Личный кабинет        17.06.2019   

Компьютерное моделирование систем и его особенности. Понятие компьютерного моделирования

Компьютерное моделирование в физике.

Калёнов М.Ю.

Балакин М.А.

Худяков А.Б.

МБОУ Лицей №38

Нижний Новгород

3. Тематическое планирование факультатива - "компьютерное моделирование в физике".

5. Первые результаты полученные при проведении курса "компьютерное моделирование в физике".

1. Роль компьютерного моделирования в физике.

Болонская конвенция, подписанная в 2003 году министром образования Российской Федерации, существенно меняет положение физики , как предмета, изучаемого в средней школе и на нефизических факультетах вузов. Следуя положениям Сорбонской декларации, российское государство в срок до 2010 года берет на себя обязательства трансформировать физику из важнейшего общекультурного и образовательного компонента личности в один из предметов, выбираемых студентом в соответствии с личной образовательной траекторией.

Выбранный курс реформирования образования вызывает справедливую и обоснованную обеспокоенность в среде педагогической общественности. В то же время, нельзя не признать, что он согласуется с проводимыми в стране административной, финансовой, законодательной и другими реформами: необходимые объем и глубину знаний по физике должны определять потребности рынка, а не планы создания абстрактного человека будущего .

Вместе с тем, необходимо отметить, что никакие реформы физического образования не способны изменить объективный статус физики как фундаментальной основы всех областей современного научного знания. Самые первые попытки философов древности объяснить устройство мира были не чем иным, как занятиями физикой, а современная цивилизация, существующая в едином глобальном информационном пространстве, приобрела свои характерные черты также благодаря развитию физической науки. История физики - это история человечества, познающего Вселенную и создающего неприродную реальность, изучение физики развивает интеллект и формирует мировоззрение.

Помимо требований модернизации обучения, обусловленных современными тенденциями развития образования, традиционно актуальной является необходимость обеспечения содержательной и методологической преемственности в изучении физических явлений, процессов и закономерностей при их рассмотрении в курсах общей физики. Формализованное изложение учебного материала и алгоритмизация учебной исследовательской деятельности студентов, свойственные как для курса общей физики, так и для дисциплин, развивающих его положения, ведут к тому, что понимание физической сущности предмета уступает место усвоению готовых знаний и приобретению ограниченного числа навыков . В то же время, современные тенденции развития физического образования нацелены на формирование у учащихся умений нестандартно мыслить, использовать интеллектуальные и коммуникативные способности для успешной организации профессиональной и социальной деятельности в непрерывно меняющихся многофакторных ситуациях.

Компьютерное моделирование, являющееся составной частью и инструментом компьютерного обучения, содержит в себе потенциальные возможности повышения эффективности изучения физических основ в курсах общей физики. К этим возможностям относятся:

Повышение наглядности , вариативности, интерактивности и информационной емкости предоставляемого учебного материала, компенсация, посредством этого, сокращения количества часов аудиторных занятий;

Проведение экспериментальной деятельности, затрудненной, невозможной или небезопасной в условиях учебной лаборатории, обеспечение множественности и вариативности экспериментов;

Модернизация натурного лабораторного исследования посредством применения компьютерных моделей для наглядного представления;

Повышение эффективности самостоятельной работы студентов через предоставление возможности выбора и реализации индивидуального маршрута самостоятельного обучения, соответствующего уровню знаний, темпераменту и особенностям мышления учащихся;

Развитие у учащихся навыков самостоятельной работы с важнейшей формой представления информации - моделью, выработка навыков применения математической модели при планировании, постановке и интерпретации результатов учебного натурного эксперимента, умение производить оценку области применения модели;

Создание условий для реализации личностно-ориентированного подхода к обучению;

Рационализация труда учащегося и педагога через передачу рутинных функций расчета и проверки и сосредоточение внимания на творческом аспекте учебного исследования.

2. Задачи, цели и методы проекта - "компьютерное моделирование в физике".

Цели:

    Развить у учащихся навык создания программ на языке Pascal .

    Развить у учащихся навык моделирования физических процессов, решения задач необходимых для создания моделей.

    Мотивировать учащихся к исследовательской деятельности.

    Укрепить и развить базу знаний учащихся по физике и информатике.

    Пополнить базу демонстрационных экспериментов используемых на уроках физики.

Задачи:

    Создание плана факультативных занятий с учащимися по теме «Компьютерное моделирование в физике».

    Подготовка необходимых материалов для осуществления курса, и привлечение на него учащихся.

    Организация обучения учащихся основам компьютерного программирования на языке Pascal .

    Организация исследовательской деятельности учащихся в компьютерном моделировании.

    Отбор задач для применения на уроках физики.

Методы.

Методом решения поставленных задач для достижения заданных целей мы избрали исследовательскую работу учащихся. В этом случае учитель выполняет роль помощника и лишь корректирует мыслительную деятельность учащихся. Это не освобождает учителя от его обязанностей, но дает учащимся большую свободу для проявления творческих способностей.

Однако практические занятия буду сменять и лекционные, для достижение учащимися лучших результатов и увеличения теоретической базы.

Решение каждой из учебных задач осуществляется согласно следующему плану:

    Введение в задачу.

Объясняется суть задачи, ее практический смысл.

    Теория вопроса.

Обсуждаются все вопросы, связанные с теорией рассматриваемого физического явления/процесса.

    Обсуждение.

Обсуждение путей решения и методов моделирования.

    Теория создания программы.

Обсуждаются все необходимые вопросы для успешного написания учащимися компьютерной программы на языке Pascal .

    Практическая часть.

Создание компьютерное модели учащимися.

    Выводы.

Обсуждение полученных результатов.

Курс начинается с задач на численное интегрирование и дифференцирование, для того чтобы в дальнейшем применять эти наработки при создании физических моделей. В дальнейшем учащиеся знакомятся с моделированием движения тел в поле действия силы тяжести (10 класс), знакомятся с задачей Кеплера, колебательным движением(11 класс) и волновыми явлениями(11 класс). Эти темы для были выбраны для изучения исходя из того, что они по нашему мнению наиболее просты для учащихся и наиболее наглядны. Сложность курса вводит ограничение по возрасту: так участвовать в факультативных занятиях приглашаются учащиеся только 10 и 11 классов.

