Оплата        19.08.2019   

Принцип работы фреонового охлаждения для процессора. Бюджетная фреонка: миф или реальность

Часто для построения большого радиатора используют тепловые трубки (англ.: heat pipe ) — герметично запаянные и специальным образом устроенные металлические трубки (обычно медные). Они очень эффективно переносят тепло от одного своего конца к другому: таким образом, даже самые дальние рёбра большого радиатора эффективно работают в охлаждении. Так, например, устроен популярный кулер

Для охлаждения современных производительных графических процессоров применяют те же методы: большие радиаторы, медные сердечники систем охлаждения или полностью медные радиаторы, тепловые трубки для переноса тепла к дополнительным радиаторам:

Рекомендации по выбору здесь такие же: использовать медленные и крупноразмерные вентиляторы, максимально большие радиаторы. Так, например, выглядят популярные системы охлаждения видеокарт и Zalman VF900 :

Обычно вентиляторы систем охлаждения видеокарт лишь перемешивали воздух внутри системного блока, что не очень эффективно, с точки зрения охлаждения всего компьютера. Лишь совсем недавно для охлаждения видеокарт стали применять системы охлаждения, которые выносят горячий воздух за пределы корпуса: первыми стали и, схожая конструкция, от бренда :

Подобные системы охлаждения устанавливаются на самые мощные современные видеокарты (nVidia GeForce 8800, ATI x1800XT и старше). Такая конструкция зачастую более оправдана, с точки зрения правильной организации воздушных потоков внутри корпуса компьютера, чем традиционные схемы. Организация воздушных потоков

Современные стандарты по конструированию корпусов компьютеров среди прочего регламентируют и способ построения системы охлаждения. Начиная ещё с , выпуск которых был начат в 1997 году, внедряется технология охлаждения компьютера сквозным воздушным потоком, направленным от передней стенки корпуса к задней (дополнительно воздух для охлаждения всасывается через левую стенку):

Интересующихся подробностями отсылаю к последним версиям стандарта ATX.

Как минимум один вентилятор установлен в блоке питания компьютера (многие современные модели имеют два вентилятора, что позволяет существенно снизить скорость вращения каждого из них, а, значит, и шум при работе). В любом месте внутри корпуса компьютера можно устанавливать дополнительные вентиляторы для усиления потоков воздуха. Обязательно нужно следовать правилу: на передней и левой боковой стенке воздух нагнетается внутрь корпуса, на задней стенке горячий воздух выбрасывается наружу . Также нужно проконтролировать, чтобы поток горячего воздуха от задней стенки компьютера не попадал напрямик в воздухозабор на левой стенке компьютера (такое случается при определённых положениях системного блока относительно стен комнаты и мебели). Какие вентиляторы устанавливать, зависит в первую очередь от наличия соответствующих креплений в стенках корпуса. Шум вентилятора главным образом определяется скоростью его вращения (см. раздел ), поэтому рекомендуется использовать медленные (тихие) модели вентиляторов. При равных установочных размерах и скорости вращения, вентиляторы на задней стенке корпуса субъективно шумят несколько меньше передних: во-первых, они находятся дальше от пользователя, во-вторых, сзади корпуса расположены почти прозрачные решётки, в то время как спереди - различные декоративные элементы. Часто шум создаётся вследствие огибания элементов передней панели воздушным потоком: если переносимый объём воздушного потока превышает некий предел, на передней панели корпуса компьютера образуются вихревые турбулентные потоки, которые создают характерный шум (он напоминает шипение пылесоса, но гораздо тише).

Выбор компьютерного корпуса

Практически подавляющее большинство корпусов для компьютеров, представленных сегодня на рынке, соответствуют одной из версий стандарта ATX, в том числе и по части охлаждения. Самые дешёвые корпуса не комплектуются ни блоком питания, ни дополнительными приспособлениями. Более дорогие корпуса оснащаются вентиляторами для охлаждения корпуса, реже - переходниками для подключения вентиляторов различными способами; иногда даже специальным контроллером, оснащённым термодатчиками, который позволяет плавно регулировать скорость вращения одного или нескольких вентиляторов в зависимости от температуры основных узлов (см. напр. ). Блок питания включается в комплект не всегда: многие покупатели предпочитают выбирать БП самостоятельно. Из прочих вариантов дополнительного оснащения стоит отметить специальные крепления боковых стенок, жёстких дисков, оптических приводов, карт расширения, которые позволяют собирать компьютер без отвёртки; пылевые фильтры, препятствующие попаданию грязи внутрь компьютера через вентиляционные отверстия; различные патрубки для направления воздушных потоков внутри корпуса. Исследуем вентилятор

Для переноса воздуха в системах охлаждения используют вентиляторы (англ.: fan ).

Устройство вентилятора

Вентилятор состоит из корпуса (обычно в виде рамки), электродвигателя и крыльчатки, закреплённой при помощи подшипников на одной оси с двигателем:

От типа установленных подшипников зависит надёжность вентилятора. Производители заявляют такое типичное время наработки на отказ (количество лет получено из расчёта круглосуточной работы):

С учётом морального старения компьютерной техники (для домашнего и офисного применения это 2-3 года), вентиляторы с шарикоподшипниками можно считать «вечными»: срок их работы не меньше типового срока работы компьютера. Для более серьёзных применений, где компьютер должен работать круглосуточно много лет, стоит подобрать более надёжные вентиляторы.

Многие сталкивались со старыми вентиляторами, в которых подшипники скольжения выработали свой ресурс: вал крыльчатки дребезжит и вибрирует при работе, издавая характерный рычащий звук. В принципе, такой подшипник можно отремонтировать, смазав его твёрдой смазкой, - но многие ли согласятся ремонтировать вентилятор, цена которому всего пара долларов?

Характеристики вентиляторов

Вентиляторы различаются по своему размеру и толщине: обычно в компьютерах встречаются типоразмеры 40×40×10 мм, для охлаждения видеокарт и карманов для жёстких дисков, а также 80×80×25, 92×92×25, 120×120×25 мм для охлаждения корпуса. Также вентиляторы различаются типом и конструкцией устанавливаемых электродвигателей: они потребляют различный ток и обеспечивают разную скорость вращения крыльчатки. От размеров вентилятора и скорости вращения лопастей крыльчатки зависит производительность: создаваемое статическое давление и максимальный объём переносимого воздуха.

Объём переносимого вентилятором воздуха (расход) измеряется в кубометрах в минуту или кубических футах в минуту (CFM, cubic feet per minute). Производительность вентилятора, указанная в характеристиках, измеряется при нулевом давлении: вентилятор работает в открытом пространстве. Внутри корпуса компьютера вентилятор дует в системный блок определенного размера, потому он создаёт в обслуживаемом объёме избыточное давление. Естественно, что объёмная производительность будет приблизительно обратно пропорциональна создаваемому давлению. Конкретный вид расходной характеристики зависит от формы использованной крыльчатки и других параметров конкретной модели. Например, соответствующий график для вентилятора :

Из этого следует простой вывод: чем интенсивнее работают вентиляторы в задней части корпуса компьютера, тем больше воздуха можно будет прокачать через всю систему, и тем эффективнее будет охлаждение.

Уровень шума вентиляторов

Уровень шума, создаваемый вентилятором при работе, зависит от различных его характеристик (подробнее о причинах его возникновения можно прочесть в статье ). Несложно установить зависимость между производительностью и шумом вентилятора. На сайте крупного производителя популярных систем охлаждения , в мы видим: многие вентиляторы одного и того же размера комплектуются разными электродвигателями, которые рассчитаны на различную скорость вращения. Поскольку крыльчатка используется одна и та же, получаем интересующие нас данные: характеристики одного и того же вентилятора при разных скоростях вращения. Составляем таблицу для трёх самых распространённых типоразмеров: толщина 25 мм, и .

Жирным шрифтом выделены самые популярные типы вентиляторов.

Посчитав коэффициент пропорциональности потока воздуха и уровня шума к оборотам, видим почти полное совпадение. Для очистки совести считаем отклонения от среднего: меньше 5%. Таким образом, мы получили три линейные зависимости, по 5 точек каждая. Не Бог весть, какая статистика, но для линейной зависимости этого достаточно: гипотезу считаем подтверждённой.

Объёмная производительность вентилятора пропорциональна количеству оборотов крыльчатки, то же самое справедливо и для уровня шума .

