • Запираемыми;
  • Незапираемыми.

Показательным свойством незапираемых приборов является отсутствие у них реакции на сигнал с управляющего электрода. Единственный способ закрыть их — снизить уровень протекающего сквозь них тока так, чтобы он уступал силе тока удержания.

Управляя тиристором следует учитывать некоторые моменты. Устройство данного типа сменяет фазы работы с «выключен» на «включён» и обратно скачкообразно и только при условии внешнего воздействия: при помощи тока (манипуляции с напряжением) или фотонов (в случаях с фототиристором).

Чтобы разобраться в данном моменте необходимо помнить, что у тиристора преимущественно имеется 3 вывода (тринистор): анод, катод и управляющий электрод.

Уэ (управляющий электрод) как раз таки и отвечает за то, чтобы включать и выключать тиристор. Открытие тиристора происходит при условии, что приложенное напряжение между А (анодом) и К (катодом) становится равным или превосходит объём напряжения работы тринистора. Правда, во втором случае потребуется воздействие импульса положительной полярности между Уэ и К.

При постоянной подаче питающего напряжения тиристор может быть открыт бесконечно долго.

Чтобы перевести его в закрытое состояние, можно:

  • Снизить уровень напряжения между А и К до нуля;
  • Понизить значение А-тока таким образом, чтобы показатели силы тока удержания оказались больше;
  • Если работа цепи построена на действии переменного тока, выключение прибора произойдёт без постороннего вмешательства, когда уровень тока сам снизится до нулевого показания;
  • Подать запирающее напряжение на Уэ (актуально только в отношении запираемых разновидностей полупроводниковых устройств).

Состояние закрытости тоже длится бесконечно долго, пока не возникнет запускающий импульс.

Конкретные способы управления

  • Амплитудный .

Представляет собой подачу положительного напряжения изменяющейся величины на Уэ. Открытие тиристора происходит, когда величины напряжения довольно, чтобы пробиться через управляющий переход тока спрямления (Iспр.). При помощи изменения величины напряжения на Уэ, появляется возможность изменения времени открытия тиристора.

Главный недочёт этого метода — сильное влияние температурного фактора. Кроме того, для каждой разновидности тиристора потребуется резистор другого вида. Этот момент не добавляет удобства в эксплуатации. Помимо этого время открытия тиристора возможно корректировать лишь пока длится первая 1/2 положительного полупериода сети.

  • Фазовый.

Заключается в смене фазы Uупр (в соотношении с напряжением на аноде). При этом применяется фазовращательный мост. Главный минус — малая крутизна Uупр, поэтому стабилизировать момент открытия тиристора можно лишь ненадолго.

  • Фазово-импульсный .

Рассчитан на преодоление недостатков фазового метода. С этой целью на Уэ подаётся импульс напряжения с крутым фронтом. Данный подход в настоящее время наиболее распространён.

Тиристоры и безопасность

Из-за импульсности своего действия и наличия обратного восстановительного тока тиристоры очень сильно повышает риск перенапряжения в работе прибора. Помимо этого опасность перенапряжения в зоне полупроводника высока, если в других частях цепи напряжения нет вовсе.

Поэтому во избежание негативных последствий принято использовать схемы ЦФТП. Они препятствуют появлению и удержанию критический значений напряжения.

Двухтранзисторная модель тиристора

Из двух транзисторов вполне можно собрать динистор (тиристор с двумя выводами) или тринистор (тиристор с тремя выводами). Для этого один из них должен иметь p-n-p-проводимость, другой — n-p-n-проводимость. Выполнены транзисторы могут быть как из кремния, так и из германия.

Соединение между ними осуществляется по двум каналам:

  • Анод от 2-го транзистора + Управляющий электрод от 1-го транзистора;
  • Катод от 1-го транзистора + Управляющий электрод от 2-го транзистора.

Если обойтись без использования управляющих электродов, то на выходе получится динистор.

Совместимость выбранных транзисторов определяется по одинаковому объёму мощности. При этом показания тока и напряжения должны быть обязательно больше требуемых для нормального функционирования прибора. Данные по напряжению пробоя и току удержания зависят от конкретных качеств использованных транзисторов.

Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на , буду рад если вы найдете на моем еще что-нибудь полезное.