За теоретическую основу курса компьютерного моделирования в физике мы взяли книги авторов Х.Гулд, Я.Тобочник. «Компьютерное моделирование в физике.»;

3. Тематическое планирование факультатива - "компьютерное моделирование в физике". 68 часов.

Тема

Количество часов

Значение компьютеров в физике. Важность графики. Язык программирования Pascal

Повторение основ языка Pascal . Процедуры и функции. Постоянные и переменные. Основные алгоритмические структуры.

Численное интегрирование

Понятие интеграла. Простые одномерные методы численного интегрирования.

Числовой пример.

Численное интегрирование многих интегралов.

Вычисление интегралов методом Монте-Карло.

Анализ погрешности метода Монте-Карло.

Задача об остывании кофе.

Основные понятия. Алгоритм Эйлера.

Программа для решения задачи.

Устойчивость и точность.

Простейшая графика.

Падение тел.

Основные понятия. Сила, действующая на падающее тело.

Численное решение уравнений.

Одномерное движение.

Двумерные траектории.

Задача Кеплера.

Введение. Уравнение движения планет.

Движение по окружности.

Эллиптические орбиты.

Астрономические единицы. Замечания по программированию.

Численное моделирование орбиты.

Возмущение.

Пространство скоростей.

Солнечная система в миниатюре.

Колебания.

Простой гармонический осциллятор.

Численное моделирование гармонического осциллятора.

Математический маятник. Замечания по программированию.

Затухающие колебания. Линейный отклик на внешнюю силу.

Принципы суперпозиции. Колебания во внешних цепях.

Волновые явления.

Введение. Связанные осцилляторы.

Фурье-анализ.

Волновое движение.

Интерференция и дифракция.

Поляризация.

Геометрическая оптика.

4. Примеры задач решаемых учащимися.

Ранее мы уже интегрировали отдельные задачи из курса компьютерного моделирования в физике в факультативные занятия по информатике.

Результаты полученные нами и вдохновили нас на организацию отдельного факультативного курса. Участники решавшие задачи по моделированию физических процессов лучше осваивали новый материал, с легкостью решали задачи связанные с темами к которым они создавали физические модели.

Пример. Моделирование гармонических колебаний.

Пример программы созданной одним из учащихся изображен на рисунке № 1

Рисунок 1.

Одновременно с этим учащиеся 11-х классов писали проверочную работу по теме «Механические колебания, волны, звук»

Результаты были следующими

Средний балл за проверочную работу учащихся участвовавших в курсе - 4,5

Средний балл за проверочную работу всех учащихся 11 классов МОУ лицей № 38 - 3,9

Кроме того повышалась и успеваемость учащихся по информатике.

Итак мы видим что качество знаний по теме гармонические колебания учащихся участвовавших в курсе было оказалось среднего показателя. Что подтверждает эффективность данного курса.

Созданную учащимися модель может так же использовать учитель как демонстрационный эксперимент на уроках физике в теме «Механические колебания, волны, звук.»

4. Выводы.

В настоящее время падает качество знаний учащихся по основным и необходимым как воздух в современном мире, наполненном инновациями, предметам. (Физика, информатика, математика) Способов борьбы с этим множество.

Однако курс факультативных занятий который был разработан нами не только подстегивает интерес учащихся к физике, но так же укрепляет теоретическую и практическую базу знаний по этому предмету, попутно улучшая практические навыки учащихся по информатике и математике. Совместно с этим ширится инструментарий педагога который он может использовать для демонстрационных экспериментов на уроках физики.

Благодаря всем этим особенностям мы достигаем высоких результатов качества знаний сразу по нескольким предметам.

Литература:

    Д.Хеерман. Методы компьютерного эксперимента в статистической физике. Перевод с англ., "Наука", Москва, 1990.

    К.Биндер, Д.Хеерман. Моделирование методом Монте-Карло в статистической физике. Перевод с англ., "Наука", Москва, 1995.

    Методы Монте-Карло в статистической физике. Под.ред. К.Биндера, Москва, Мир, 1982.

    Х.Гулд, Я.Тобочник. Компьютерное моделирование в физике. В 2-ух томах, Москва, Мир, 1990.

    M.P.Allen, D.J.Tildesley. Computer simulation of liquids. Clarendon Press, Oxford, 1987.

    K.Binder (editor), Applications of the Monte Carlo method in statistical physics, Springer-Verlag, 1987.

    M.P.Allen, D.J.Tildesley (eds.). Computer simulation in Chemical Physics. Kluwer Academic Publishers, 1993.

    Monte Carlo and Molecular Dynamics Simulations in Polymer Science. K.Binder (ed.), Oxford University Press, 1995.

    Monte Carlo and Molecular Dynamics of Condensed Matter Physics, edited by K.Binder and G.Ciccotti, (proceedings of the conference in Como, Italy), 1996.

    D.Frenkel, B.Smit, Understanding molecular simulation: from algorithms to applications. Academic Press, 1996.

Метод моделирования в качестве научного исследования стал применяться еще в глубокой древности и постепенно захватывал все новые области научных знаний: техническое конструирование, строительство и архитектуру, астрономию, физику, химию, биологию и, наконец, информационные технологии. Методология моделирования долгое время развивалась независимо отдельными науками. Отсутствовала единая система понятий, единая терминология. Лишь постепенно стала осознаваться роль моделирования как универсального метода научного познания.

Термин модель широко используется в различных сферах человеческой деятельности и имеет множество смысловых значений.

Модель - это такой материальный или мысленно представляемый объект, который в процессе исследования замещает объект-оригинал так, что его непосредственное изучение дает новые знания об объекте-оригинале. Под моделированием понимается процесс построения, изучения и применения моделей. Оно тесно связано с такими категориями, как абстракция, аналогия, гипотеза и др. Процесс моделирования обязательно включает и построение абстракций, и умозаключения по аналогии, и конструирование научных гипотез.

Главная особенность моделирования в том, что это метод опосредованного познания с помощью объектов-заместителей. Модель выступает как своеобразный инструмент познания, который исследователь ставит между собой и объектом и с помощью которого изучает интересующий его объект. Именно эта особенность метода моделирования определяет специфические формы использования абстракций, аналогий, гипотез, других категорий и методов познания.

Необходимость использования метода моделирования определяется тем, что многие объекты (или проблемы, относящиеся к этим объектам) непосредственно исследовать или вовсе невозможно, или же это исследование требует много времени и средств.

