Оплата        03.09.2019   

Размеры int в разных языках. Типы данных и их объявление

Последнее обновление: 17.09.2017

Каждая переменная имеет определенный тип. И этот тип определяет, какие значения может иметь переменная, какие операции с ней можно производить и сколько байт в памяти она будет занимать. В языке C++ определены следующие базовые типы данных:

    bool : логический тип. Может принимать одну из двух значений true (истина) и false (ложь). Размер занимаемой памяти для этого типа точно не определен.

    char : представляет один символ в кодировке ASCII. Занимает в памяти 1 байт (8 бит). Может хранить любое значение из диапазона от -128 до 127, либо от 0 до 255

    signed char : представляет один символ. Занимает в памяти 1 байт (8 бит). Может хранить любой значение из диапазона от -128 до 127

    unsigned char : представляет один символ. Занимает в памяти 1 байт (8 бит). Может хранить любой значение из диапазона от 0 до 255

    wchar_t : представляет расширенный символ. На Windows занимает в памяти 2 байта (16 бит), на Linux - 4 байта (32 бита). Может хранить любой значение из диапазона от 0 до 65 535 (при 2 байтах), либо от 0 до 4 294 967 295 (для 4 байт)

    char16_t : представляет один символ в кодировке Unicode. Занимает в памяти 2 байта (16 бит). Может хранить любой значение из диапазона от 0 до 65 535

    char32_t : представляет один символ в кодировке Unicode. Занимает в памяти 4 байта (32 бита). Может хранить любой значение из диапазона от 0 до 4 294 967 295

    short : представляет целое число в диапазоне от –32768 до 32767. Занимает в памяти 2 байта (16 бит).

    Данный тип также имеет синонимы short int , signed short int , signed short .

    unsigned short : представляет целое число в диапазоне от 0 до 65535. Занимает в памяти 2 байта (16 бит).

    Данный тип также имеет синоним unsigned short int .

    int : представляет целое число. В зависимости от архитектуры процессора может занимать 2 байта (16 бит) или 4 байта (32 бита). Диапазон предельных значений соответственно также может варьироваться от –32768 до 32767 (при 2 байтах) или от −2 147 483 648 до 2 147 483 647 (при 4 байтах). Но в любом случае размер должен быть больше или равен размеру типа short и меньше или равен размеру типа long

    Данный тип имеет синонимы signed int и signed .

    unsigned int : представляет положительное целое число. В зависимости от архитектуры процессора может занимать 2 байта (16 бит) или 4 байта (32 бита), и из-за этого диапазон предельных значений может меняться: от 0 до 65535 (для 2 байт), либо от 0 до 4 294 967 295 (для 4 байт).

    В качестве синонима этого типа может использоваться unsigned

    long : представляет целое число в диапазоне от −2 147 483 648 до 2 147 483 647. Занимает в памяти 4 байта (32 бита).

    У данного типа также есть синонимы long int , signed long int и signed long

    unsigned long : представляет целое число в диапазоне от 0 до 4 294 967 295. Занимает в памяти 4 байта (32 бита).

    Имеет синоним unsigned long int .

    long long : представляет целое число в диапазоне от −9 223 372 036 854 775 808 до +9 223 372 036 854 775 807. Занимает в памяти, как правило, 8 байт (64 бита).

    Имеет синонимы long long int , signed long long int и signed long long .

    unsigned long long : представляет целое число в диапазоне от 0 до 18 446 744 073 709 551 615. Занимает в памяти, как правило, 8 байт (64 бита).

    Имеет синоним unsigned long long int .

    float : представляет вещественное число ординарной точности с плавающей точкой в диапазоне +/- 3.4E-38 до 3.4E+38. В памяти занимает 4 байта (32 бита)

    double : представляет вещественное число двойной точности с плавающей точкой в диапазоне +/- 1.7E-308 до 1.7E+308. В памяти занимает 8 байт (64 бита)

    long double : представляет вещественное число двойной точности с плавающей точкой не менее 8 байт (64 бит). В зависимости от размера занимаемой памяти может отличаться диапазон допустимых значений.

    void : тип без значения

Таким образом, все типы данных за исключением void могут быть разделены на три группы: символьные (char, wchar_t, char16_t, char32_t), целочисленные (short, int, long, long long) и типы чисел с плавающей точкой (float, double, long double).

Символьные типы

Для представления символов в приложении используются типы char , wchar_t , char16_t и char32_t .

Определим несколько переменных:

Char c ="d"; wchar_t d ="c";

Переменная типа char в качестве значения принимает один символ в одинарных кавычках: char c ="d" . Также можно присвоить число из указанного выше в списке диапазона: char c = 120 . В этом случае значением переменной c будет тот символ, который имеет код 120 в таблице символов ASCII.

Стоит учитывать, что для вывода на консоль символов wchar_t следует использовать не std::cout, а поток std::wcout :

#include int main() { char a = "H"; wchar_t b = "e"; std::wcout << a << b << "\n"; return 0; }

При этом поток std::wcout может работать как с char, так и с wchar_t. А поток std::cout для переменной wchar_t вместо символа будет выводить его числовой код.

В стандарте С++11 были добавлены типы char16_t и char32_t , которые ориентированы на использование Unicode. Однако на уровне ОС пока не реализованы потоки для работы с этими типами. Поэтому если потребуется вывести на консоль значения переменных этих типов, то необходимо преобразовать переменные к типам char или wchar_t:

#include int main() { char a = "H"; wchar_t b = "e"; char16_t c = "l"; char32_t d = "o"; std::cout << a << (char)b << (char)c << (char)d << "\n"; return 0; }

В данном случае при выводе перед переменными указывается операция приведения к типу char - (char) , благодаря чему значения переменных b, c и d преобразуются в тип char и могут быть выведены на консоль с помощью потока std::cout.