Используя полученную гипотезу, мы можем экстраполировать полученные результаты методом наименьших квадратов (МНК): в таблице эти значения выделены наклонным шрифтом. Нужно, однако, помнить: область применения этой модели ограничена. Исследованная зависимость линейна в некотором диапазоне скоростей вращения; логично предположить, что линейный характер зависимости сохранится и в некоторой окрестности этого диапазона; но при очень больших и очень малых оборотах картина может существенно измениться.

Теперь рассмотрим линейку вентиляторов другого производителя: , и . Составим аналогичную табличку:

Наклонным шрифтом выделены расчётные данные.
Как было сказано выше, при значениях скорости вращения вентилятора, существенно отличающихся от исследованных, линейная модель может быть неверна. Полученные экстраполяцией значения следует понимать как приблизительную оценку.

Обратим внимание на два обстоятельства. Во-первых, вентиляторы GlacialTech работают медленнее, во-вторых, - эффективнее. Очевидно, это результат использования крыльчатки с более сложной формой лопастей: даже при одинаковых оборотах, вентилятор GlacialTech переносит больше воздуха, чем Titan: см. графу прирост . А уровень шума при одинаковых оборотах примерно равен : пропорция соблюдается даже для вентиляторов разных производителей с различной формой крыльчатки.

Нужно понимать, что реальные шумовые характеристики вентилятора зависят от его технической конструкции, создаваемого давления, объёма прокачиваемого воздуха, от типа и формы преград на пути воздушных потоков; то есть, от типа корпуса компьютера. Поскольку корпуса используются самые разные, невозможно напрямую применять измеренные в идеальных условиях количественные характеристики вентиляторов — их можно только сравнивать между собой для разных моделей вентиляторов.

Ценовые категории вентиляторов

Рассмотрим фактор стоимости. Для примера возьмём в одном и том же интернет-магазине и : результаты вписаны в приведённых выше таблицах (рассматривались вентиляторы с двумя шарикоподшипниками). Как видно, вентиляторы этих двух производителей принадлежат к двум разным классам: GlacialTech работают на более низких оборотах, потому меньше шумят; при одинаковых оборотах они эффективнее Titan - но они всегда дороже на доллар-другой. Если нужно собрать наименее шумную систему охлаждения (например, для домашнего компьютера), придётся раскошелиться на более дорогие вентиляторы со сложной формой лопастей. При отсутствии таких строгих требований или при ограниченном бюджете (например, для офисного компьютера), вполне подойдут и более простые вентиляторы. Различный тип подвеса крыльчатки, используемый в вентиляторах (подробнее см. раздел ), также влияет на стоимость: вентилятор тем дороже, чем более сложные подшипники используются.

Ключом разъёма служат скошенные углы с одной из сторон. Провода подключены следующим образом: два центральных - «земля», общий контакт (чёрный провод); +5 В - красный, +12 В - жёлтый. Для питания вентилятора через молекс-разъём используются только два провода, обычно чёрный («земля») и красный (напряжение питания). Подключая их к разным контактам разъёма, можно получить различную скорость вращения вентилятора. Стандартное напряжение в 12 В запустит вентилятор со штатной скоростью, напряжение в 5-7 В обеспечивает примерно половинную скорость вращения. Предпочтительно использовать более высокое напряжение, так как не каждый электромотор в состоянии надёжно запускаться при чересчур низком напряжении питания.

Как показывает опыт, скорость вращения вентилятора при подключении к +5 В, +6 В и +7 В примерно одинакова (с точностью до 10%, что сравнимо с точностью измерений: скорость вращения постоянно изменяется и зависит от множества факторов, вроде температуры воздуха, малейшего сквозняка в комнате и т. п.)

Напоминаю, что производитель гарантирует стабильную работу своих устройств только при использовании стандартного напряжения питания . Но, как показывает практика, подавляющее большинство вентиляторов отлично запускаются и при пониженном напряжении.

Контакты зафиксированы в пластмассовой части разъёма при помощи пары отгибающихся металлических «усиков». Не составляет труда извлечь контакт, придавив выступающие части тонким шилом или маленькой отвёрткой. После этого «усики» нужно опять разогнуть в стороны, и вставить контакт в соответствующее гнездо пластмассовой части разъёма:

Иногда кулеры и вентиляторы оборудуются двумя разъёмами: подключёнными параллельно молекс- и трёх- (или четырёх-) контактным. В таком случае подключать питание нужно только через один из них :

В некоторых случаях используется не один молекс-разъём, а пара «мама-папа»: так можно подключить вентилятор к тому же проводу от блока питания, который запитывает жёсткий диск или оптический привод. Если вы переставляете контакты в разъёме, чтобы получить на вентиляторе нестандартное напряжение, обратите особое внимание на то, чтобы переставить контакты во втором разъёме в точности таком же порядке . Невыполнение этого требования чревато подачей неверного напряжения питания на жёсткий диск или оптический привод, что наверняка приведёт к их мгновенному выходу из строя.

В трёхконтактных разъёмах ключом для установки служит пара выступающих направляющих с одной стороны:

Ответная часть находится на контактной площадке, при подключении она входит между направляющими, также выполняя роль фиксатора. Соответствующие разъёмы для питания вентиляторов находятся на материнской плате (как правило, несколько штук в разных местах платы) или на плате специального контроллера, управляющего вентиляторами:

Помимо «земли» (чёрный провод) и +12 В (обычно красный, реже: жёлтый), есть ещё тахометрический контакт: он используется для контроля скорости вращения вентилятора (белый, синий, жёлтый или зелёный провод). Если вам не нужна возможность контроля над оборотами вентилятора, то этот контакт можно не подключать. Если питание вентилятора подведено отдельно (например, через молекс-разъём), допустимо при помощи трёхконтактного разъёма подключить только контакт контроля за оборотами и общий провод - такая схема часто используется для мониторинга скорости вращения вентилятора блока питания, который запитывается и управляется внутренними схемами БП.

Четырёхконтактные разъёмы появились сравнительно недавно на материнских платах с процессорными разъёмами LGA 775 и socket AM2. Отличаются они наличием дополнительного четвёртого контакта, при этом полностью механически и электрически совместимы с трёхконтактными разъёмами:

Два одинаковых вентилятора с трёхконтактными разъёмами можно подключить последовательно к одному разъёму питания. Таким образом, на каждый из электромоторов будет приходится по 6 В питающего напряжения, оба вентилятора будут вращаться с половинной скоростью. Для такого соединения удобно использовать разъёмы питания вентиляторов: контакты легко извлечь из пластмассового корпуса, придавив фиксирующий «язычок» отвёрткой. Схема подключения приведена на рисунке далее. Один из разъёмов подключается к материнской плате, как обычно: он будет обеспечивать питанием оба вентилятора. Во втором разъёме при помощи кусочка проволоки нужно закоротить два контакта, после чего заизолировать его скотчем или изолентой:

Настоятельно не рекомендуется соединять таким способом два разных электромотора : из-за неравенства электрических характеристик в различных режимах работы (запуск, разгон, стабильное вращение) один из вентиляторов может не запускаться вовсе (что чревато выходом электромотора из строя) или требовать для запуска чрезмерно большой ток (чревато выходом из строя управляющих цепей).

Часто для ограничения скорости вращения вентилятора примеряются постоянные или переменные резисторы, включенные последовательно в цепи питания. Изменяя сопротивление переменного резистора, можно регулировать скорость вращения: именно так устроены многие ручные регуляторы скорости вентиляторов. Конструируя подобную схему нужно помнить, что, во-первых, резисторы греются, рассеивая часть электрической мощности в виде тепла, - это не способствует более эффективному охлаждению; во-вторых, электрические характеристики электродвигателя в различных режимах работы (запуск, разгон, стабильное вращение) не одинаковы, параметры резистора нужно подбирать с учётом всех этих режимов. Чтобы подобрать параметры резистора, достаточно знать закон Ома; использовать нужно резисторы, рассчитанные на ток, не меньший, чем потребляет электродвигатель. Однако лично я не приветствую ручное управление охлаждением, так как считаю, что компьютер - вполне подходящее устройство, чтобы управлять системой охлаждения автоматически, без вмешательства пользователя.