Процесс моделирования включает три элемента:

1) субъект (исследователь),

2) объект исследования,

3) модель, опосредствующую отношения познающего субъекта и познаваемого объекта.

Пусть имеется или необходимо создать некоторый объект А. Мы конструируем (материально или мысленно) или находим в реальном мире другой объект В - модель объекта А. Этап построения модели предполагает наличие некоторых знаний об объекте-оригинале. Познавательные возможности модели обуславливаются тем, что модель отражает какие-либо существенные черты объекта-оригинала. Вопрос о необходимости и достаточной мере сходства оригинала и модели требует конкретного анализа. Очевидно, модель утрачивает свой смысл как в случае тождества с оригиналом, так и в случае чрезмерного во всех существенных отношениях отличия от оригинала .

Таким образом, изучение одних сторон моделируемого объекта осуществляется ценой отказа от отражения других сторон. Поэтому любая модель замещает оригинал лишь в строго ограниченном смысле. Из этого следует, что для одного объекта может быть построено несколько "специализированных" моделей, концентрирующих внимание на определенных сторонах исследуемого объекта или же характеризующих объект с разной степенью детализации.

Рис. 1 – Этапы компьютерного моделирования

Этапы компьютерного моделирования можно представить в виде схемы (рис. 1).

Моделирование начинается с объекта изучения. На первом этапе формируются законы, управляющие исследованием, происходит отделение информации от реального объекта, формируется существенная информация, отбрасывается несущественная. Преобразование информации определяется решаемой задачей. Информация, существенная для одной задачи, может оказаться несущественной для другой. Потеря существенной информации приводит к неверному решению или не позволяет вообще получить решение. Учет несущественной информации вызывает излишние сложности, а иногда создает непреодолимые препятствия на пути к решению. Переход от реального объекта к информации о нем осмыслен только тогда, когда поставлена задача. В то же время постановка задачи уточняется по мере изучения объекта. Таким образом, на первом этапе процессы целенаправленного изучения объекта и уточнения задачи происходят параллельно и независимо друг от друга. Также на этом этапе информация об объекте подготавливается к обработке на компьютере. Строится так называемая формальная модель явления, которая содержит:

    набор постоянных величин, констант, которые характеризуют моделируемый объект в целом и его составные части, называемые статистическими или постоянными параметрами модели;

    набор переменных величин, меняя значение которых можно управлять поведением модели, называемых динамическим или управляющими параметрами;

    формулы и алгоритмы, связывающие величины в каждом из состояний моделируемого объекта;

    формулы и алгоритмы, описывающие процесс смены состояний моделируемого объекта.

На втором этапе формальная модель реализуется на компьютере, выбираются подходящие программные средства для этого, строиться алгоритм решения проблемы, пишется программа, реализующая этот алгоритм, затем написанная программа отлаживается и тестируется на специально подготовленных тестовых моделях . Тестирование - это процесс исполнения программы с целью выявления ошибок. Подбор тестовой модели - это своего рода искусство, хотя для этого разработаны и успешно применяются некоторые основные принципы тестирования. Тестирование - это процесс деструктивный, поэтому считается, что тест удачный, если обнаружена ошибка. Проверить компьютерную модель на соответствие оригиналу, проверить насколько хорошо или плохо отражает модель основные свойства объекта, часто удается с помощью простых модельных примеров, когда результат моделирования известен заранее.

На третьем этапе, работая с компьютерной моделью, мы осуществляем непосредственно вычислительный эксперимент. Исследуем, как поведет себя наша модель в том или ином случае, при тех или иных наборах динамических параметров, пытаемся прогнозировать или оптимизировать что-либо в зависимости от поставленной задачи.

Результатом компьютерного эксперимента будет являться информационная модель явления, в виде графиков, зависимостей одних параметров от других, диаграмм, таблиц, демонстрации явления в реальном или виртуальном времени и т.п.

Моделирование - циклический процесс. Это означает, что за первым четырехэтапным циклом может последовать второй, третий и т.д. При этом знания об исследуемом объекте расширяются и уточняются, а исходная модель постепенно совершенствуется. Недостатки, обнаруженные после первого цикла моделирования, обусловленные малым знанием объекта и ошибками в построении модели, можно исправить в последующих циклах. В методологии моделирования, таким образом, заложены большие возможности саморазвития.

Компьютерное моделирование, возникшее как одно из направлений математического моделирования с развитием информационных компьютерных технологий стало самостоятельной и важной областью применения компьютеров. В настоящее время компьютерное моделирование в научных и практических исследованиях является одним из основных методов познания. Без компьютерного моделирования сегодня невозможно решение крупных научных задач. Выработана технология исследования сложных проблем, основанная на построении и анализе с помощью вычислительной техники математической модели изучаемого объекта. Такой метод исследования называется вычислительным экспериментом. Вычислительный эксперимент применяется практически во всех отраслях науки - в физике, химии, астрономии, биологии, экологии, даже в таких сугубо гуманитарных науках как психология, лингвистика и филология. Проведение вычислительного эксперимента имеет ряд преимуществ перед так называемым натурным экспериментом:

    для вычислительного эксперимента не требуется сложного лабораторного оборудования;

    существенное сокращение временных затрат на эксперимент;

    возможность свободного управления параметрами, произвольного их изменения, вплоть до придания им нереальных, неправдоподобных значений;

    возможность проведения вычислительного эксперимента там, где натурный эксперимент невозможен из-за удаленности исследуемого явления в пространстве (астрономия) либо из-за его значительной растянутости во времени (биология), либо из-за возможности внесения необратимых изменений в изучаемый процесс.

В этих случаях и используется компьютерное моделирование. Также широко используется компьютерное моделирование в образовательных и учебных целях. Компьютерное моделирование - наиболее адекватный подход при изучении предметов естественнонаучного цикла, изучение компьютерного моделирования открывает широкие возможности для осознания связи информатики с математикой и другими науками - естественными и социальными. Учитель может использовать на уроке готовые компьютерные модели для демонстрации изучаемого явления, будь это движение астрономических объектов или движение атомов или модель молекулы или рост микробов и т.д.. Также учитель может озадачить учащихся разработкой конкретных моделей, моделируя конкретное явление, студент не только освоит конкретный учебный материал, но и приобретет умение ставить проблемы и задачи, прогнозировать результаты исследования, проводить разумные оценки, выделять главные и второстепенные факторы для построения моделей, выбирать аналогии и математические формулировки, использовать компьютер для решения задач, проводить анализ вычислительных экспериментов. Таким образом, применение компьютерного моделирования в образовании позволяет сблизить методологию учебной деятельности с методологией научно-исследовательской работы.