Целочисленные типы

Целочисленные типы представлены следующими типами: short , unsigned short , int , unsigned int , long , unsigned long , long long и unsigned long long :

Short a = -10; unsigned short b= 10; int c = -30; unsigned int d = 60; long e = -170; unsigned long f = 45; long long g = 89;

Типы чисел с плавающей точкой

Типы чисел с плавающей точкой иили дробные числа представлены такими типами как float , double и long double :

Float a = -10.45; double b = 0.00105; long double c = 30.890045;

Размеры типов данных

В выше приведенном списке для каждого типа указан размер, который он занимает в памяти. Однако стоит отметить, что предельные размеры для типов разработчики компиляторов могут выбирать самостоятельно, исходя из аппаратных возможностей компьютера. Стандарт устанавливает лишь минимальные значения, которые должны быть. Например, для типов int и short минимальное значение - 16 бит, для типа long - 32 бита, для типа long double. При этом размер типа long должен быть не меньше размера типа int, а размер типа int - не меньше размера типа short, а размер типа long double должен быть больше double. К примеру, компилятор g++ под Windows для long double использует 12 байт, а компилятор, встроенный в Visual Studio и также работающий под Windows, для long double использует 8 байт. То есть даже в рамках одной платформы разные компиляторы могут по разному подходить к размерам некоторых типов данных. Но в целом используются те размеры, которые указаны выше при описании типов данных.

Однако бывают ситуации, когда необходимо точно знать размер определенного типа. И для этого в С++ есть оператор sizeof() , который возвращает размер памяти в байтах, которую занимает переменная:

#include int main() { long double number = 2; std::cout << "sizeof(number) =" << sizeof(number); return 0; }

Консольный вывод при компиляции в g++:

sizeof(number) = 12

При этом при определении переменных важно понимать, что значение переменной не должно выходить за те пределы, которые очерчены для ее типа. Например:

Unsigned short number = -65535;

Компилятор G++ при компиляции программы с этой строкой выдаст ошибку о том, что значение -65535 не входит в диапазон допустимых значений для типа unsigned short и будет усечено.

В Visual Studio компиляция может пройти без ошибок, однако при этом переменная number получит значение 2 - результат преобразования числа -65535 к типу unsigned short. То есть опять же результат будет не совсем тот, который ожидается. Значение переменной - это всего лишь набор битов в памяти, которые интерпретируются в соответствии с определенным типом. И для разных типов один и тот же набор битов может интерпретироваться по разному. Поэтому важно учитывать диапазоны значений для того или иного типа при присвоении переменной значения.

Спецификатор auto

Иногда бывает трудно определить тип выражения. И согласно последним стандартам можно предоставить компилятору самому выводить тип объекта. И для этого применяется спецификатор auto . При этом если мы определяем переменную со спецификатором auto, эта переменная должна быть обязательно инициализирована каким-либо значением:

Auto number = 5;

На основании присвоенного значения компилятор выведет тип переменной. Неинициализированные переменные со спецификатором auto не допускаются.

В языке Си различают понятия “тип данных” и “модификатор типа”. Тип данных – это целый, а модификатор – со знаком или без знака. Целое со знаком будет иметь как положительные, так и отрицательные значения, а целое без знака – только положительные значения. В языке Си можно выделить пять базовых типов.

  • char – символьный.
  • Переменная типа char имеет размер 1 байт, ее значениями являются различные символы из кодовой таблицы, например: ‘ф’, ‘:’, ‘j’ (при записи в программе они заключаются в одинарные кавычки).

  • int – целый.
  • Размер переменной типа int в стандарте языка Си не определен. В большинстве систем программирования размер переменной типа int соответствует размеру целого машинного слова. Например, в компиляторах для 16-разрядных процессоров переменная типа int имеет размер 2 байта. В этом случае знаковые значения этой переменной могут лежать в диапазоне от -32768 до 32767.

  • float – вещественный.
  • Ключевое слово float позволяет определить переменные вещественного типа. Их значения имеют дробную часть, отделяемую точкой, например: -5.6, 31.28 и т.п. Вещественные числа могут быть записаны также в форме с плавающей точкой, например: -1.09e+4. Число перед символом “е” называется мантиссой, а после “е” – порядком. Переменная типа float занимает в памяти 32 бита. Она может принимать значения в диапазоне от 3.4е-38 до 3.4e+38.

  • double – вещественный двойной точности;
  • Ключевое слово double позволяет определить вещественную переменную двойной точности. Она занимает в памяти в два раза больше места, чем переменная типа float. Переменная типа double может принимать значения в диапазоне от 1.7e-308 до 1.7e+308.

  • void – не имеющий значения.
  • Ключевое слово void используется для нейтрализации значения объекта, например, для объявления функции, не возвращающей никаких значений.

Типы переменных:

Программы оперируют с различными данными, которые могут быть простыми и структурированными. Простые данные – это целые и вещественные числа, символы и указатели (адреса объектов в памяти). Целые числа не имеют, а вещественные имеют дробную часть. Структурированные данные – это массивы и структуры; они будут рассмотрены ниже.

Переменная – это ячейка в памяти компьютера, которая имеет имя и хранит некоторое значение. Значение переменной может меняться во время выполнения программы. При записи в ячейку нового значения старое стирается.

Хорошим стилем является осмысленное именование переменных. Имя переменной может содержать от одного до 32 символов. Разрешается использовать строчные и прописные буквы, цифры и символ подчёркивания, который в Си считается буквой. Первым символом обязательно должна быть буква. Имя переменной не может совпадать с зарезервированными словами.

Тип char

char – является самым экономным типом. Тип char может быть знаковым и беззнаковым. Обозначается, как “signed char” (знаковый тип) и “unsigned char” (беззнаковый тип). Знаковый тип может хранить значения в диапазоне от -128 до +127. Беззнаковый – от 0 до 255. Под переменную типа char отводится 1 байт памяти (8 бит).

Ключевые слова signed и unsigned указывают, как интерпретируется нулевой бит объявляемой переменной, т.е., если указано ключевое слово unsigned, то нулевой бит интерпретируется как часть числа, в противном случае нулевой бит интерпретируется как знаковый.