Контроль и управление вентиляторами

Большинство современных материнских плат позволяет контролировать скорость вращения вентиляторов, подключённых к некоторым трёх- или четырёхконтактным разъёмам. Более того, некоторые из разъёмов поддерживают программное управление скоростью вращения подключённого вентилятора. Не все размещённые на плате разъёмы предоставляют такие возможности: например, на популярной плате Asus A8N-E есть пять разъёмов для питания вентиляторов, контроль над скоростью вращения поддерживают только три из них (CPU, CHIP, CHA1), а управление скоростью вентилятора - только один (CPU); материнская плата Asus P5B имеет четыре разъёма, все четыре поддерживают контроль за скоростью вращения, управление скоростью вращения имеет два канала: CPU, CASE1/2 (скорость двух корпусных вентиляторов изменяется синхронно). Количество разъёмов с возможностями контроля или управления скоростью вращения зависит не от используемого чипсета или южного моста, а от конкретной модели материнской платы: модели разных производителей могут различаться в этом отношении. Часто разработчики плат намеренно лишают более дешёвые модели возможностей управления скоростью вентиляторов. Например, материнская плата для процессоров Intel Pentiun 4 Asus P4P800 SE способна регулировать обороты кулера процессора, а её удешевлённый вариант Asus P4P800-X - нет. В таком случае можно использовать специальные устройства, которые способны управлять скоростью нескольких вентиляторов (и, обычно, предусматривают подключение целого ряда температурных датчиков) - их появляется всё больше на современном рынке.

Контролировать значения скорости вращения вентиляторов можно при помощи BIOS Setup. Как правило, если материнская плата поддерживает изменение скорости вращения вентиляторов, здесь же в BIOS Setup можно настроить параметры алгоритма регулирования скорости. Набор параметров различен для разных материнских плат; обычно алгоритм использует показания термодатчиков, встроенных в процессор и материнскую плату. Существует ряд программ для различных ОС, которые позволяют контролировать и регулировать скорость вентиляторов, а также следить за температурой различных компонентов внутри компьютера. Производители некоторых материнских плат комплектуют свои изделия фирменными программами для Windows: Asus PC Probe, MSI CoreCenter, Abit µGuru, Gigabyte EasyTune, Foxconn SuperStep и т.д. Распространено несколько универсальных программ, среди них: (shareware, $20-30), (распространяется бесплатно, не обновляется с 2004 года). Самая популярная программа этого класса - :

Эти программы позволяют следить за целым рядом температурных датчиков, которые устанавливаются в современные процессоры, материнские платы, видеокарты и жёсткие диски. Также программа отслеживает скорость вращения вентиляторов, которые подключены к разъёмам материнской платы с соответствующей поддержкой. Наконец, программа способна автоматически регулировать скорость вентиляторов в зависимости от температуры наблюдаемых объектов (если производитель системной платы реализовал аппаратную поддержку этой возможности). На приведённом выше рисунке программа настроена на управление только вентилятором процессора: при невысокой температуре ЦП (36°C) он вращается со скоростью около 1000 об/мин, - это 35% от максимальной скорости (2800 об/мин). Настройка таких программ сводится к трём шагам:

  1. определению, к каким из каналов контроллера материнской платы подключены вентиляторы, и какие из них могут управляться программно;
  2. указанию, какие из температур должны влиять на скорость различных вентиляторов;
  3. заданию температурных порогов для каждого датчика температуры и диапазона рабочих скоростей для вентиляторов.

Возможностями по мониторингу также обладают многие программы для тестирования и тонкой настройки компьютеров: , и т. д.

Многие современные видеокарты также позволяют регулировать обороты вентилятора системы охлаждения в зависимости от нагрева графического процессора. При помощи специальных программ можно даже изменять настройки механизма охлаждения, снижая уровень шума от видеокарты в отсутствие нагрузки. Так выглядят в программе оптимальные настройки для видеокарты HIS X800GTO IceQ II :

Пассивное охлаждение

Пассивными системами охлаждения принято называть такие, которые не содержат вентиляторов. Пассивным охлаждением могут довольствоваться отдельные компоненты компьютера, при условии, что их радиаторы помещены в достаточный поток воздуха, создаваемый «чужими» вентиляторами: например, микросхема чипсета часто охлаждается большим радиатором, расположенным вблизи места установки процессорного кулера. Популярны также пассивные системы охлаждения видеокарт, например, :

Очевидно, чем больше радиаторов приходится продувать одному вентилятору, тем большее сопротивление потоку ему нужно преодолеть; таким образом, при увеличении количества радиаторов часто приходится увеличивать скорость вращения крыльчатки. Эффективнее использовать много тихоходных вентиляторов большого диаметра, а пассивные системы охлаждения предпочтительнее избегать. Несмотря на то, что выпускаются пассивные радиаторы для процессоров, видеокарты с пассивным охлаждением, даже блоки питания без вентиляторов (FSP Zen), попытка собрать компьютер совсем без вентиляторов из всех этих компонент наверняка приведёт к постоянным перегревам. Потому, что современный высокопроизводительный компьютер рассеивает слишком много тепла, чтобы охлаждаться только лишь пассивными системами. Из-за низкой теплопроводности воздуха, сложно организовать эффективное пассивное охлаждение для всего компьютера, разве что превратить в радиатор весь корпус компьютера, как это сделано в :

Сравните корпус-радиатор на фото с корпусом обычного компьютера!

Возможно, полностью пассивного охлаждения будет достаточно для маломощных специализированных компьютеров (для доступа в интернет, для прослушивания музыки и просмотра видео, и т.п.) Охлаждение экономией

В старые времена, когда энергопотребление процессоров не достигло ещё критических величин - для их охлаждения хватало небольшого радиатора - вопрос «что будет делать компьютер, когда делать ничего не нужно?» решался просто: пока не надо выполнять команды пользователя или запущенные программы, ОС даёт процессору команду NOP (No OPeration, нет операции). Эта команда заставляет процессор выполнить бессмысленную безрезультатную операцию, результат которой игнорируется. На это тратится не только время, но и электроэнергия, которая, в свою очередь, преобразуется в тепло. Типичный домашний или офисный компьютер в отсутствие ресурсоёмких задач загружен, как правило, всего на 10% - любой может удостовериться в этом, запустив Диспетчер задач Windows и понаблюдав за Хронологией загрузки ЦП (Центрального Процессора). Таким образом, при старом подходе около 90% процессорного времени улетало на ветер: ЦП занимался выполнением никому не нужных команд. Более новые ОС (Windows 2000 и далее) в аналогичной ситуации поступают разумнее: при помощи команды HLT (Halt, останов) процессор полностью останавливается на короткое время - это, очевидно, позволяет снизить потребление энергии и температуру процессора при отсутствии ресурсоёмких задач.

Компьютерщики со стажем могут припомнить целый ряд программ для «программного охлаждения процессора»: будучи запущенными под управлением Windows 95/98/ME они останавливали процессор с помощью HLT, вместо повторения бессмысленных NOP, чем снижали температуру процессора в отсутствие вычислительных задач. Соответственно, использование таких программ под управлением Windows 2000 и более новых ОС лишено всякого смысла.

Современные процессоры потребляют настолько много энергии (а это значит: рассеивают её в виде тепла, то есть греются), что разработчики создали дополнительные технические по борьбе с возможным перегревом, а также средства, повышающие эффективность механизмов экономии при простое компьютера.

Тепловая защита процессора

Для защиты процессора от перегрева и выхода из строя, применяется так называемый thermal throttling (обычно не переводят: троттлинг). Суть этого механизма проста: если температура процессора превышает допустимую, процессор принудительно останавливается командой HLT, чтобы кристалл имел возможность остыть. В ранних реализациях этого механизма через BIOS Setup можно было настраивать, какую долю времени процессор будет простаивать (параметр CPU Throttling Duty Cycle: xx%); новые реализации «тормозят» процессор автоматически до тех пор, пока температура кристалла не опустится до допустимого уровня. Безусловно, пользователь заинтересован в том, чтобы процессор не прохлаждался (буквально!), а выполнял полезную работу — для этого нужно использовать достаточно эффективную систему охлаждения. Проверить, не включается ли механизм тепловой защиты процессора (троттлинга) можно при помощи специальных утилит, например :

Минимизация потребления энергии

Практически все современные процессоры поддерживают специальные технологии для снижения потребления энергии (и, соответственно, нагрева). Разные производители называют такие технологии по-разному, например: Enhanced Intel SpeedStep Technology (EIST), AMD Cool’n’Quiet (CnQ, C&Q) - но работают они, по сути, одинаково. Когда компьютер простаивает, и процессор не загружен вычислительными задачами, уменьшается тактовая частота и напряжение питания процессора. И то, и другое уменьшает потребление процессором электроэнергии, что, в свою очередь, сокращает тепловыделение. Как только загрузка процессора увеличивается, автоматически восстанавливается полная скорость процессора: работа такой схемы энергосбережения полностью прозрачна для пользователя и запускаемых программ. Для включения такой системы нужно:

  1. включить использование поддерживаемой технологии в BIOS Setup;
  2. установить в используемой ОС соответствующие драйверы (обычно это драйвер процессора);
  3. в Панели управления Windows (Control Panel), в разделе Электропитание (Power Management), на закладке Схемы управления питанием (Power Schemes) выбрать в списке схему Диспетчер энергосбережения (Minimal Power Management).