Понятие моделирования - это очень широкое понятие, оно не ограничивается только математическим моделированием. Истоки моделирования обнаруживаются в далеком прошлом. Наскальные изображения мамонта, пронзенного копьем, на стене пещеры можно рассматривать как модель удачной охоты, созданную древним художником.

Элементы моделирования часто присутствуют в детских играх, любимое занятие детей - моделировать подручными средствами предметы и отношения из жизни взрослых. Взрослеют дети, взрослеет человечество. Человечество познает окружающий мир, модели становятся более абстрактными, теряют внешнее сходство с реальными объектами. В моделях отражаются глубинные закономерности, установленные в результате целенаправленных исследований. В роли моделей могут выступать самые разнообразные объекты: изображения, схемы, карты, графики, компьютерные программы, математические формулы и т.д. Если мы заменяем реальный объект математическими формулами - допустим, согласно Второму закону Ньютона, опишем движение некоторого тела системой нелинейных уравнений, или, согласно закону теплопроводности опишем процесс распространения тепла дифференциальным уравнение второго порядка, - то говорят о математическом моделировании, если реальный объект заменяем компьютерной программой - о компьютерном моделировании.

Но что бы ни выступало в роли модели, постоянно прослеживается процесс замещения реального объекта с помощью объекта-модели с целью изучения реального объекта или передачи информации о свойствах реального объекта. Это процесс и называется моделированием. Замещаемый объект называется оригиналом, замещающий – моделью (рис. 2).

Рис. 2 – Элементы моделирования

Компьютерная модель (англ. computer model ), или численная модель (англ. computational model ) - компьютерная программа, работающая на отдельном компьютере , суперкомпьютере или множестве взаимодействующих компьютеров (вычислительных узлов), реализующая представление объекта, системы или понятия в форме, отличной от реальной, но приближенной к алгоритмическому описанию, включающей и набор данных, характеризующих свойства системы и динамику их изменения со временем.

О компьютерном моделировании

Компьютерные модели стали обычным инструментом математического моделирования и применяются в физике, астрофизике, механике, химии, биологии, экономике, социологии, метеорологии, других науках и прикладных задачах в различных областях радиоэлектроники, машиностроения, автомобилестроения и проч. Компьютерные модели используются для получения новых знаний о моделируемом объекте или для приближенной оценки поведения систем, слишком сложных для аналитического исследования.

Компьютерное моделирование является одним из эффективных методов изучения сложных систем. Компьютерные модели проще и удобнее исследовать в силу их возможности проводить т. н. вычислительные эксперименты, в тех случаях когда реальные эксперименты затруднены из-за финансовых или физических препятствий или могут дать непредсказуемый результат. Логичность и формализованность компьютерных моделей позволяет определить основные факторы, определяющие свойства изучаемого объекта-оригинала (или целого класса объектов), в частности, исследовать отклик моделируемой физической системы на изменения её параметров и начальных условий.

Построение компьютерной модели базируется на абстрагировании от конкретной природы явлений или изучаемого объекта-оригинала и состоит из двух этапов - сначала создание качественной, а затем и количественной модели. Чем больше значимых свойств будет выявлено и перенесено на компьютерную модель - тем более приближенной она окажется к реальной модели, тем большими возможностями сможет обладать система, использующая данную модель. Компьютерное же моделирование заключается в проведении серии вычислительных экспериментов на компьютере, целью которых является анализ, интерпретация и сопоставление результатов моделирования с реальным поведением изучаемого объекта и, при необходимости, последующее уточнение модели и т. д.

Различают аналитическое и имитационное моделирование. При аналитическом моделировании изучаются математические (абстрактные) модели реального объекта в виде алгебраических, дифференциальных и других уравнений, а также предусматривающих осуществление однозначной вычислительной процедуры, приводящей к их точному решению. При имитационном моделировании исследуются математические модели в виде алгоритма(ов), воспроизводящего функционирование исследуемой системы путём последовательного выполнения большого количества элементарных операций.

Преимущества компьютерного моделирования

Компьютерное моделирование дает возможность:

  • расширить круг исследовательских объектов - становится возможным изучать не повторяющиеся явления, явления прошлого и будущего, объекты, которые не воспроизводятся в реальных условиях;
  • визуализировать объекты любой природы, в том числе и абстрактные;
  • исследовать явления и процессы в динамике их развертывания;
  • управлять временем (ускорять,замедлять и т.д);
  • совершать многоразовые испытания модели, каждый раз возвращая её в первичное состояние;
  • получать разные характеристики объекта в числовом или графическом виде;
  • находить оптимальную конструкцию объекта, не изготовляя его пробных экземпляров;
  • проводить эксперименты без риска негативных последствий для здоровья человека или окружающей среды.

Основные этапы компьютерного моделирования

Название этапа Исполнение действий
1. Постановка задачи и её анализ 1.1. Выяснить, с какой целью создается модель.

1.2. Уточнить, какие исходные результаты и в каком виде следует их получить.

1.3. Определить, какие исходные данные нужны для создания модели.

2. Построение информационной модели 2.1. Определить параметры модели и выявить взаимосвязь между ними.

2.2. Оценить, какие из параметров влиятельные для данной задачи, а какими можно пренебрегать.

2.3. Математически описать зависимость между параметрами модели.

3. Разработка метода и алгоритма реализации компьютерной модели 3.1. Выбрать или разработать метод получения исходных результатов.

3.2. Составить алгоритм получения результатов по избранным методам.

3.3. Проверить правильность алгоритма.

4. Разработка компьютерной модели 4.1. Выбрать средства программной реализации алгоритма на компьютере.

4.2. Разработать компьютерную модель.

4.3. Проверить правильность созданной компьютерной модели.

5. Проведение эксперимента 5.1. Разработать план исследования.

5.2. Провести эксперимент на базе созданной компьютерной модели.

5.3. Проанализировать полученные результаты.

5.4. Сделать выводы насчет свойств прототипа модели.

В процессы проведения эксперимента может выясниться, что нужно:

  • скорректировать план исследования;
  • выбрать другой метод решения задачи;
  • усовершенствовать алгоритм получения результатов;
  • уточнить информационную модель;
  • внести изменения в постановку задачи.