Тип int

Целочисленная величина int может быть short (короткой) или long (длинной). Ключевое слово short ставится после ключевых слов signed или unsigned. Таким образом, есть типы: signed short int, unsigned short int, signed long int, unsigned long int.

Переменная типа signed short int (знаковая короткая целая) может принимать значения от -32768 до +32767, unsigned short int (беззнаковая короткая целая) – от 0 до 65535. Под каждую из них отводится ровно по два байта памяти (16 бит).

При объявлении переменной типа signed short int ключевые слова signed и short могут быть пропущены, и такой тип переменной может быть объявлен просто int. Допускается и объявление этого типа одним ключевым словом short.

Переменная unsigned short int может быть объявлена как unsigned int или unsigned short.

Под каждую величину signed long int или unsigned long int отводится 4 байта памяти (32 бита). Значения переменных этого типа могут находиться в интервалах от -2147483648 до 2147483647 и от 0 до 4294967295 соответственно.

Существуют также переменные типа long long int, для которых отводится 8 байт памяти (64 бита). Они могут быть знаковыми и беззнаковыми. Для знакового типа диапазон значений лежит в пределах от -9223372036854775808 до 9223372036854775807, для беззнакового – от 0 до 18446744073709551615. Знаковый тип может быть объявлен и просто двумя ключевыми словами long long.

Тип Диапазон Шестнадцатеричный диапазон Размер
unsigned char 0 … 255 0x00 … 0xFF 8 bit
signed char
или просто
char
-128 … 127 -0x80 … 0x7F 8 bit
unsigned short int
или просто
unsigned int или unsigned short
0 … 65535 0x0000 … 0xFFFF 16 bit
signed short int или signed int
или просто
short или int
-32768 … 32767 0x8000 … 0x7FFF 16 bit
unsigned long int
или просто
unsigned long
0 … 4294967295 0x00000000 … 0xFFFFFFFF 32 bit
signed long
или просто
long
-2147483648 … 2147483647 0x80000000 … 0x7FFFFFFF 32 bit
unsigned long long 0 … 18446744073709551615 0x0000000000000000 … 0xFFFFFFFFFFFFFFFF 64 bit
signed long long
или просто
long long
-9223372036854775808 … 9223372036854775807 0x8000000000000000 … 0x7FFFFFFFFFFFFFFF 64 bit

Объявление переменных

Переменные объявляют в операторе описания. Оператор описания состоит из спецификации типа и списка имён переменных, разделённых запятой. В конце обязательно должна стоять точка с запятой.

[модификаторы] спецификатор_типа идентификатор [, идентификатор] ...

Модификаторы – ключевые слова signed, unsigned, short, long.
Спецификатор типа – ключевое слово char или int, определяющее тип объявляемой переменной.
Идентификатор – имя переменной.

Char x; int a, b, c; unsigned long long y;

При объявлении переменную можно проинициализировать, то есть присвоить ей начальное значение.

Int x = 100;

В переменную x при объявлении сразу же будет записано число 100. Инициализируемые переменные лучше объявлять в отдельных строках.

Типы данных

Типы данных имеют особенное значение в C#, поскольку это строго типизированный язык. Это означает, что все операции подвергаются строгому контролю со стороны компилятора на соответствие типов, причем недопустимые операции не компилируются. Следовательно, строгий контроль типов позволяет исключить ошибки и повысить надежность программ. Для обеспечения контроля типов все переменные, выражения и значения должны принадлежать к определенному типу. Такого понятия, как "бестиповая" переменная, в данном языке программирования вообще не существует. Более того, тип значения определяет те операции, которые разрешается выполнять над ним. Операция, разрешенная для одного типа данных, может оказаться недопустимой для другого.

В C# имеются две общие категории встроенных типов данных: типы значений и ссылочные типы . Они отличаются по содержимому переменной. Концептуально разница между ними состоит в том, что тип значения (value type) хранит данные непосредственно, в то время как ссылочный тип (reference type) хранит ссылку на значение.

Эти типы сохраняются в разных местах памяти: типы значений сохраняются в области, известной как стек , а ссылочные типы - в области, называемой управляемой кучей .

Давайте разберем типы значений.

Целочисленные типы

В C# определены девять целочисленных типов: char, byte, sbyte, short, ushort, int, uint, long и ulong . Но тип char применяется, главным образом, для представления символов и поэтому рассматривается отдельно. Остальные восемь целочисленных типов предназначены для числовых расчетов. Ниже представлены их диапазон представления чисел и разрядность в битах:

Целочисленные типы C#
Тип Тип CTS Разрядность в битах Диапазон
byte System.Byte 8 0:255
sbyte System.SByte 8 -128:127
short System.Int16 16 -32768: 32767
ushort System.UInt16 16 0: 65535
int System.Int32 32 -2147483648: 2147483647
uint System.UInt32 32 0: 4294967295
long System.Int64 64 -9223372036854775808: 9223372036854775807
ulong System.UInt64 64 0: 18446744073709551615

Как следует из приведенной выше таблицы, в C# определены оба варианта различных целочисленных типов: со знаком и без знака. Целочисленные типы со знаком отличаются от аналогичных типов без знака способом интерпретации старшего разряда целого числа. Так, если в программе указано целочисленное значение со знаком, то компилятор C# сгенерирует код, в котором старший разряд целого числа используется в качестве флага знака. Число считается положительным, если флаг знака равен 0, и отрицательным, если он равен 1.

Отрицательные числа практически всегда представляются методом дополнения до двух, в соответствии с которым все двоичные разряды отрицательного числа сначала инвертируются, а затем к этому числу добавляется 1.

Вероятно, самым распространенным в программировании целочисленным типом является тип int . Переменные типа int нередко используются для управления циклами, индексирования массивов и математических расчетов общего назначения. Когда же требуется целочисленное значение с большим диапазоном представления чисел, чем у типа int, то для этой цели имеется целый ряд других целочисленных типов.