Например, для материнской платы Asus A8N-E с процессором нужно (подробные инструкции приведены в Руководстве пользователя):

  1. в BIOS Setup в разделе Advanced > CPU Configuration > AMD CPU Cool & Quiet Configuration параметр Cool N"Quiet переключить в Enabled; а в разделе Power параметр ACPI 2.0 Support переключить в Yes;
  2. установить ;
  3. см. выше.

Проверить, что частота процессора изменяется, можно при помощи любой программы, отображающей тактовую частоту процессора: от специализированных типа , вплоть до Панели управления Windows (Control Panel), раздел Система (System):


AMD Cool"n"Quiet в действии: текущая частота процессора (994 МГц) меньше номинальной (1,8 ГГц)

Часто производители материнских плат дополнительно комплектуют свои изделия наглядными программами, наглядно демонстрирующими работу механизма изменения частоты и напряжения процессора, например, Asus Cool&Quiet:

Частота процессора изменяется от максимальной (при наличии вычислительной нагрузки), до некоторой минимальной (при отсутствии загрузки ЦП).

Утилита RMClock

Во время разработки набора программ для комплексного тестирования процессоров , была создана (RightMark CPU Clock/Power Utility): она предназначена для наблюдения, настройки и управления энергосберегающими возможностями современных процессоров. Утилита поддерживает все современные процессоры и самые разные системы управления потреблением энергии (частотой, напряжением…) Программа позволяет наблюдать за возникновением троттлинга, за изменением частоты и напряжения питания процессора. Используя RMClock, можно настраивать и использовать всё, что позволяют стандартные средства: BIOS Setup, управление энергопотреблением со стороны ОС при помощи драйвера процессора. Но возможности этой утилиты гораздо шире: с её помощью можно настраивать целый ряд параметров, которые не доступны для настройки стандартным образом. Особенно это важно при использовании разогнанных систем, когда процессор работает быстрее штатной частоты.

Авторазгон видеокарты

Подобный метод используют и разработчики видеокарт: полная мощность графического процессора нужна только в 3D-режиме, а с рабочим столом в 2D-режиме современный графический чип справится и при пониженной частоте. Многие современные видеокарты настроены так, чтобы графический чип обслуживал рабочий стол (2D-режим) с пониженной частотой, энергопотреблением и тепловыделением; соответственно, вентилятор охлаждения крутится медленнее и шумит меньше. Видеокарта начинает работать на полную мощность только при запуске 3D-приложений, например, компьютерных игр. Аналогичную логику можно реализовать программно, при помощи различных утилит по тонкой настройке и разгону видеокарт. Для примера, так выглядят настройки автоматического разгона в программе для видеокарты HIS X800GTO IceQ II :

Тихий компьютер: миф или реальность?

С точки зрения пользователя, достаточно тихим будет считаться такой компьютер, шум которого не превышает окружающего шумового фона. Днём, с учётом шума улицы за окном, а также шума в офисе или на производстве, компьютеру позволительно шуметь чуть больше. Домашний компьютер, который планируется использовать круглосуточно, ночью должен вести себя потише. Как показала практика, практически любой современный мощный компьютер можно заставить работать достаточно тихо. Опишу несколько примеров из моей практики.

Пример 1: платформа Intel Pentium 4

В моём офисе используется 10 компьютеров Intel Pentium 4 3,0 ГГц со стандартными процессорными кулерами. Все машины собраны в недорогих корпусах Fortex ценой до $30, установлены блоки питания Chieftec 310-102 (310 Вт, 1 вентилятор 80?80?25 мм). В каждом из корпусов на задней стенке был установлен вентилятор 80?80?25 мм (3000 об/мин, шум 33 дБА) - они были заменены вентиляторами с такой же производительностью 120?120?25 мм (950 об/мин, шум 19 дБА). В файловом сервере локальной сети для дополнительного охлаждения жёстких дисков на передней стенке установлены 2 вентилятора 80?80?25 мм , подключённые последовательно (скорость 1500 об/мин, шум 20 дБА). В большинстве компьютеров использована материнская плата Asus P4P800 SE , которая способна регулировать обороты кулера процессора. В двух компьютерах установлены более дешёвые платы Asus P4P800-X , где обороты кулера не регулируются; чтобы снизить шум от этих машин, кулеры процессоров были заменены (1900 об/мин, шум 20 дБА).
Результат : компьютеры шумят тише, чем кондиционеры; их практически не слышно.

Пример 2: платформа Intel Core 2 Duo

Домашний компьютер на новом процессоре Intel Core 2 Duo E6400 (2,13 ГГц) со стандартным процессорным кулером был собран в недорогом корпусе aigo ценой $25, установлен блок питания Chieftec 360-102DF (360 Вт, 2 вентилятора 80×80×25 мм). В передней и задней стенках корпуса установлены 2 вентилятора 80×80×25 мм , подключённые последовательно (скорость регулируется, от 750 до 1500 об/мин, шум до 20 дБА). Использована материнская плата Asus P5B , которая способна регулировать обороты кулера процессора и вентиляторов корпуса. Установлена видеокарта с пассивной системой охлаждения.
Результат : компьютер шумит так, что днём его не слышно за обычным шумом в квартире (разговоры, шаги, улица за окном и т. п.).

Пример 3: платформа AMD Athlon 64

Мой домашний компьютер на процессоре AMD Athlon 64 3000+ (1,8 ГГц) собран в недорогом корпусе Delux ценой до $30, сначала содержал блок питания CoolerMaster RS-380 (380 Вт, 1 вентилятор 80?80?25 мм) и видеокарту GlacialTech SilentBlade GT80252BDL-1 , подключенными к +5 В (около 850 об/мин, шум меньше 17 дБА). Используется материнская плата Asus A8N-E , которая способна регулировать обороты кулера процессора (до 2800 об/мин, шум до 26 дБА, в режиме простоя кулер вращается около 1000 об/мин и шумит меньше 18 дБА). Проблема этой материнской платы: охлаждение микросхемы чипсета nVidia nForce 4, Asus устанавливает небольшой вентилятор 40?40?10 мм со скоростью вращения 5800 об/мин, который достаточно громко и неприятно свистит (кроме того, вентилятор оборудован подшипником скольжения, имеющим очень небольшой ресурс). Для охлаждения чипсета был установлен кулер для видеокарт с медным радиатором , на его фоне отчётливо слышны щелчки позиционирования головок жёсткого диска. Работающий компьютер не мешает спать в той же комнате, где он установлен.
Недавно видеокарта была заменена HIS X800GTO IceQ II , для установки которой потребовалось доработать радиатор чипсета : отогнуть рёбра таким образом, чтобы они не мешали установке видеокарты с большим вентилятором охлаждения. Пятнадцать минут работы плоскогубцами - и компьютер продолжает работать тихо даже с довольно мощной видеокартой.

Пример 4: платформа AMD Athlon 64 X2

Домашний компьютер на процессоре AMD Athlon 64 X2 3800+ (2,0 ГГц) с процессорным кулером (до 1900 об/мин, шум до 20 дБА) собран в корпусе 3R System R101 (в комплекте 2 вентилятора 120×120×25 мм, до 1500 об/мин, установлены на передней и задней стенках корпуса, подключены к штатной системе мониторинга и автоматического управления вентиляторами), установлен блок питания FSP Blue Storm 350 (350 Вт, 1 вентилятор 120×120×25 мм). Использована материнская плата (пассивное охлаждение микросхем чипсета), которая способна регулировать обороты кулера процессора. Использована видеокарта GeCube Radeon X800XT , система охлаждения заменена на Zalman VF900-Cu . Для компьютера был выбран жёсткий диск , известный низким уровнем создаваемого шума.
Результат : компьютер работает так тихо, что слышен шум электродвигателя жёстких дисков. Работающий компьютер не мешает спать в той же комнате, где он установлен (соседи за стенкой разговаривают и того громче).

Который проводит фирма Gigabyte. Требовалось написать обзор корпуса 3D Aurora. Я сначала согласился, а потом, когда прикинул что к чему, призадумался. Ведь я же не профессиональный писатель обзоров, к тому же серийными корпусами не пользуюсь уже года как три, как минимум. И если честно и пристально посмотреть правде в глаза, становится кристально ясно – писать этот обзор совершенно неинтересно и, естественно, ужасно не хочется. Я уже хотел звонить и отказываться, но все откладывал и откладывал. Прошло какое-то время, и обещание самым естественным образом забылось.