В таком случае происходит возвращение к соответствующему этапу и процесс начинается снова.

Практическое применение

Компьютерное моделирование применяют для широкого круга задач, таких как:

  • анализ распространения загрязняющих веществ в атмосфере ;
  • проектирование шумовых барьеров для борьбы с шумовым загрязнением ;
  • конструирование транспортных средств ;
  • полетные имитаторы для тренировки пилотов ;
  • эмуляция работы других электронных устройств;
  • исследование поведения зданий, конструкций и деталей под механической нагрузкой;
  • прогнозирование прочности конструкций и механизмов их разрушения;
  • проектирование производственных процессов, например химических;
  • стратегическое управление организацией;
  • исследование поведения гидравлических систем: нефтепроводов, водопровода;
  • моделирование роботов и автоматических манипуляторов;
  • моделирование сценарных вариантов развития городов;
  • моделирование транспортных систем;
  • конечно-элементное моделирование краш-тестов ;

Различные сферы применения компьютерных моделей предъявляют разные требования к надежности получаемых с их помощью результатов. Для моделирования зданий и деталей самолетов требуется высокая точность и степень достоверности, тогда как модели эволюции городов и социально-экономических систем используются для получения приближенных или качественных результатов.

Алгоритмы компьютерного моделирования

См. также

Напишите отзыв о статье "Компьютерное моделирование"

Ссылки

Отрывок, характеризующий Компьютерное моделирование

– Да что ж такое? – спросили оба Ростова, старший и младший.
Анна Михайловна глубоко вздохнула: – Долохов, Марьи Ивановны сын, – сказала она таинственным шопотом, – говорят, совсем компрометировал ее. Он его вывел, пригласил к себе в дом в Петербурге, и вот… Она сюда приехала, и этот сорви голова за ней, – сказала Анна Михайловна, желая выразить свое сочувствие Пьеру, но в невольных интонациях и полуулыбкою выказывая сочувствие сорви голове, как она назвала Долохова. – Говорят, сам Пьер совсем убит своим горем.
– Ну, всё таки скажите ему, чтоб он приезжал в клуб, – всё рассеется. Пир горой будет.
На другой день, 3 го марта, во 2 м часу по полудни, 250 человек членов Английского клуба и 50 человек гостей ожидали к обеду дорогого гостя и героя Австрийского похода, князя Багратиона. В первое время по получении известия об Аустерлицком сражении Москва пришла в недоумение. В то время русские так привыкли к победам, что, получив известие о поражении, одни просто не верили, другие искали объяснений такому странному событию в каких нибудь необыкновенных причинах. В Английском клубе, где собиралось всё, что было знатного, имеющего верные сведения и вес, в декабре месяце, когда стали приходить известия, ничего не говорили про войну и про последнее сражение, как будто все сговорились молчать о нем. Люди, дававшие направление разговорам, как то: граф Ростопчин, князь Юрий Владимирович Долгорукий, Валуев, гр. Марков, кн. Вяземский, не показывались в клубе, а собирались по домам, в своих интимных кружках, и москвичи, говорившие с чужих голосов (к которым принадлежал и Илья Андреич Ростов), оставались на короткое время без определенного суждения о деле войны и без руководителей. Москвичи чувствовали, что что то нехорошо и что обсуждать эти дурные вести трудно, и потому лучше молчать. Но через несколько времени, как присяжные выходят из совещательной комнаты, появились и тузы, дававшие мнение в клубе, и всё заговорило ясно и определенно. Были найдены причины тому неимоверному, неслыханному и невозможному событию, что русские были побиты, и все стало ясно, и во всех углах Москвы заговорили одно и то же. Причины эти были: измена австрийцев, дурное продовольствие войска, измена поляка Пшебышевского и француза Ланжерона, неспособность Кутузова, и (потихоньку говорили) молодость и неопытность государя, вверившегося дурным и ничтожным людям. Но войска, русские войска, говорили все, были необыкновенны и делали чудеса храбрости. Солдаты, офицеры, генералы – были герои. Но героем из героев был князь Багратион, прославившийся своим Шенграбенским делом и отступлением от Аустерлица, где он один провел свою колонну нерасстроенною и целый день отбивал вдвое сильнейшего неприятеля. Тому, что Багратион выбран был героем в Москве, содействовало и то, что он не имел связей в Москве, и был чужой. В лице его отдавалась должная честь боевому, простому, без связей и интриг, русскому солдату, еще связанному воспоминаниями Итальянского похода с именем Суворова. Кроме того в воздаянии ему таких почестей лучше всего показывалось нерасположение и неодобрение Кутузову.
– Ежели бы не было Багратиона, il faudrait l"inventer, [надо бы изобрести его.] – сказал шутник Шиншин, пародируя слова Вольтера. Про Кутузова никто не говорил, и некоторые шопотом бранили его, называя придворною вертушкой и старым сатиром. По всей Москве повторялись слова князя Долгорукова: «лепя, лепя и облепишься», утешавшегося в нашем поражении воспоминанием прежних побед, и повторялись слова Ростопчина про то, что французских солдат надо возбуждать к сражениям высокопарными фразами, что с Немцами надо логически рассуждать, убеждая их, что опаснее бежать, чем итти вперед; но что русских солдат надо только удерживать и просить: потише! Со всex сторон слышны были новые и новые рассказы об отдельных примерах мужества, оказанных нашими солдатами и офицерами при Аустерлице. Тот спас знамя, тот убил 5 ть французов, тот один заряжал 5 ть пушек. Говорили и про Берга, кто его не знал, что он, раненый в правую руку, взял шпагу в левую и пошел вперед. Про Болконского ничего не говорили, и только близко знавшие его жалели, что он рано умер, оставив беременную жену и чудака отца.