Так, если значение нужно сохранить без знака, то для него можно выбрать тип uint , для больших значений со знаком - тип long , а для больших значений без знака - тип ulong . В качестве примера ниже приведена программа, вычисляющая расстояние от Земли до Солнца в сантиметрах. Для хранения столь большого значения в ней используется переменная типа long:

Using System; using System.Collections.Generic; using System.Linq; using System.Text; namespace ConsoleApplication1 { class Program { static void Main(string args) { long result; const long km = 149800000; // расстояние в км. result = km * 1000 * 100; Console.WriteLine(result); Console.ReadLine(); } } }

Всем целочисленным переменным значения могут присваиваться в десятичной или шестнадцатеричной системе обозначений. В последнем случае требуется префикс 0x:

Long x = 0x12ab;

Если возникает какая-то неопределенность относительно того, имеет ли целое значение тип int, uint, long или ulong, то по умолчанию принимается int. Чтобы явно специфицировать, какой другой целочисленный тип должно иметь значение, к числу можно добавлять следующие символы:

Uint ui = 1234U; long l = 1234L; ulong ul = 1234UL;

U и L можно также указывать в нижнем регистре, хотя строчную L легко зрительно спутать с цифрой 1 (единица).

Типы с плавающей точкой

Типы с плавающей точкой позволяют представлять числа с дробной частью. В C# имеются две разновидности типов данных с плавающей точкой: float и double . Они представляют числовые значения с одинарной и двойной точностью соответственно. Так, разрядность типа float составляет 32 бита, что приближенно соответствует диапазону представления чисел от 5E-45 до 3,4E+38. А разрядность типа double составляет 64 бита, что приближенно соответствует диапазону представления чисел от 5E-324 до 1,7Е+308.

Тип данных float предназначен для меньших значений с плавающей точкой, для которых требуется меньшая точность. Тип данных double больше, чем float, и предлагает более высокую степень точности (15 разрядов).

Если нецелочисленное значение жестко кодируется в исходном тексте (например, 12.3), то обычно компилятор предполагает, что подразумевается значение типа double. Если значение необходимо специфицировать как float, потребуется добавить к нему символ F (или f):

Float f = 12.3F;

Десятичный тип данных

Для представления чисел с плавающей точкой высокой точности предусмотрен также десятичный тип decimal , который предназначен для применения в финансовых расчетах. Этот тип имеет разрядность 128 бит для представления числовых значений в пределах от 1Е-28 до 7,9Е+28. Вам, вероятно, известно, что для обычных арифметических вычислений с плавающей точкой характерны ошибки округления десятичных значений. Эти ошибки исключаются при использовании типа decimal, который позволяет представить числа с точностью до 28 (а иногда и 29) десятичных разрядов. Благодаря тому что этот тип данных способен представлять десятичные значения без ошибок округления, он особенно удобен для расчетов, связанных с финансами:

Using System; using System.Collections.Generic; using System.Linq; using System.Text; namespace ConsoleApplication1 { class Program { static void Main(string args) { // *** Расчет стоимости капиталовложения с *** // *** фиксированной нормой прибыли*** decimal money, percent; int i; const byte years = 15; money = 1000.0m; percent = 0.045m; for (i = 1; i

Результатом работы данной программы будет:

Символы

В C# символы представлены не 8-разрядным кодом, как во многих других языках программирования, например С++ , а 16-разрядным кодом, который называется юникодом (Unicode) . В юникоде набор символов представлен настолько широко, что он охватывает символы практически из всех естественных языков на свете. Если для многих естественных языков, в том числе английского, французского и немецкого, характерны относительно небольшие алфавиты, то в ряде других языков, например китайском, употребляются довольно обширные наборы символов, которые нельзя представить 8-разрядным кодом. Для преодоления этого ограничения в C# определен тип char , представляющий 16-разрядные значения без знака в пределах от 0 до 65 535. При этом стандартный набор символов в 8-разрядном коде ASCII является подмножеством юникода в пределах от 0 до 127. Следовательно, символы в коде ASCII по-прежнему остаются действительными в C#.

Для хранения различных данных в языках программирования используют переменные. Переменной называется область памяти, имеющая имя, которое иначе называют идентификатором.

Давая переменной имя, программист одновременно тем же именем называет и область памяти, куда будут записываться значения переменной для хранения.

Хорошим стилем является осмысленное именование переменных. Разрешается использовать строчные и прописные буквы, цифры и символ подчёркивания, который в Си считается буквой. Первым символом обязательно должна быть буква, в имени переменной не должно быть пробелов. В современных версиях компиляторов длина имени практически не ограничена. Имя переменной не может совпадать с зарезервированными ключевыми словами. Заглавные и строчные буквы в именах переменных различаются, переменные a и A - разные переменные.

Зарезервированные ключевые слова auto double int struct break else long switch register tupedef char extern return void case float unsigned default for signed union do if sizeof volatile continue enum short while
В языке Си все переменные должны быть объявлены. Это означает, что, во-первых, в начале каждой программы или функции Вы должны привести список всех используемых переменных, а во-вторых, указать тип каждой из них.

При объявлении переменной компилятор отводит ей место в памяти в зависимости от её типа. Стандартными средствами AVR GCC работает с типами данных char (символьный тип) и int (целочисленный тип).

Типы переменных

Тип char

char - является самым экономным типом. Тип char может быть знаковым и беззнаковым. Обозначается, соответственно, как "signed char " (знаковый тип) и "unsigned char " (беззнаковый тип). Знаковый тип может хранить значения в диапазоне от -128 до +127. Беззнаковый - от 0 до 255. Под переменную типа char отводится 1 байт памяти (8 бит).

Ключевые слова (модификаторы) signed и unsigned указывают, как интерпретируется нулевой бит объявляемой переменной, т.е., если указано ключевое слово unsigned, то нулевой бит интерпретируется как часть числа, в противном случае нулевой бит интерпретируется как знаковый.

Тип int

Целочисленная величина int может быть short (короткой) или long (длинной).