Две недели назад до меня все же дошла очередь на получение корпуса. Я так "обрадовался", что дня три не открывал коробку. Но чувство долга в конце концов победило, и я заглянул внутрь. Скажу сразу: удивительно, но кейс мне понравился. Первое, что поразило, – это размеры: высота 54.5, глубина 51.5, а ширина обычная – 20.5 см.

Корпус выпускается в двух цветовых решениях, черном и серебристом. Мне достался черный вариант. Корпус позиционируется как high-end решение и не комплектуется блоком питания.

На меня эта черная громадина сразу произвела впечатление своим стильным, запоминающимся видом. Дизайнеры поработали на славу. Корпус хотя и большой, но легкий. Изготовлен почти целиком из алюминия. Покраска качественная, ровная, с шелковистым отблеском.

Доступ к пяти 5.25" отсекам и двум 3.5" открывает массивная алюминиевая дверка. Фиксируется дверка в закрытом положении магнитом. В качестве защиты от распоясавшихся злоумышленников эту дверку можно закрыть на ключ. Рядом с 3.5" отсеками расположены кнопки Power и Reset. Нажатие легкое, с приятным на слух легким щелчком.

Ниже дверки располагается выступающая панель, усыпанная вентиляционными отверстиями. За ней расположен 120-мм вентилятор с подсветкой. Воздух внутрь корпуса он втягивает через пылезащитный фильтр. Свет от вентилятора очень красиво пробивается сквозь вентиляционные отверстия.

Справа от этой панели, на боку, расположены два USB, один IEEE 1394 и пара mini-jack"ов: микрофон и наушники. Здесь же расположены и два светодиодных индикатора работы системного блока и активности HDD.

Вот внешний вид корпуса со снятой лицевой панелью

Алюминиевые боковые стенки имеют непривычное крепление. Для того чтобы их снять, стенки нужно не сдвигать, а немного оттянуть и приподнять вверх. Левая стенка для удобства оперативного снятия имеет ручку-защелку и еще один замок с ключом. Имеется в ней также и окно, но не традиционное, из акрилового стекла, а сетчатое, скорее даже дырчатое. Для дополнительной защиты внутренностей от пыли это окно ограждено изнутри еще более мелкой сеткой. Стоит корпус на четырех ножках, которые для устойчивости корпуса можно раздвинуть.

Шасси корпуса довольно крепкое благодаря большому количеству ребер жесткости и дополнительным усиливающим элементам. Нет ни намека на шаткость конструкции. Внутри корпуса много свободного пространства, особенно понравилось большое расстояние между материнской платой и отсеком блока питания.

Корпус рассчитан на безотверточную сборку. Дисководы устанавливаются с помощью пластиковых салазок. Заглушки слотов карт расширения не выламываемые, а съемные, и крепятся все одновременно специальным рычагом-ключом.

Отсек для жестких дисков расположен поперек корпуса. Комфортную температуру винчестерам обеспечивает обдув этого отсека 120-мм вентилятором. В этом же отсеке расположен черный пластиковый бокс, содержащий два переходника питания для SATA-устройств, набор пластиковых салазок для установки 5.25" и 3.5" устройств в корпус, два пластмассовых крепежа для проводов, два комплекта ключей (разных) для передней дверцы и боковой крышки и комплект крепежных винтов.

Провода, идущие внутри корпуса от вентиляторов и лицевой панели, прикреплены к корпусу и уложены в черную трубку. Трассировка довольно удачна.

А теперь о том, что привлекло мое внимание к этому корпусу. Это, как ни странно, задняя панель.

На ней расположены два 120-мм прозрачных вентилятора с подсветкой. Ниже находятся два отверстия, защищенных резиновыми заглушками с лепестками. Сделано это для установки системы водяного охлаждения 3D Galaxy, производства все той же Gigabyte. Вот эти вентиляторы и отверстия превратили скучную процедуру написания обзора в увлекательное занятие.

Когда я увидел эти два 120-мм вентилятора на задней стенке корпуса, то мне сразу вспомнилась давняя идея встроить самодельную фреоновую систему охлаждения в стандартный корпус. Хотелось не просто встроить систему в корпус, а сделать это красиво, интересно и по возможности оригинально. Но я все никак не мог найти подходящий корпус, большой и прочный. Как-никак, компрессор, конденсор и прочие медные трубки весят прилично. К тому же компрессор при работе вибрирует. И, конечно, кроме прочностных ограничений хотелось, чтобы кейс стильно выглядел. 3D Aurora как раз и отвечал всем этим требованиям.

Все фреоновые системы, которые мне встречались, строились как блок, на котором стоит стандартный корпус. В дне корпуса приходится прорезать отверстие под испаритель. Но при такой компоновке отверстие должно быть приличных размеров. Калечить качественный корпус не хотелось, а здесь почти готовое решение.

Сразу начали вырисовываться контуры системы. Если разместить снаружи корпуса, напротив вытяжных вентиляторов, конденсор, то он будет ими отлично охлаждаться, заодно вентилируя корпус. Через готовые отверстия, предназначенные для трубок водяного охлаждения, прекрасно можно пропустить медные соединительные трубки системы. Остается только компрессор. Куда поместить его?

Недавно, экспериментируя со своей целиком самодельной фреоновой системой...

Я с удивлением обнаружил, что прекрасно слышу шум помпы, установленной в системе водяного охлаждения чипсета материнской платы. До этого я, как человек, избалованный бесшумностью своего основного компьютера ...

Считал фреонки ужасно шумными устройствами. Обычными воздушными кулерами я тоже давненько не пользовался, поэтому сравнивать было не с чем. А тут оказалось, что сквозь шум от двух не самых слабых компрессоров отчетливо слышна помпа производительностью 700 л/ч. Выходит, компрессоры шумят не так уж и сильно!

Так почему бы тогда не расположить компрессор просто на крыше корпуса? Это улучшит его охлаждение. Как выяснилось, шум от компрессора не так уж и велик. Прочности корпуса от Gigabyte для такой цели более чем достаточно. И я приступил к осуществлению задуманного.

По решению представителей фирмы Gigabyte корпус одновременно является и призом победителю конкурса. Я, естественно, пока таковым не являюсь и должен возвратить изделие неповрежденным. Поэтому задача несколько усложнялась.

Из-за этих ограничений я прикрепил компрессор L57TN не к верхней крышке корпуса, а к алюминиевой платформе, потихоньку открученной от гладильной доски. (Потом пришлось объяснять супруге, что штукенция эта, скорее всего, отвалилась сама, упала на пол в кладовке и, естественно, куда-то завалилась. Потом она, конечно, найдется... Но не буду отвлекаться.) Платформу эту с установленным компрессором через прокладку из пенофола я и поставил на крышу корпуса. Заодно это должно снизить вибрацию от работающего компрессора.

Теперь о конденсоре. Конденсор, чтобы не мешать подключению устройств к материнской плате, должен быть не шире 120-мм вентилятора, а по высоте соответствовать двум таким вентиляторам. Готовый такой не подобрать, но можно попробовать сделать самому.

Простейший конденсор можно изготовить, намотав спиралью обычную медную трубку. Но спираль имеет большие габариты. Поэтому я сделал из дерева шаблон плоской спирали и уже на него намотал медную трубку диаметром 6 мм.

По бокам спирали припаял медную проволоку с крепежными колечками, соответствующими крепежным отверстиям вытяжных вентиляторов. После я прикинул, как это будет размещаться вживую.

Крепить испаритель и всасывающую трубку к системе я решил на развальцовке. Соединительные муфты легко проходят в отверстия корпуса.

Чтобы не повредить корпус горелкой я, что смог, спаял отдельно от корпуса. Капиллярную трубку смотал в бухту, а последнюю часть пропустил через всасывающую трубку в испаритель.

Испаритель я применил самодельный. Сделан он из половинки серийного кулера Volkano7+.

Так выполняется развальцовка:

В качестве всасывающей я применил обычную медную трубку диаметром 10 мм. Не стал применять сильфон из нержавейки из-за того, что размеры корпуса позволяют помещать в него материнскую плату и без сильного отгиба испарителя. Да и не известно, кто окажется первым в конкурсе – возможно, придется вернуть корпус. Поэтому нестись в магазин за сильфоном я посчитал неразумным.

Вот что получилось.

Чтобы точнее подогнать размеры трубки, пришлось поставить в корпус материнскую плату.

Система собрана, спаяна и опрессована – пора приступать к теплоизоляции. Испаритель я изолировал полосой 3-мм пенофола, приклеив его на двусторонний скотч.