В схемах и технической документации часто используются различные термины и знаки, но не все начинающие электрики знают их значение. Предлагаем обсудить, что такое силовые тиристоры для сварки, их принцип работы, характеристики и маркировка этих приборов.

Что такое тиристор и их виды

Многие видели тиристоры в гирлянде «Бегущий огонь», это самый простой пример описываемого устройства и как оно работает. Кремниевый выпрямитель или тиристор очень похож на транзистор. Это многослойное полупроводниковое устройство, основным материалом которого является кремний, чаще всего в пластиковом корпусе. Из-за того, что его принцип работы очень схож с ректификационным диодом (выпрямительные приборы переменного тока или динисторы), на схемах обозначение часто такое же – это считается аналог выпрямителя.

Фото – Cхема гирлянды бегущий огонь

Бывают :

  • ABB запираемые тиристоры (GTO),
  • стандартные SEMIKRON,
  • мощные лавинные типа ТЛ-171,
  • оптронные (скажем, ТО 142-12,5-600 или модуль МТОТО 80),
  • симметричные ТС-106-10,
  • низкочастотные МТТ,
  • симистор BTA 16-600B или ВТ для стиральных машин,
  • частотные ТБЧ,
  • зарубежные TPS 08,
  • TYN 208.

Но в это же время для высоковольтных аппаратов (печей, станков, прочей автоматики производства) используют транзисторы типа IGBT или IGCT.

Фото – Тиристор

Но, в отличие от диода, который является двухслойным (PN) трехслойного транзистора (PNP, NPN), тиристор состоит из четырех слоев (PNPN) и этот полупроводниковый прибор содержит три p-n перехода. В таком случае, диодные выпрямители становятся менее эффективными. Это хорошо демонстрирует схема управления тиристорами, а также любой справочник электриков (например, в библиотеке можно бесплатно почитать книгу автора Замятин).

Тиристор – это однонаправленный преобразователь переменного тока, то есть он проводит ток только в одном направлении, но в отличие от диода, устройство может быть сделано для работы в качестве коммутатора разомкнутой цепи или в виде ректификационного диода постоянного электротока. Другими словами, полупроводниковые тиристоры могут работать только в режиме коммутации и не могут быть использованы как приборы амплификации. Ключ на тиристоре не способен сам перейти в закрытое положение.

Кремниевый управляемый выпрямитель является одним из нескольких силовых полупроводниковых приборов вместе с симисторами, диодами переменного тока и однопереходными транзисторами, которые могут очень быстро переключаться из одного режима в другой. Такой тиристор называется быстродействующим. Конечно, большую роль здесь играет класс прибора.

Применение тиристора

Назначение тиристоров может быть самое различное, например, очень популярен самодельный сварочный инвертор на тиристорах, зарядное устройство для автомобиля (тиристор в блоке питания) и даже генератор. Из-за того, что сам по себе прибор может пропускать как низкочастотные, так и высокочастотные нагрузки, его также можно использовать для трансформатора для сварочных аппаратов (на их мосте используются именно такие детали). Для контроля работы детали в таком случае необходим регулятор напряжения на тиристоре.


Фото – применение Тиристора вместо ЛАТРа

Не стоит забывать и про тиристор зажигания для мотоциклов.

Описание конструкции и принцип действия

Тиристор состоит из трех частей: «Анод», «Катод» и «Вход», состоящий из трех p-n переходов, которые могут переключаться из положений «ВКЛ» и «ВЫКЛ» на очень высокой скорости. Но при этом, он также может быть переключен с позиции «ВКЛ» с различной продолжительности по времени, т. е. в течение нескольких полупериодов, чтобы доставить определенное количество энергии к нагрузке. Работа тиристора можно лучше объяснить, если предположить, что он будет состоять из двух транзисторов, связанных друг с другом, как пара комплементарных регенеративных переключателей.

Самые простые микросхемы демонстрируют два транзистора, которые совмещены таким образом, что ток коллектора после команды «Пуск» поступает на NPN транзистора TR 2 каналы непосредственно в PNP-транзистора TR 1. В это время ток с TR 1 поступает в каналы в основания TR 2 . Эти два взаимосвязанных транзистора располагаются так, что база-эмиттер получает ток от коллектора-эмиттера другого транзистора. Для этого нужно параллельное размещение.