3 го марта во всех комнатах Английского клуба стоял стон разговаривающих голосов и, как пчелы на весеннем пролете, сновали взад и вперед, сидели, стояли, сходились и расходились, в мундирах, фраках и еще кое кто в пудре и кафтанах, члены и гости клуба. Пудренные, в чулках и башмаках ливрейные лакеи стояли у каждой двери и напряженно старались уловить каждое движение гостей и членов клуба, чтобы предложить свои услуги. Большинство присутствовавших были старые, почтенные люди с широкими, самоуверенными лицами, толстыми пальцами, твердыми движениями и голосами. Этого рода гости и члены сидели по известным, привычным местам и сходились в известных, привычных кружках. Малая часть присутствовавших состояла из случайных гостей – преимущественно молодежи, в числе которой были Денисов, Ростов и Долохов, который был опять семеновским офицером. На лицах молодежи, особенно военной, было выражение того чувства презрительной почтительности к старикам, которое как будто говорит старому поколению: уважать и почитать вас мы готовы, но помните, что всё таки за нами будущность.
Несвицкий был тут же, как старый член клуба. Пьер, по приказанию жены отпустивший волоса, снявший очки и одетый по модному, но с грустным и унылым видом, ходил по залам. Его, как и везде, окружала атмосфера людей, преклонявшихся перед его богатством, и он с привычкой царствования и рассеянной презрительностью обращался с ними.
По годам он бы должен был быть с молодыми, по богатству и связям он был членом кружков старых, почтенных гостей, и потому он переходил от одного кружка к другому.
Старики из самых значительных составляли центр кружков, к которым почтительно приближались даже незнакомые, чтобы послушать известных людей. Большие кружки составлялись около графа Ростопчина, Валуева и Нарышкина. Ростопчин рассказывал про то, как русские были смяты бежавшими австрийцами и должны были штыком прокладывать себе дорогу сквозь беглецов.
Валуев конфиденциально рассказывал, что Уваров был прислан из Петербурга, для того чтобы узнать мнение москвичей об Аустерлице.
В третьем кружке Нарышкин говорил о заседании австрийского военного совета, в котором Суворов закричал петухом в ответ на глупость австрийских генералов. Шиншин, стоявший тут же, хотел пошутить, сказав, что Кутузов, видно, и этому нетрудному искусству – кричать по петушиному – не мог выучиться у Суворова; но старички строго посмотрели на шутника, давая ему тем чувствовать, что здесь и в нынешний день так неприлично было говорить про Кутузова.
Граф Илья Андреич Ростов, озабоченно, торопливо похаживал в своих мягких сапогах из столовой в гостиную, поспешно и совершенно одинаково здороваясь с важными и неважными лицами, которых он всех знал, и изредка отыскивая глазами своего стройного молодца сына, радостно останавливал на нем свой взгляд и подмигивал ему. Молодой Ростов стоял у окна с Долоховым, с которым он недавно познакомился, и знакомством которого он дорожил. Старый граф подошел к ним и пожал руку Долохову.
– Ко мне милости прошу, вот ты с моим молодцом знаком… вместе там, вместе геройствовали… A! Василий Игнатьич… здорово старый, – обратился он к проходившему старичку, но не успел еще договорить приветствия, как всё зашевелилось, и прибежавший лакей, с испуганным лицом, доложил: пожаловали!

Компьютерная модель - это естественно. Компьютерное моделирование используется повсеместно, делает проектирование и производство реальных систем, машин, механизмов, товаров, изделий экономичным, практичным, эффективным. Результат всегда которые были предварительно смоделированы.

Человек всегда строил модели, но с появлением компьютерной техники математические, вычислительные и программные методы подняли идеи и технологии моделирования на необыкновенную высоту, сделали широким спектр их применения: от примитивно-технического уровня до уровня высокого искусства и творчества.

Компьютерная модель - это не только более совершенный космический корабль или концептуальная система для понимания общественного сознания, но и реальная возможность оценить изменение климата на планете или определить последствия падения кометы через несколько сотен лет.

Техническое моделирование

Сегодня мало специалистов не знает, А конкуренцию этой программе уже составляет десяток более совершенных решений.

Моделирование современного самолета или велосипеда требует в конечном итоге не только автоматизации изготовления чертежей и подготовки документации. Моделирующая программа обязана сделать техническую часть: оформить чертежи и документацию - это фундамент.

Программа обязана также показать реальное изделие в реальном применении во времени в трехмерном пространстве: в полете, в движении, в использовании, включая вероятные аварии, замену энергоносителя, негативное воздействие человека или природы, коррозию, влияние климата или иных обстоятельств.

Системное моделирование

Модель станка, изделия, конвейера - это системы, но системы ясной структуры и содержания, уже однажды изготовленные. По каждому есть опыт, знания и примеры использования компьютерных моделей.

Техническая реальность - это такая же система, как и система отношений в обществе, система рекламной кампании, модель психики человека или его кровеносная система.

К примеру, достоверный диагноз болезни сегодня может быть получен как:

  • результат компетентных действий врача;
  • вывод компьютерной программы, построившей модель состояния пациента.

Эти два варианта все чаще приводят к одинаковому результату.

Человек живет в мире систем, и эти системы требуют принятия решений, для которых необходимы исходные данные: понимание и восприятие окружающей действительности. Без моделирования невозможно понять природу систем и принять решение.

Только компьютерная математическая модель дает возможность оценивать объективность и уровень понимания оригинальной системы, постепенно приближая создаваемый виртуальный образ к оригиналу.

Абстракция в моделировании

Компьютерные модели и моделирование - крайне перспективная и динамично развивающаяся область технологий. Здесь высокотехнологичные решения - это привычное (рядовое, ежедневное) событие, а возможности моделей и моделирования поражают любое искушенное воображение.

Однако, до абстрактного системного моделирования человек еще не дошёл. Примеры использования компьютерных моделей - это реальные примеры реальных систем. Для каждого направления моделирования, для каждого вида моделей, каждого типа изделий, конвейеров и т. д. есть своя отдельная программа или свой отдельный пункт в меню программы, обеспечивающей моделирование в относительно широком спектре систем.

Программные средства сами по себе являются моделями. Результат труда программиста - всегда модель. Плохая программа или хорошая, но она всегда модель решения конкретной задачи, которая получает исходные данные и формирует результат.

Классическое программирование - классические модели, никакой абстракции: точная задача без вариантов динамики после завершения её разработки. Это как реальный станок, реальный продукт, любое изделие с жесткими количественно-качественными характеристиками: сделано - пользуй в пределах доступного, но ничего за пределами сделанного.

Объектно-ориентированное программирование - системная модель с претензией на абстракцию и динамику структуры и свойств, то есть с ориентацией на создание динамичной модели, которая определяет свое назначение средой применения или решаемой задачей.

Здесь модель может «жить» после того, как окажется в области применения одна без своего создателя (автора) и будет самостоятельно «сотрудничать» с пользователями.