Предварительно я прикрепил к испарителю датчик от электронного термостата Dixell XR20C. На этом же устройстве будет построена и автоматика включения компьютера. Фреоновой системе для охлаждения процессора до определенной величины нужно время, иначе прилично разогнанный процессор может просто перегреться. Вышеуказанное устройство и обеспечит автоматическое включение компьютера по достижении определенной температуры на испарителе, значение которой можно установить вручную.

Существует целый ряд подобных устройств. Для использования в качестве автоматики они требуют минимальной доработки. Я использовал простейшее устройство, содержащее только контакты управления компрессором.

Работает прибор следующим образом. После включения устройство самодиагностируется, после чего замыкает контакты, которые по замыслу конструкторов и включают компрессор. По достижении на датчике определенной температуры размыкают контакты, отключая тем самым компрессор. После того как температура повысится, цикл повторяется.

В нашем случае компрессор работает постоянно, и управлять им не нужно. И требуется не выключать, а включить компьютер по достижении определенной температуры. Для этого нужно инвертировать выход устройства. Люди, хорошо разбирающиеся в электронике, без труда сами могут составить такую схемку, например, на "логике". Я же покажу, как собрать подобную схему человеку, далекому от электроники.

Мне кажется, что проще всего это можно сделать на автомобильном реле.

У реле есть несколько контактов. Два контакта – контакты катушки электромагнита. При подаче напряжения на них электромагнит притягивает коромысло, которое и замыкает одну группу контактов, размыкая другую. В нашем случае нам нужны контакты, замкнутые при отключенном питании катушки электромагнита реле. Если включить реле подобным образом,

происходит следующее. При включении терморегулятор подает напряжение на реле. Контакты, отвечающие за включение компьютера, размыкаются и остаются разомкнутыми до момента, когда термодатчик зафиксирует температуру, необходимую для включения компьютера. Тогда контакты терморегулятора размыкаются, а в реле замыкаются.

Конденсатор с сопротивлением нужен для имитации работы кнопки включения компьютера. Работает эта цепь следующим образом. При замыкании контактов Power ON конденсатором в цепи потечет ток зарядки конденсатора – аналог нажатия кнопки Power ON. После зарядки конденсатора ток в цепи прекращается – аналог отпускания кнопки Power ON. Емкость конденсатора должна быть в пределах 200-400 мкФ, сопротивление 15-20 кОм.

Для работы такой автоматики необходим источник питания напряжением 12 вольт. Также для работы фреоновой системы необходим обдув конденсора вентилятором. А как они будут работать, если блок питания включится только после того, как система должна набрать заданный минус? Поэтому специально для автоматики и работы вентиляторов нужно ставить в корпус отдельный блок питания, выдающий 12 вольт постоянного тока. Назову его блоком питания дежурного режима. К нему и подключаются автоматика и вентиляторы.

Для данной системы я собрал самодельный блок питания, но можно было купить и готовый. Нужно только обратить внимание на максимальный ток нагрузки такого блока. Он в данном случае должен составлять не менее одного ампера.

Всю эту электрическую часть я поместил в корпус от Hardcano, заменив у того лицевую панель на обычную заглушку 5.25" отсека, выкрашенную в серебристый цвет. Все-таки в пластмассе вырезать отверстия гораздо проще, чем в алюминии.

На фотографии видно, что электромонтаж не закончен. Справа от терморегулятора расположен выключатель. С его помощью и включается компрессор, да и все остальное. После сборки устанавливаем блок в отсек и подключаем к нему все провода.

Монтируем все комплектующие в корпус. Под материнскую плату для теплоизоляции я поместил кусок листового пенофола. Толщину подобрал такую, чтобы винты, крепящие материнскую плату к шасси, немного сжали этот теплоизолятор. Между платой и пенофолом не должно быть воздушных пузырей, иначе из этого воздуха при работе системы охлаждения на плату может выпасть конденсат и замкнуть контакты платы. Для гарантированного исключения этого неприятного момента плату под прокладкой я промазал слоем технического вазелина.

По отпечатку термопасты примеряем прилегание испарителя к процессору. Испаритель к процессору я прижимаю с помощью резьбовых шпилек. Корпус, как уже говорил, сверлить нельзя, и пришлось прикрутить эти шпильки прямо к отверстиям в материнской плате. Тут приключилась пара неприятностей, о которых я расскажу в заключительной части статьи.

После этого заканчиваем теплоизоляцию. Осталось самое простое – теплоизоляция трубок. Берется трубчатый рубафлекс, разрезается вдоль ножницами, одевается на трубки и склеивается. Вот и все готово для заправки системы.

Заправляю систему фреоном марки R22. Подробнее о заправке и вакуумировании написано уже более чем достаточно, поэтому не буду отнимать время и описывать эту процедуру еще раз. Напомню только, что в системе использовался компрессор марки L57TN, длина капилляра 2.9 метра. Заправляю систему до промерзания всасывающей трубки до входа в компрессор.

Система без нагрузки выдает температуру -43.8°C.

Выключаю систему. Проверяю еще раз прилегание испарителя к процессору, оказавшееся не слишком плотным. Всасывающая трубка имеет приличную жесткость и немного пружинит. К тому же теплоизоляция на испарителе немного ниже самого испарителя. Сделано это для исключения попадания воздуха в щели теплоизоляции. Притягивать же сильно испаритель к процессору я боюсь. Шпильки-то прикручены не к шасси корпуса, а к материнской плате, и есть риск выломать их из платы.

Отпечаток термопасты получается несколько "однобоким", а верхний левый угол испарителя почти не касается процессора. Но что делать, будем пробовать как есть.

Включаю систему. По достижении температуры на испарителе –20 включается сам компьютер. Автоматика отработала успешно, операционная система загружается – все нормально.

Конфигурация установленного железа такова:

  • процессор – AMD Athlon 64 3200+;
  • материнская плата – DFI Lan Party UT nF4 SLI-D;
  • видеокарта – Leadtek PX7800GT;
  • память – Digma DDR500;
  • жесткий диск – Seagate 160 Gb;
  • блок питания – Hiper R type 480 W;
  • термопаста – КПТ-8.

Первым делом проверяю систему на разгон процессора.

Но тут началась чертовщина. Дальше процессор почему-то гнаться отказался. Я снизил частоту опять до 3100 MHz, но Windows перестал грузиться. Еще более понизил частоту – опять то же самое. И тут я попробовал рукой прижать испаритель к процессору. Система загрузилась. Тогда я еще немного подтянул крепежные гайки. Система снова загрузилась при 3100 MHz, но тест S&M не проходила. Тогда я заглянул в BIOS. Там в разделе мониторинга температура процессора прыгала как гимнаст на батуте: то –14, то +14. Все ясно, причина в плохом прижиме испарителя к процессору. Видимо, от вибрации контакт процессор–испаритель меняется, и, как следствие, скачет температура, что и сказывается на стабильности работы системы.

Дальше подтягивать гайки уже откровенно страшно. Существует большая вероятность выдрать шпильки вместе с текстолитом платы. Но прижим все равно недостаточен. Выход только один: сверлить отверстия в шасси компьютера и сжимать процессор уже не между платой и испарителем, а между металлическим шасси и испарителем, без риска повреждения материнской платы. А сверлить корпус нельзя. Очень жаль, но придется остановиться на этом.

Теперь несколько слов о личных впечатлениях о работе системы. Плохой прижим испарителя – легко устраняемый дефект. Можно прямо по месту просверлить отверстия и закрепить все как следует. И если даже при плохом контакте операционная система загружается с частотой процессора 3100 МГц, то, скорее всего, при нормальном охлаждении этот результат увеличится. Теплоизоляция прекрасно справляется со своей задачей. Никаких следов конденсата не было обнаружено.

О шуме. Компрессор работает очень тихо. Если наклониться над ним и прислушаться, то слышен небольшой шелест. Основной шум исходит из открытого корпуса. Видимо, по нагнетающей трубке и через станину компрессора вибрация передается корпусу, и он издает низкочастотный гул. Я вначале был поражен, что шум идет не от компрессора, а из корпуса. Но потом разобрался, в чем дело. Судя по всему, для комфортной эксплуатации оклеивание корпуса виброшумоизоляцией обязательно.

Неплохо было бы привернуть ручки на верхнюю крышку корпуса. Вес корпуса за счет системы охлаждения увеличился, и передвигать его стало сложно. К тому же взяться не за что.