Фото – Тиристор КУ221ИМ

Несмотря на все меры безопасности, тиристор может непроизвольно переходить из одного положения в другое. Это происходит из-за резкого скачка тока, перепада температур и прочих разных факторов. Поэтому перед тем, как купить тиристор КУ202Н, Т122 25, Т 160, Т 10 10, его нужно не только проверить тестером (прозвонить), но и ознакомиться с параметрами работы.

Типичные тиристорные ВАХ

Для начала обсуждения этой сложной темы, просмотрите схему ВАХ-характеристик тиристора:

Фото – характеристика тиристора ВАХ
  1. Отрезок между 0 и (Vвo,IL) полностью соответствует прямому запиранию устройства;
  2. В участке Vво осуществляется положение «ВКЛ» тиристора;
  3. Отрезок между зонами (Vво, IL) и (Vн,Iн) – это переходное положение во включенном состоянии тиристора. Именно в этом участке происходит так называемый динисторный эффект;
  4. В свою очередь точки (Vн,Iн) показывают на графике прямое открытие прибора;
  5. Точки 0 и Vbr – это участок с запиранием тиристора;
  6. После этого следует отрезок Vbr - он обозначает режим обратного пробоя.

Естественно, современные высокочастотные радиодетали в схеме могут влиять на вольт-амперные характеристики в незначительной форме (охладители, резисторы, реле). Также симметричные фототиристоры, стабилитроны SMD, оптотиристоры, триодные, оптронные, оптоэлектронные и прочие модули могут иметь другие ВАХ.


Фото – ВАХ тиристора

Кроме того, обращаем Ваше внимание, что в таком случае защита устройств осуществляется на входе нагрузки.

Проверка тиристора

Перед тем, как купить прибор, нужно знать, как проверить тиристор мультиметром. Подключить измерительный прибор можно только к так называемому тестеру. Схема, по которой можно собрать такое устройство, представлена ниже:

Фото – тестер тиристоров

Согласно описанию, к аноду необходимо подвести напряжение положительного характера, а к катоду – отрицательного. Очень важно использовать величину, которая соответствует разрешению тиристора. На чертеже показаны резисторы с номинальным напряжением от 9 до 12 вольт, это значит, что напряжение тестера немного больше, чем тиристора. После того, как Вы собрали прибор, можно начинать проверять выпрямитель. Нужно нажать на кнопку, которая подает импульсные сигналы для включения.

Проверка тиристора осуществляется очень просто, на управляющий электрод кнопкой кратковременно подается сигнал на открытие (положительный относительно катода). После этого если на тиристоре загорелись бегущие огни, то устройство считается нерабочим, но мощные приборы не всегда сразу реагируют после поступления нагрузки.


Фото – схема тестера для тиристоров

Помимо проверки прибора, также рекомендуется использовать специальные контроллеры или блок управления тиристорами и симисторами ОВЕН БУСТ или прочие марки, он работает примерно также, как и регулятор мощности на тиристоре. Главным отличием является более широкий спектр напряжений.

Видео: принцип работы тиристора

Технические характеристики

Рассмотрим технические параметры тиристора серии КУ 202е. В этой серии представляются отечественные маломощные устройства, основное применение которых ограничивается бытовыми приборами: его используют для работы электропечей, обогревателей и т.д.

На чертеже ниже представлена цоколевка и основные детали тиристора.

Фото – ку 202
  1. Установленное обратное напряжение в открытом состоянии (макс) 100 В
  2. Напряжение в закрытом положении 100 В
  3. Импульс в открытом положении – 30 А
  4. Повторяющийся импульс в открытом положении 10 А
  5. Среднее напряжение <=1,5 В
  6. Неотпирающее напряжение >=0,2 В
  7. Установленный ток в открытом положении <=4 мА
  8. Ток обратный <=4 мА
  9. Отпирающий ток постоянного типа <=200 мА
  10. Установленное постоянное напряжение <=7 В
  11. Время включения <=10 мкс
  12. Время выключения <=100 мкс

Включение устройства осуществляется в течение микросекунд. Если Вам понадобится замена описанного прибора, то проконсультируйтесь с продавцом-консультантом электромагазина – он сможет подобрать аналог по схеме.

Фото – тиристор ку202н

Цена тиристора зависит от его марки и характеристик. Мы рекомендуем покупать отечественные приборы – они более долговечны и отличаются доступной стоимостью. На стихийных рынках можно купить качественный мощный преобразователь до сотни рублей.