Ключевое слово (модификатор) short ставится после ключевых слов signed или unsigned . Таким образом, различают следующие типы: signed short int, unsigned short int, signed long int, unsigned long int .

Переменная типа signed short int (знаковая короткая целая) может принимать значения от -32768 до +32767, unsigned short int (беззнаковая короткая целая) - от 0 до 65535. Под каждую из них отводится ровно по два байта памяти (16 бит).

При объявлении переменной типа signed short int ключевые слова signed и short могут быть пропущены, и такой тип переменной может быть объявлен просто int . Допускается и объявление этого типа одним ключевым словом short .

Переменная unsigned short int может быть объявлена как unsigned int или unsigned short .

Под каждую величину signed long int или unsigned long int отводится 4 байта памяти (32 бита). Значения переменных этого типа могут находиться в интервалах от -2147483648 до 2147483647 и от 0 до 4294967295 соответственно.

Существуют также переменные типа long long int , для которых отводится 8 байт памяти (64 бита). Они также могут быть знаковыми и беззнаковыми. Для знакового типа диапазон значений лежит в пределах от -9223372036854775808 до 9223372036854775807, для беззнакового - от 0 до 18446744073709551615. Знаковый тип может быть объявлен и просто двумя ключевыми словами long long .

Тип Диапазон Шестнадцатиричный диапазон Размер
unsigned char 0 ... 255 0x00 ... 0xFF 8 bit
signed char
или просто
char
-128 ... 127 -0x80 ... 0x7F 8 bit
unsigned short int
или просто
unsigned int или unsigned short
0 ... 65535 0x0000 ... 0xFFFF 16 bit
signed short int или signed int
или просто
short или int
-32768 ... 32767 0x8000 ... 0x7FFF 16 bit
unsigned long int
или просто
unsigned long
0 ... 4294967295 0x00000000 ... 0xFFFFFFFF 32 bit
signed long
или просто
long
-2147483648 ... 2147483647 0x80000000 ... 0x7FFFFFFF 32 bit
unsigned long long 0 ... 18446744073709551615 0x0000000000000000 ... 0xFFFFFFFFFFFFFFFF 64 bit
signed long long
или просто
long long
-9223372036854775808 ... 9223372036854775807 0x8000000000000000 ... 0x7FFFFFFFFFFFFFFF 64 bit

Переменные объявляют в операторе описания. Оператор описания состоит из спецификации типа и списка имён переменных, разделённых запятой. В конце обязательно должна стоять точка с запятой.

Объявление переменной имеет следующий формат:

[модификаторы] спецификатор_типа идентификатор [, идентификатор] ...

Модификаторы - ключевые слова signed , unsigned , short , long .
Спецификатор типа - ключевое слово char или int , определяющее тип объявляемой переменной.
Идентификатор - имя переменной.

Пример: char x; int a, b, c; unsigned long long y;
Таким образом, будут объявлены переменные x , a , b , c , y . В переменную x можно будет записывать значения от -128 до 127. В переменные a , b , c - от -32768 до +32767. В переменную y - от 0 до 18446744073709551615.

Инициализация значения переменной при объявлении

При объявлении переменную можно проинициализировать, то есть присвоить ей начальное значение. Сделать это можно следующим образом. int x = 100; Таким образом, в переменную x при объявлении сразу же будет записано число 100.

Лучше избегать смешивания инициализируемых переменных в одном операторе описания, то есть инициализируемые переменные лучше объявлять в отдельных строках.

Константы

Переменная любого типа может быть объявлена как немодифицируемая. Это достигается добавлением ключевого слова const к спецификатору типа. Переменные с типом const представляют собой данные, используемые только для чтения, то есть этой переменной не может быть присвоено новое значение. Если после слова const отсутствует спецификатор типа, то константы рассматриваются как величины со знаком, и им присваивается тип int или long int в соответствии со значением константы: если константа меньше 32768, то ей присваивается тип int , в противном случае long int .

Пример: const long int k = 25; const m = -50; // подразумевается const int m=-50 const n = 100000; // подразумевается const long int n=100000

Присваивание

Для присваивания в Си служит знак "=". Выражение, стоящее справа от знака присваивания, вычисляется, и полученное значение присваивается переменной, стоящей слева от знака присваивания. При этом предыдущее значение, хранящееся в переменной, стирается и заменяется на новое.

Оператор "=" не следует понимать как равенство.
Например, выражение a = 5; следует читать как "присвоить переменной a значение 5".

Примеры: x = 5 + 3; // сложить значения 5 и 3, // результат присвоить переменной x (записать в переменную x) b = a + 4; // прибавить 4 к значению, хранящемуся в переменной a, // полученный результат присвоить переменной b (записать в переменную b) b = b + 2; // прибавить 2 к значению, хранящемуся в переменной b, // полученный результат присвоить переменной b (записать в переменную b)
В правой части значение переменной может использоваться несколько раз: c = b * b + 3 * b;

Пример: x = 3; // переменной x будет присвоено значение 3 y = x + 5; // к значению, хранящемуся в переменной x, будет прибавлено число 5, // полученный результат будет записан в переменную y z = x * y; // значения переменных x и y будут перемножены, // результат будет записан в переменную z z = z - 1; // от значения, хранящегося в переменной z, будет отнято 1 // результат будет записан в переменную z
Таким образом, в переменной z будет храниться число 23

Кроме простого оператора присваивания "=", в Си существует еще несколько комбинированных операторов присваивания: "+=", "-=", "*=
Примеры: x += y; // то же, что и x = x + y; - сложить x и y // и записать результат в переменную x x -= y; // то же, что и x = x - y; - отнять от x значение y // и записать результат в переменную x x *= y; // то же, что и x = x * y; - умножить x на y // и записать результат в переменную x x /= y; // то же, что и x = x / y; - разделить x на y // и записать результат в переменную x x %= y; // то же, что и x = x % y; // вычислить целочисленный остаток от деления x на y // и записать результат в переменную x

Инкремент и декремент

Если необходимо изменить значение переменной на 1, то используют инкремент или декремент .