Также из-за размещения компрессора на верхней крышке корпуса центр тяжести системного блока поднялся. Поэтому теперь даже с разложенными ножками корпус немного неустойчив. Неплохо бы утяжелить нижнюю часть корпуса каким-нибудь балластом. Это поможет и снизить вибрацию корпуса.

Желательно укрепить верхнюю крышку корпуса – виброшумоизолировать и прикрепить компрессор непосредственно к ней. Также необходимо увеличить толщину резиновых прокладок, через которые конденсатор крепится к корпусу, и попробовать сделать амортизаторы между витками конденсора. Все это должно дополнительно снизить шумность системы. Хотя и в таком виде самым шумным компонентом системы является вентилятор видеокарты.

Если суммировать все вышесказанное, то мы получили удобный, качественный корпус с прекрасной вентиляцией и с возможностью встраивания не только водяной, но и фреоновой системы охлаждения. Можно сказать, мечта оверклокера. Когда смотришь на этот корпус, не оставляет чувство, что перед тобой солидная, добротная и вместе с тем красивая и стильная вещь.

Времена однотипных корпусов безвозвратно прошли. Серые, невзрачные решения сменили яркие и экстравагантные модели со множеством интересных функций и эргономичным дизайном, способные стать стильным дополнением любого интерьера. И если раньше компьютер в любом помещении, прямо скажем, мозолил глаза, то теперь он может оказаться более элегантным и красивым, чем иной предмет мебели. Он уже не только выполняет роль ящика для сборки компьютерной системы, но и выглядит достойно. К тому же выпускаемые в настоящее время компьютерные корпуса можно разделить на несколько категорий в зависимости от мощности будущей системы и сферы ее применения. Есть корпуса для геймеров (хотя многие из них отличаются от бюджетных моделей лишь внешними деталями), оверклокеров, компьютерных энтузиастов, корпуса для моддинга и создания портативных систем, а также бюджетные корпуса для офисных компьютеров. В общем пользователь непременно найдет корпус, который будет отвечать всем его требованиям.

В настоящей статье мы познакомим вас с корпусом, который можно причислить к передовым решениям, основная задача которых предложить новые идеи для всей индустрии, направить ее развитие в новое русло и заставить взглянуть на привычные проблемы по-новому. Это корпус от компании Thermaltake с загадочным названием Xpressar RCS100 - первый корпус с фреоновым охлаждением центрального процессора.

Он был представлен два года назад на выставке Computex 2008. Тогда все были очарованы новинкой от Thermaltake - миниатюрной системой охлаждения на основе фреона. Данная система многие годы использовалась в других отраслях, но для охлаждения компьютерных компонентов была предложена крупным производителем впервые.

Как известно, уже давно ведутся поиски инновационного источника охлаждения, который бы положил конец шумным кулерам. Поначалу большие надежды возлагались на жидкостное охлаждение, которое, казалось бы, соответствовало всем требованиям компьютерной индустрии. Однако такие системы не выдержали главного испытания - испытания временем: они не получили широкого распространения и, за исключением краткого ажиотажа, не вызвали никаких перемен в компьютерном мире. Некоторые производители до сих пор поставляют подобные решения на рынок, но, если говорить начистоту, вряд ли их ждет большое будущее. Такие системы остаются дорогими и, несмотря на некоторые преимущества, обладают рядом недостатков. Тем не менее безоговорочно следует признать одно: создание жидкостного охлаждения было необходимым этапом, который следовало пройти хотя бы для того, чтобы исключить из рассмотрения эту технологию. Итак, поиск идеального охлаждения продолжается. Пока подавляющее большинство пользователей продолжает применять старый и проверенный метод охлаждения компонентов; оверклокеры, работающие с экстремальными режимами современных систем, строят собственные охлаждающие контуры на основе жидкого азота. Решение от Thermaltake, которое мы рассмотрим, занимает среднюю позицию: с одной стороны, это больше, чем обычный корпус, а с другой - это серийное решение, которое не требует особых инженерных навыков для использования.

Корпус Xpressar RCS100

Серьезность изделия мы ощутили сразу же: коробка, в которую корпус бережно упакован, весит около 30 кг. При знакомстве с корпусом и его спецификацией становится понятной причина столь внушительного веса: шасси корпуса, как и его боковые панели, изготовлено из стали марки SECC толщиной 1 мм.

Основой для системы Xpressar RCS100, представляющей собой симбиоз корпуса и продвинутой системы охлаждения центрального процессора, послужил корпус знаменитой серии Xaser VI. Модель относится к классу Super Tower и имеет габаритные размеры 605x250x660 мм. Порадовало стилистическое решение корпуса: дизайнеры не стали утяжелять и без того громоздкую конструкцию большим количеством внешних «спецэффектов» типа огромных вентиляторов и светящихся панелей. В результате, несмотря на внушительные размеры, дизайн корпуса получился довольно сдержанным и аккуратным. Классический черный цвет, плавные очертания и линии удачно сочетаются с некоторыми более резкими, привычными для игровых корпусов деталями.

На верхней и нижней частях стального шасси имеются надстройки. Эти металлические конструкции, помимо защиты корпуса от внешних воздействий, выполняют целый ряд функций. В результате установки нижней надстройки корпус немного приподнимается над поверхностью, на которой стоит, за счет чего образуется воздушный зазор между нею и дном корпуса.

Верхняя надстройка выполняет роль площадки для размещения целого ряда функциональных устройств. В передней ее части находится интерфейсная панель, на которой располагаются внешние разъемы и клавиши управления. В их число вошли четыре разъема USB 2.0, два разъема eSATA, один IEEE-1394, два аналоговых разъема mini-jack для подключения наушников и микрофона, кнопки включения/выключения и перезагрузки компьютера, а также LED-индикатор работы жесткого диска. Примечательно, что столь большой набор интерфейсных разъемов и клавиш удалось разместить на довольно небольшой площади, которая, помимо всего прочего, гармонично вписалась в стилистику корпуса. Клавиша включения/выключения компьютера оформлена в виде светящейся буквы X, которая напоминает пользователю о принадлежности корпуса к серии Xaser VI. Любителям моддинга и красивых эффектов также придется по вкусу небольшая глянцевая створка, под которой скрывается вышеописанная интерфейсная панель, - при нажатии на определенную точку створка приподнимается, открывая доступ к разъемам. Такое решение весьма практично - в разъемы попадает меньше пыли. За интерфейсной панелью располагается дополнительный отсек, который становится доступен при сдвигании верхней стенки назад. Судя по всему, он предназначен для хранения мелких деталей, таких как крепежные винты и монтажные ленты.

Передняя панель корпуса закрыта внушительной алюминиевой дверцей с логотипом серии Xaser. В верхней и нижней ее частях имеются прочные выпуклые металлические решетки, которые, помимо эстетической функции, служат для забора воздуха внутрь корпуса. На передней панели расположены заглушки монтажных окон для 5,25-дюймовых устройств: четыре окна являются воздухозаборной решеткой для установленного за ними вентилятора, а остальные семь готовы к установке 5,25-дюймовых приводов. Все заглушки вынимаются без помощи инструментов, что значительно облегчает процесс сборки.

Боковые стенки имеют привычный вид: гладкая глянцевая поверхность с двумя решетками на каждой стороне и несколькими декоративными углублениями. Сняв стенки корпуса с двух сторон, мы пришли в легкое недоумение. На первый взгляд внутри корпуса творится полная неразбериха: провода, трубки, завернутые в теплоизоляцию, непонятные механизмы и устройства. Этот сумбур, как вы уже, должно быть, догадались, был внесен установкой охлаждающей системы Xpressar, к детальному изучению которой мы приступим чуть позже. А пока, сняв охлаждающую систему, рассмотрим более привычные для нас вещи.

Внутренняя компоновка корпуса выполнена на достойном уровне. В области передней стенки блока расположены две корзины для установки приводов. Верхняя корзина имеет семь монтажных мест для 5,25-дюймовых устройств, нижняя - для пяти 3,5-дюймовых приводов. Все монтажные места оборудованы специальными крепежами, которые позволяют установить то или иное устройство без помощи отвертки и других инструментов. Корзина для 3,5-дюймовых устройств имеет съемную основу и развернута к стенке корпуса для удобства извлечения приводов. Между передней стенкой и корзиной расположен 140-мм вентилятор, который продувает всю корзину насквозь и способствует быстрому отводу тепла от жестких дисков системы.

Монтажное место для установки блока питания также выполнено очень удачно: три опоры (две стационарные и одна регулируемая) позволяют жестко удерживать блок на месте и в то же время не загромождают внутреннее пространство. На верхней стенке размещен второй 140-мм охлаждающий вентилятор системы.