Моделирование: суть процесса

Понятие компьютерной модели сегодня представлено различными вариантами мнений, но все они сходятся в том, что работы программы, причем в контексте: модель равна результату действий специалиста, который работает в специфической моделирующей среде той или иной программы.

Выделяют три типа моделей: познавательные, прагматические и инструментальные.

В первом случае, моделирующий аспект выражен более всего как стремление получить модель в формате воплощения знаний, познания теории, глобального процесса. Прагматическая модель - дает представление о практических действиях, рабочего, системе управления производством, изделии, станке. Третий вариант понимается как среда построения, анализа и тестирования всех моделей вообще.

Обычно компьютерное моделирование - это деятельность специалиста по построению и исследованию материального или идеального (виртуального) объекта, замещающего исследуемую систему, но адекватным образом отражающий её существенные стороны, качественные и количественные характеристики.

Видовое многообразие моделируемых систем

В области моделирования, как на всех передовых рубежах высоких технологий, науки, техники и программирования, существует множество мнений по классификации и определению видового многообразия моделируемых систем.

Но в одном эксперты и специалисты сходятся всегда: виды компьютерных моделей можно определить по объективным моментам:

  • времени;
  • способу представления;
  • характеру моделируемой стороны;
  • уровню неопределенности;
  • варианту реализации.

Временной момент - это статичные и динамичные модели. Первые можно уточнять сколько угодно, но динамичные модели развиваются, и в каждый момент времени они отличаются. Способ представления обычно понимается как дискретный или непрерывный. Характер моделируемой стороны - информационный, структурный или функциональный (кибернетический).

Привнесение в моделируемую систему параметров неопределенности во многих случаях не только оправдано, но и является следствием научных достижений в смежных отраслях знаний. Например, построение модели климата в определенном географическом регионе не будет реальным без множества стохастических факторов.

Современные инструменты моделирования

Моделирование сегодня - это огромный опыт многих десятков лет развития компьютерной индустрии, который представил в виде алгоритмов и программ многие столетия моделирования, вообще, и математического моделирования, в частности.

Популярные программные средства представлены небольшим семейством продуктов, известных широко: AutoCAD, 3D Max, Wings 3D, Blender 3D, SketchUp. На базе этих продуктов имеется множество специальных реализаций.

Кроме известного, есть значимое частное, например, рынок географических, картографических, геодезических; рынок кино- и видеоиндустрии, представленных значительным количеством малоизвестных программных продуктов. Семейства GeoSoft, TEPLOV, Houdini и др. в сфере своей компетенции мало кому уступают в качестве, полезности и эффективности.

При выборе лучшего программного инструмента лучшее решение - оценить область предполагаемого моделирования, среду существования будущей модели. Это позволит определиться с необходимым инструментарием.

Маленькие и творческие модели

И хотя «мало осталось творчества» в проектировании современного аэробуса, спорткара или космического корабля, собственно, программирование и организация бизнес-процессов стали предметом самого пристального внимания и целью для наиболее дорогостоящих и сложных процессов моделирования.

Современный бизнес - это не только сотни сотрудников, единиц оборудования, но и тысячи производственных и социальных связей внутри компании и вне её. Это совершенно новое и неисследованное направление: облачные технологии, организация привилегированного доступа, защита от вредоносных атак, неправомерного действия сотрудника.

Современное программирование стало слишком сложным и превратилось в особенного рода, причем живущий собственной жизнью. Программное изделие, созданное одним коллективом разработчиков, ставится целью моделирования и изучения для другой компании разработчиков.

Авторитетный пример

Можно представить систему Windows или семейство Linux как предмет моделирования и заставить кого-либо построить адекватные модели. Практическая значимость здесь столь низка, что дешевле просто работать и не обращать внимания на недостатки этих систем. Их разработчик имеет собственное представление о нужном ему пути развития, и сворачивать с него не собирается.

В отношении баз данных и динамики их развития можно сказать обратное. Oracle - крупная компания. Много идей, тысячи разработчиков, сотни тысяч, доведенных до совершенства, решений.

Но Oracle - это, прежде всего, основание и мощная причина для моделирования и, представляется, инвестиции в этот процесс будут иметь потрясающую окупаемость.

Oracle стала на рельсы лидерства с самого начала и не уступала никому в сфере создания баз данных, обеспечения ответственного отношения к информации, её защите, миграции, хранению и т. д. Всё, что требуется для обслуживания информационных задач, - это Oracle.

Обратная сторона Oracle

Инвестиции и труд лучших разработчиков для решения актуальной задачи - объективная необходимость. Актуальных задач за многие десятилетия своего лидерства Oracle исполнила сотни, а реализаций и обновлений - тысячи.

Сфера информации в контексте компьютерного применения с 80-х годов по сей день не изменилась. Концептуально базы данных начала компьютерной эры и сегодняшнего дня - близнецы-братья с различием в уровне обеспеченности и реализованной функциональности.

Для достижения современного уровня «обеспеченности и реализованной функциональности» Oracle исполнила, в частности:

  • совместимость больших потоков разнородной информации;
  • миграция и трансформация данных;
  • проверка и тестирование приложений;
  • обобщенный реляционный функционал универсального доступа;
  • миграция данных/специалистов;
  • трансформация фундаментальных основ корпоративных баз данных в распределенную интернет-среду;
  • максимальная интеграция, агрегаторы, систематизация;
  • определение спектра целесообразности, ликвидация дублирующих процессов.

Это только малая толика тем, которые составляют многотомные описания действующих программных продуктов от Oracle. На самом деле, спектр изготовленных решений гораздо шире и мощнее. Все они обеспечены поддержкой Oracle и тысяч квалифицированных специалистов.

Доходная модель

Если бы в 80-е годы Oracle пошла путем моделирования, а не конкретного наращивания потенциала в виде реальных, законченных решений, Ситуация сложилась бы существенно иначе. По большому счету человеку или предприятию от компьютерной информационной системы нужно не так уж и много. Здесь исследование компьютерной модели не представляет интереса.

Всегда нужно получить только решение возникшей задачи. Как это решение будет получено, потребителя никогда не волнует. Ему совершенно неинтересно знать, что такое миграция данных или как выполнить тестирование кода приложения, чтобы оно работало на любых данных, и в случае непредвиденной ситуации могло спокойно сообщить об этом, а не делать синий экран или молча виснуть.

Моделируя очередную необходимость программно, а не посредством инвестиции в очередного специалиста, который приложит свой ум и знания для создания очередной порции кода, можно достичь большего.