Инкремент - операция увеличения значения, хранящегося в переменной, на 1.

Пример: x++; // значение переменной x будет увеличено на 1 $WinAVR = ($_GET["avr"]); if($WinAVR) include($WinAVR);?>
Декремент - операция уменьшения значения, хранящегося в переменной, на 1.

Пример: x--; // значение переменной x будет уменьшено на 1
Инкремент и декремент относятся к операциям присваивания. При использовании декремента и инкремента совместно с оператором присваивания "=" применяют постфиксную (x++) или префиксную (++x) запись. Первой выполняется префиксная запись.

Примеры: y = x++;
Предположим, что в переменной x хранилось значение 5. Тогда в y будет записано значение 5, после чего значение переменной x будет увеличено на 1. Таким образом, в y будет 5, а в x - 6. y = --x;
Если в x хранилось значение 5, то сначала будет выполнено уменьшение x до 4, а затем это значение будет присвоено переменной y . Таким образом, x и y будет присвоено значение 4.

Типом данных в программировании называют совокупность двух множеств: множество значений и множество операций, которые можно применять к ним. Например, к типу данных целых неотрицательных чисел, состоящего из конечного множества натуральных чисел, можно применить операции сложения (+), умножения (*), целочисленного деления (/), нахождения остатка (%) и вычитания (−).

Язык программирования, как правило, имеет набор примитивных типов данных - типы, предоставляемые языком программирования как базовая встроенная единица. В C++ такие типы создатель языка называет фундаментальными типами . Фундаментальными типами в C++ считаются:

  • логический (bool);
  • символьный (напр., char);
  • целый (напр., int);
  • с плавающей точкой (напр., float);
  • перечисления (определяется программистом);
  • void .

Поверх перечисленных строятся следующие типы:

  • указательные (напр., int*);
  • массивы (напр., char);
  • ссылочные (напр., double&);
  • другие структуры.

Перейдём к понятию литерала (напр., 1, 2.4F, 25e-4, ‘a’ и др.): литерал - запись в исходном коде программы, представляющаясобой фиксированное значение. Другими словами, литерал - это просто отображение объекта (значение) какого-либо типа в коде программы. В C++ есть возможность записи целочисленных значений, значений с плавающей точкой, символьных, булевых, строковых.

Литерал целого типа можно записать в:

  • 10-й системе счисления. Например, 1205 ;
  • 8-й системе счисления в формате 0 + число. Например, 0142 ;
  • 16-й системе счисления в формате 0x + число. Например, 0x2F .

24, 030, 0x18 - это всё записи одного и того же числа в разных системах счисления.
Для записи чисел с плавающей точкой используют запись через точку: 0.1, .5, 4. - либо в
экспоненциальной записи - 25e-100. Пробелов в такой записи быть не должно.

Имя, с которым мы можем связать записанные литералами значения, называют переменной. Переменная - это поименованная либо адресуемая иным способом область памяти, адрес которой можно использовать для доступа к данным. Эти данные записываются, переписываются и стираются в памяти определённым образом во время выполнения программы. Переменная позволяет в любой момент времени получить доступ к данным и при необходимости изменить их. Данные, которые можно получить по имени переменной, называют значением переменной.
Для того, чтобы использовать в программе переменную, её обязательно нужно объявить, а при необходимости можно определить (= инициализировать). Объявление переменной в тексте программы обязательно содержит 2 части: базовый тип и декларатор. Спецификатор и инициализатор являются необязательными частями:

Const int example = 3; // здесь const - спецификатор // int - базовый тип // example - имя переменной // = 3 - инициализатор.

Имя переменной является последовательностью символов из букв латинского алфавита (строчных и прописных), цифр и/или знака подчёркивания, однако первый символ цифрой быть не может . Имя переменной следует выбирать таким, чтобы всегда было легко догадаться о том, что она хранит, например, «monthPayment». В конспекте и на практиках мы будем использовать для правил записи переменных нотацию CamelCase. Имя переменной не может совпадать с зарезервированными в языке словами, примеры таких слов: if, while, function, goto, switch и др.

Декларатор кроме имени переменной может содержать дополнительные символы:

  • * - указатель; перед именем;
  • *const - константный указатель; перед именем;
  • & - ссылка; перед именем;
  • - массив; после имени;
  • () - функция; после имени.

Инициализатор позволяет определить для переменной её значение сразу после объявления. Инициализатор начинается с литерала равенства (=) и далее происходит процесс задания значения переменной. Вообще говоря, знак равенства в C++ обозначает операцию присваивания; с её помощью можно задавать и изменять значение переменной. Для разных типов он может быть разным.

Спецификатор задаёт дополнительные атрибуты, отличные от типа. Приведённый в примере спецификатор const позволяет запретить последующее изменение значение переменной. Такие неизменяемые переменные называют константными или константой.

Объявить константу без инициализации не получится по логичным причинам:

Const int EMPTY_CONST; // ошибка, не инициализована константная переменная const int EXAMPLE = 2; // константа со значением 2 EXAMPLE = 3; // ошибка, попытка присвоить значение константной переменной

Для именования констант принято использовать только прописные буквы, разделяя слова символом нижнего подчёркивания.

Основные типы данных в C++

Разбирая каждый тип, читатель не должен забывать об определении типа данных.

1. Целочисленный тип (char, short (int), int, long (int), long long)

Из названия легко понять, что множество значений состоит из целых чисел. Также множество значений каждого из перечисленных типов может быть знаковым (signed) или беззнаковым (unsigned). Количество элементов, содержащееся в множестве, зависит от размера памяти, которая используется для хранения значения этого типа. Например, для переменной типа char отводится 1 байт памяти, поэтому всего элементов будет:

  • 2 8N = 2 8 * 1 = 256, где N - размер памяти в байтах для хранения значения

В таком случае диапазоны доступных целых чисел следующие:

  • - для беззнакового char
  • [-128..127] - для знакового char

По умолчанию переменная целого типа считается знаковой. Чтобы указать в коде, что переменная должна быть беззнаковой, к базовому типу слева приписывают признак знаковости, т.е. unsigned:

Unsigned long values; // задаёт целый (длинный) беззнаковый тип.