Любой, самый лучший специалист - это, прежде всего, статичный код, это фиксация лучших знаний в формате памятника автору. Это всего лишь код. Результат работы лучших не развивается, но для своего развития требует новых разработчиков, новых авторов.

Вероятность реализации доходной модели

Разработчики и сфера IT-технологий, в целом, уже перестали относиться к динамике, знаниям и искусственному интеллекту с энтузиазмом, которым сопровождались волны интереса прошлых лет.

Чисто формально, многие ассоциируют свои продукты или направления работы с темой искусственного интеллекта, но, по факту, занимаются реализацией строго определенных алгоритмов, облачных решений, придают значение безопасности и защите от всевозможных угроз.

Между тем, компьютерная модель - это динамика. Компьютерное моделирование - это его последствия. Это объективное обстоятельство ещё никто не отменял. Его отменить вовсе невозможно. Пример Oracle как нельзя лучше и показательнее других показывает, насколько трудоемко, дорого и неэффективно заниматься вынужденным моделированием, когда приходится строить реально работающие модели трудом многих тысяч специалистов, а не автоматически средствами самой проектируемой информационной системы - модели в динамике на реальной практике!

, астрофизике , механике , химии , биологии , экономике , социологии , метеорологии , других науках и прикладных задачах в различных областях радиоэлектроники, машиностроения, автомобилестроения и проч. Компьютерные модели используются для получения новых знаний о моделируемом объекте или для приближенной оценки поведения систем, слишком сложных для аналитического исследования.

Построение компьютерной модели базируется на абстрагировании от конкретной природы явлений или изучаемого объекта-оригинала и состоит из двух этапов - сначала создание качественной, а затем и количественной модели . Компьютерное же моделирование заключается в проведении серии вычислительных экспериментов на компьютере , целью которых является анализ, интерпретация и сопоставление результатов моделирования с реальным поведением изучаемого объекта и, при необходимости, последующее уточнение модели и т. д.

К основным этапам компьютерного моделирования относятся:

Различают аналитическое и имитационное моделирование . При аналитическом моделировании изучаются математические (абстрактные) модели реального объекта в виде алгебраических , дифференциальных и других уравнений , а также предусматривающих осуществление однозначной вычислительной процедуры, приводящей к их точному решению. При имитационном моделировании исследуются математические модели в виде алгоритма(ов), воспроизводящего функционирование исследуемой системы путем последовательного выполнения большого количества элементарных операций.

Практическое применение

Компьютерное моделирование применяют для широкого круга задач, таких как:

  • анализ распространения загрязняющих веществ в атмосфере
  • проектирование шумовых барьеров для борьбы с шумовым загрязнением
  • конструирование транспортных средств
  • полетные имитаторы для тренировки пилотов
  • прогнозирование погоды
  • эмуляция работы других электронных устройств
  • прогнозирование цен на финансовых рынках
  • исследование поведения зданий, конструкций и деталей под механической нагрузкой
  • прогнозирование прочности конструкций и механизмов их разрушения
  • проектирование производственных процессов, например химических
  • стратегическое управление организацией
  • исследование поведения гидравлических систем: нефтепроводов, водопровода
  • моделирование роботов и автоматических манипуляторов
  • моделирование сценарных вариантов развития городов
  • моделирование транспортных систем
  • имитация краш-тестов
  • моделирование результатов пластических операций

Различные сферы применения компьютерных моделей предъявляют разные требования к надежности получаемых с их помощью результатов. Для моделирования зданий и деталей самолетов требуется высокая точность и степень достоверности, тогда как модели эволюции городов и социально-экономических систем используются для получения приближенных или качественных результатов.

Алгоритмы компьютерного моделирования

  • Метод компонентных цепей
  • Метод переменных состояния

См. также

Ссылки


Wikimedia Foundation . 2010 .

Смотреть что такое "Компьютерное моделирование" в других словарях:

    КОМПЬЮТЕРНОЕ МОДЕЛИРОВАНИЕ - Совершенно буквально – использование компьютера для моделирования чего то. Обычно моделируется мышление или поведение человека. То есть предпринимаются попытки запрограммировать компьютер так, чтобы он действовал аналогично тому, как протекают… … Толковый словарь по психологии

    Моделирование исследование объектов познания на их моделях; построение и изучение моделей реально существующих объектов, процессов или явлений с целью получения объяснений этих явлений, а также для предсказания явлений, интересующих… … Википедия

    Компьютерное зрение теория и технология создания машин, которые могут производить обнаружение, слежение и классификацию объектов. Как научная дисциплина, компьютерное зрение относится к теории и технологии создания искусственных систем,… … Википедия

    Моделирование социальное - научный метод познания социальных явлений и процессов с помощью воспроизведения их характеристик на других объектах, т. е. специально создаваемых с этой целью моделях. Потребность в М. с. обусловлена возросшей в последнее время необходимостью… … Социологический справочник

    Сечение моделируемого объёма толщиной 15 Mpc/h в современной Вселенной (красное смещение z=0). Показана плотность тёмной материи, с хорошо … Википедия

    М. это имитация естественных ситуаций, при к рой человек в идеале должен вести себя так, как если бы это была реальная ситуация. Преимущество модели в том, что она позволяет испытуемому реагировать на ситуацию, не сталкиваясь с опасностями… … Психологическая энциклопедия

    Запрос «Software» перенаправляется сюда. Cм. также другие значения. Программное обеспечение (произношение обеспечение не рекомендуется, точнее, не рекомендовалось) наряду с аппаратными средствами, важнейшая составляющая информационных … Википедия

    Разработка программного обеспечения Процесс разработки ПО Шаги процесса Анализ | Проектирование | Реализация | Тестирование | Внедрение | Сопровождение Модели / методы Agile | Cleanroom | Итеративная | Scrum | RUP | MSF | Спиральная | … Википедия

    Моделирование - (воен.), метод теоретического или технического исследования объекта (явления, системы, процесса) путем создания и изучения его аналога (модели), с целью получения информации о реальной системе. М. может быть физическое, логическо математическое… … Пограничный словарь

    Компьютерное моделирование является одним из эффективных методов изучения сложных систем. Компьютерные модели проще и удобнее исследовать в силу их возможности проводить т.н. вычислительные эксперименты, в тех случаях когда реальные эксперименты… … Википедия