Перечисленные типы отличаются только размерами памяти, которая требуется для хранения. Поскольку язык C++ достаточно машинно-зависимый стандарт языка лишь гарантирует выполнение следующего условия:

  • 1 = размер char ≤ размер short ≤ размер int ≤ размер long.

Обычно размеры типов следующие: char - 1, short - 2, int - 4, long -8, long long - 8 байт.

Со значениями целого типа можно совершать арифметические операции: +, -, *, /, %; операции сравнения: ==, !=, <=, <, >, >=; битовые операции: &, |, xor, <<, >>.
Большинство операций, таких как сложение, умножение, вычитание и операции сравнения, не вызывают проблем в понимании. Иногда, после выполнения арифметических операций, результат может оказаться за пределами диапазона значений; в этом случае программа выдаст ошибку.
Целочисленное деление (/) находит целую часть от деления одного целого числа, на другое. Например:

  • 6 / 4 = 1;
  • 2 / 5 = 0;
  • 8 / 2 = 4.

Символ процента (%) обозначает операцию определение остатка от деления двух целых чисел:

  • 6 % 4 = 2;
  • 10 % 3 = 1.

Более сложные для понимания операции - битовые: & (И), | (ИЛИ), xor (исключающее ИЛИ), << (побитовый сдвиг влево), >> (побитовый сдвиг вправо).

Битовые операции И, ИЛИ и XOR к каждому биту информации применяют соответствующую логическую операцию:

  • 1 10 = 01 2
  • 3 10 = 11 2
  • 1 10 & 3 10 = 01 2 & 11 2 = 01 2
  • 1 10 | 3 10 = 01 2 | 11 2 = 11 2
  • 1 10 xor 3 10 = 01 2 xor 11 2 = 10 2

В обработке изображения используют 3 канала для цвета: красный, синий и зелёный - плюс прозрачность, которые хранятся в переменной типа int, т.к. каждый канал имеет диапазон значений от 0 до 255. В 16-иричной системе счисления некоторое значение записывается следующим образом: 0x180013FF; тогда значение 18 16 соответствует красному каналу, 00 16 - синему, 13 16 - зелёному, FF - альфа-каналу (прозрачности). Чтобы выделить из такого целого числа определённый канал используют т.н. маску, где на интересующих нас позициях стоят F 16 или 1 2 . Т.е., чтобы выделить значение синего канала необходимо использовать маску, т.е. побитовое И:

Int blue_channel = 0x180013FF & 0x00FF0000;

После чего полученное значение сдвигается вправо на необходимое число бит.

Побитовый сдвиг смещает влево или вправо на столько двоичных разрядов числа, сколько указано в правой части операции. Например, число 39 для типа char в двоичном виде записывается в следующем виде: 00100111. Тогда:

Char binaryExample = 39; // 00100111 char result = binaryExample << 2; // сдвигаем 2 бита влево, результат: 10011100

Если переменная беззнакового типа, тогда результатом будет число 156, для знакового оно равно -100. Отметим, что для знаковых целых типов единица в старшем разряде битового представления - признак отрицательности числа. При этом значение, в двоичном виде состоящие из всех единиц соответствует -1; если же 1 только в старшем разряде, а в остальных разрядах - нули, тогда такое число имеет минимальное для конкретного типа значения: для char это -128.

2. Тип с плавающей точкой (float, double (float))

Множество значений типа с плавающей точкой является подмножеством вещественных чисел, но не каждое вещественное число представимо в двоичном виде, что приводит иногда к глупым ошибкам:

Float value = 0.2; value == 0.2; // ошибка, value здесь не будет равно 0.2.

Работая с переменными с плавающей точкой, программист не должен использовать операцию проверки на равенство или неравенство, вместо этого обычно используют проверку на попадание в определённый интервал:

Value - 0.2 < 1e-6; // ok, подбирать интервал тоже нужно осторожно

Помимо операций сравнения тип с плавающей точкой поддерживает 4 арифметические операции, которые полностью соответствуют математическим операциям с вещественными числами.

3. Булевый (логический) тип (bool)

Состоит всего из двух значений: true (правда) и false (ложь). Для работы с переменными данного типа используют логические операции: ! (НЕ), == (равенство), != (неравенство), && (логическое И), || (логическое ИЛИ). Результат каждой операции можно найти в соответствующей таблицы истинности. например:

X Y XOR 0 0 0 0 1 1 1 0 1 1 1 0

4. Символьный тип (char, wchar_t)

Тип char - не только целый тип (обычно, такой тип называют byte), но и символьный, хранящий номер символа из таблицы символом ASCII . Например код 0x41 соответствует символу ‘A’, а 0x71 - ‘t’.

Иногда возникает необходимость использования символов, которые не закреплены в таблицы ASCII и поэтому требует для хранения более 1-го байта. Для них существует широкий символ (wchar_t).

5.1. Массивы

Массивы позволяют хранить последовательный набор однотипных элементов. Массив хранится в памяти непрерывным блоком, поэтому нельзя объявить массив, не указав его размер . Чтобы объявить массив после имени переменной пишут квадратные скобки () с указанием его размера. Например:

Int myArray; // Массив из 5-и элементов целого типа

Для инициализации массива значения перечисляют в фигурных скобках. Инициализировать таким образом можно только во время объявления переменной. Кстати, в этом случае необязательно указывать размер массива:

Int odds = {1, 3, 7, 9, 11}; // Массив инициализируется 5-ю значениями

Для доступа к определённому значению в массиве (элемента массива) используют операцию доступа по индексу () с указанием номера элемента (номера начинаются с 0). Например:

Odds; // доступ к первому элементу массива. Вернёт значение 1 odds; // доступ к третьему элементу. Вернёт значение 7 odds = 13; // 5-му элементу массива присваиваем новое значение odds; // ошибка доступа

5.3. Строки

Для записи строки программисты используют идею, что строка - последовательный ряд (массив) символов. Для идентификации конца строки используют специальный символ конца строки: ‘\0’. Такие специальные символы, состоящие из обратного слэша и идентифицирующего символа, называют управляющими или escape-символами. Ещё существуют, например, ‘\n’ - начало новой строки, ‘\t’ - табуляция. Для записи в строке обратного слэша применяют экранирование - перед самим знаком ставят ещё один слэш: ‘\’. Экранирование также применяют для записи кавычек.

Создадим переменную строки:

Char textExample = {‘T’, ‘e’, ‘s’, ‘t’, ‘\0’}; // записана строка «Test»

Существует упрощённая запись инициализации строки:

Char textExample = “Test”; // Последний символ не пишется, но размер всё ещё 5

Не вдаваясь в подробности, приведём ещё один полезный тип данных - string. Строки
такого типа можно, например, складывать:

String hello = "Привет, "; string name = "Макс!"; string hello_name = hello + name; // Получится строка «Привет, Макс!»

6. Ссылка

Int a = 2; // переменная «a» указывает на значение 2 int &b = a; // переменная «b» указывает туда же, куда и «a» b = 4; // меняя значение b, программист меняет значение a. Теперь a = 4 int &c = 4; // ошибка, так делать нельзя, т.к. ссылка нельзя присвоить значение

7. Указатель

Чтобы разобраться с этим типом данных, необходимо запомнить, что множество значений этого типа - адреса ячеек памяти, откуда начинаются данные. Также указатель поддерживает операции сложения (+), вычитания (-) и разыменовывания (*).

Адреса 0x0 означает, что указатель пуст, т.е. не указывает ни на какие данные. Этот адрес имеет свой литерал - NULL:

Int *nullPtr = NULL; // пустой указатель

Сложение и вычитание адреса с целым числом или другим адресом позволяет
передвигаться по памяти, доступной программе.

Операция получения данных, начинающихся по адресу, хранящемуся в указателе, называется разыменовывания (*). Программа считывает необходимое количество ячеек памяти и возвращает значение, хранимое в памяти.

Int valueInMemory = 2; // задаём переменну целого типа int *somePtr = &valueIntMemory; // копируем адрес переменной, здесь & - возвращает адрес переменной somePtr; // адрес ячейки памяти, например, 0x2F *somePtr; // значение хранится в 4-х ячейках: 0x2F, 0x30, 0x31 и 0x32

Для указателей не доступна операция присваивания, которая синтаксически совпадает с операцией копирования. Другими словами, можно скопировать адрес другого указателя или адрес переменной, но определить значение адреса самому нельзя.

Сам указатель хранится в памяти, как и значения переменных других типов, и занимает 4 байта, поэтому можно создать указатель на указатель.

8. Перечисления

Перечисления единственный базовый тип, задаваемый программистом. По большому счёту перечисление - упорядоченный набор именованных целочисленных констант, при этом имя перечисления будет базовым типом.

Enum color {RED, BLUE, GREEN};

По умолчанию, RED = 0, BLUE = 1, GREEN = 2. Поэтому значения можно сравнивать между собой, т.е. RED < BLUE < GREEN. Программист при объявлении перечисления может самостоятельно задать значения каждой из констант:

Enum access {READ = 1, WRITE = 2, EXEC = 4};

Часто удобно использовать перечисления, значения которых являются степенью двойки, т.к. в двоичном представлении число, являющееся степенью 2-и, будет состоять из 1-й единицы и нулей. Например:

8 10 = 00001000 2

Результат сложения этих чисел между собой всегда однозначно указывает на то, какие числа складывались:

37 10 = 00100101 2 = 00000001 2 + 00000100 2 + 00100000 2 = 1 10 + 4 10 + 32 10

Void

Синтаксически тип void относится к фундаментальным типам, но использовать его можно лишь как часть более сложных типов, т.к. объектов типа void не существует. Как правило, этот тип используется для информирования о том, что у функции нет возвращаемого значения либо в качестве базового типа указателя на объекты неопределённых типов:

Void object; // ошибка, не существует объектов типа void void &reference; // ошибка, не существует ссылов на void void *ptr; // ok, храним указатель на неизвестный тип

Часто мы будем использовать void именно для обозначения того, что функция не возвращает никакого значения. С указателем типа void работают, когда программист берёт полностью на себя заботу о целостности памяти и правильном приведении типа.

Приведение типов

Часто бывает необходимо привести значение переменной одного типа к другому. В случае, когда множество значений исходного типа является подмножеством большего типа (например, int является подмножеством long, а long - double), компилятор способен неявно (implicitly ) изменить тип значения.

Int integer = 2; float floating = integer; // floating = 2.0

Обратное приведение типа будет выполнено с потерей информации, так от числа с плавающей точкой останется только целая часть, дробная будет потеряна.

Существует возможность явного (explicitly) преобразования типов, для этого слева от переменной или какого-либо значения исходного типа в круглых скобках пишут тип, к которому будет произведено приведение:

Int value = (int) 2.5;

Унарные и бинарные операции

Те операции, которые мы выполняли ранее, называют бинарными: слева и справа от символа операции находятся значения или переменные, например, 2 + 3. В языках программирования помимо бинарных операций также используют унарные операции, которые применяются к переменным. Они могу находится как слева, так и справа от переменной, несколько таких операций встречались ранее - операция разыменовывания (*) и взятие адреса переменной (&) являются унарными. Операторы «++» и «—» увеличивают и уменьшают значение целочисленной переменной на 1 соответственно, причём могу писаться либо слева, либо справа от переменной.

В C++ также применяется сокращённая запись бинарных операций на тот случай, когда в левой и правой частях выражения находится одна и та же переменная, т.е. выполняется какая-либо операция со значением переменной и результат операции заносится в ту же переменную:

A += 2; // то же самое, что и a = a + 2; b /= 5; // то же самое, что и b = b / 5; c &= 3; // то же самое, что и c = c & 3;