Особого внимания заслуживает реализация подложки материнской платы - после откручивания пары крепежных винтов она легко вынимается из корпуса вместе с задней стенкой. Это очень удобно, поскольку можно собрать систему вне корпуса, а затем просто установить подложку на место. В случае установки охладительной системы Xpressar данная конструктивная особенность корпуса и вовсе окажется незаменимой. Подложка имеет несколько отверстий для разводки кабелей питания и интерфейсных шлейфов, а зазор между подложкой и стенкой корпуса позволит уложить все кабели в нужном порядке и не занимать при этом внутренний объем корпуса.

Остается добавить, что к корпусу прилагается весьма внушительный комплект. Помимо документации, в нем обнаружились многочисленные крепежные винты для сборки системы, хомуты и ленты для разводки кабелей, отсек­переходник для монтажа привода 3,5-дюйма в 5,25-дюймовый отсек, дополнительная заглушка для FDD-привода, еще один 140-мм вентилятор, а также контейнер для хранения различных комплектующих, который можно установить в пятидюймовый отсек.

Теперь, когда мы вкратце ознакомились с устройством корпуса, рассмотрим более детально систему охлаждения - безусловно, его главную особенность.

Фреоновое сердце

Принцип работы системы охлаждения на основе фреона, несмотря на внешне сложное устройство, довольно прост. В замкнутом контуре находится газ (фреон), который в процессе фазового перехода из одного агрегатного состояния в другое охлаждает контактную площадку, присоединенную к центральному процессору компьютера. Рассмотрим данный процесс более детально.

Сначала сжиженный фреон, находясь в состоянии охлаждения и низкого давления, поступает к контактной площадке центрального процессора. Под воздействием выделяемого процессором тепла происходит фазовый переход фреона из жидкого в газообразное состояние. При помощи миниатюрного компрессора давление фреона в системе поднимается, газ разогревается, но при этом остается в газообразном состоянии. Однако в таком состоянии фреон уже способен к обратному переходу в жидкое состояние. Для этого при помощи охлаждающего блока, в основе которого лежат вентилятор, длинный контур из медных тепловых трубок и алюминиевые радиаторные пластины, температура фреона понижается, за счет чего газ конденсируется и переходит в жидкое состояние. В заключение цикла вновь образовавшаяся жидкость проходит через расширительный клапан, вследствие чего давление на данном участке падает, готовя фреон к повторному фазовому переходу в газообразное состояние. Такой цикл фазовых переходов давно работает на благо человечества в холодильных бытовых системах.

Проблемы, которые предстояло решить разработчикам Thermaltake, фактически сводились к двум: сделать систему охлаждения миниатюрной и избежать такого неприятного последствия работы фреонового охладителя, как конденсат. И если первая проблема не представляла особой сложности, то вторая заслуживала детального изучения, поскольку ее последствия являются фатальными для компьютера. Однако решение тоже оказалось довольно простым: поскольку рабочая температура центрального процессора находится в зоне так называемой комнатной температуры и выше, нет нужды охлаждать процессор сильнее. То есть задача Xpressar в данном случае сводится к поддержанию температуры в диапазоне 20-45 °С, при этом системе легко удается избежать образования внешнего конденсата. Работа компрессора, а следовательно, и скорость охлаждения контактной площадки регулируются по принципу широтно­импульсной модуляции, также известной как PWM. Иными словами, Xpressar воспринимает сигналы системы подобно обычному четырехконтактному кулеру и регулирует скорость работы охладительного контура. Это, ко всему прочему, решает проблему с охлаждением процессора в режиме «сна», когда оно практически не требуется.

Однако необходимо сделать ряд оговорок, на которые обязательно нужно обратить внимание тем, кто задумался об установке Xpressar. Во­первых, система с Xpressar предполагает установку процессора с тепловыделением более 70 Вт в нормальном режиме работы. Делается это для того, чтобы избежать переохлаждения контактной площадки и образования конденсата. Во­вторых, как указано на официальном сайте компании Thermaltake, система охлаждения требует предварительной подготовки, а именно прогрева в течение пяти минут. В-третьих, установить подобную систему можно только на системы с процессорными гнездами Intel LGA 775 и Intel LGA 1366. Кроме того, перед сборкой системы следует ознакомиться со списком рекомендуемого оборудования, которое может применяться с Xpressar.

Заключение

Система Xpressar безусловно является новым словом в компьютерной индустрии. Как у всех новинок, у нее есть свои плюсы и минусы. Главное преимущество системы заключается в высокоэффективном охлаждении, которое не могут обеспечить привычные вентиляторы, кулеры и даже жидкостные системы охлаждения для ПК. Основной недостаток - такие системы пока не актуальны для рядовых пользователей. Кулеры с активным охлаждением успешно решают проблему охлаждения любых современных систем, а стоят на порядок дешевле, занимают меньше места, их легче чинить и менять. Кроме того, система Xpressar подходит для весьма ограниченного числа плат и процессорных гнезд, что также снижает ее шансы оказаться в ПК обычного пользователя. Эта проблема возникает из-за того, что конструкция лишена какой­либо мобильности вследствие наличия в ней металлических трубок и конструкций. На наш взгляд, если система станет гибкой, то есть появится возможность подвода охлаждающей площадки в любое место системной платы, то такие решения действительно могут обрести популярность. Кроме того, подобным образом можно будет охлаждать и другие компоненты, а именно графические платы.

Возникнет ли потребность в таких системах в будущем - сказать сложно, поскольку технологии совершенствуются чересчур быстро и строить какие­либо прогнозы в данной сфере довольно тяжело. Сейчас же к Xpressar проявят интерес прежде всего оверклокеры и компьютерные энтузиасты, которые экспериментируют с экстремальными режимами работы системы. Для них решение компании Thermaltake действительно может стать панацеей, поскольку, в отличие от сложных установок на базе жидкого азота, Xpressar не требует лабораторных условий и открытых стендов. Кроме того, по слухам, компания Thermaltake продолжает разработку данной серии и в будущем может появиться более мобильное решение, которое, как сегодня СЖО (системы жидкостного охлаждения), будет занимать несколько 5-дюймовых слотов.

Если говорить о готовом решении на базе корпуса Xaser VI, то производитель выбрал очень удачную оболочку для новой системы охлаждения. Данный корпус очень удобен и позволит построить систему по любым запросам. Единственным его минусом являются большие габариты - не каждый пользователь готов поставить подобный корпус дома. Как бы то ни было, мы считаем, что стремление Thermaltake найти что­то новое, взглянуть на проблему охлаждения иначе более чем похвально и рано или поздно принесет плоды.

От редактора (ALT-F13): Так уж получилось, что статью мы смогли опубликовать аж через два месяца после ее написания. За это время автор не сидел, сложа руки, а двигался дальше в сторону более экстремального охлаждения. Сейчас Steff занимается сборкой самодельных phase-change direct-die систем, в просторечии - «фреонок». На момент написания этих строк, он продемонстрировал уже второй вариант своей системы. Впрочем, первый также прекрасно работал. Так что строки, с которых начинается текст этой статьи - «Экстремальными методами охлаждения компьютера я увлёкся совсем недавно, так что это - описание моего первого эксперимента в этой области» можно считать недействительными:)

Экстремальными методами охлаждения компьютера я увлёкся совсем недавно, так что это - описание моего первого эксперимента в этой области.

Водяное охлаждение я использовал на протяжении нескольких лет, но пришёл момент, когда захотелось большего. Можно было конечно купить готовую систему Asetek VapoChill или nVentiv Mach II (экс-Prometeia), но у фреонок есть свои недостатки. Во-первых это цена, во-вторых - способность охлаждать только один элемент системы. Для охлаждения, к примеру, видеокарты пришлось бы покупать еще одно устройство и серьезно заморачиваться с установкой.
Начинать свое знакомство с экстремальным охлаждением с постройки самодельной direct-die системы показалось мне достаточно сложной задачей, поэтому я выбрал другой путь.
Альтернативой direct-die охлаждения являются ватерчиллеры, то есть системы на базе водяного охлаждения с эффективным охлаждением хладагента, позволяющие достичь температур ниже окружающих.
Серийный ватерчиллер на сегодня есть только один, это достаточно неэффективная (около 0 градусов при загрузке 50-70Вт) и дорогостоящая ($330) система от Swiftech. Голландцы OC-Shop.com обещают начать продажи своего чиллера, но за последние полгода не слишком продвинулись к цели. Известна лишь цена продукта - 600 евро, что еще больше, нежели у продукта Swifttech.
По причине отсутствия эффективных серийных чиллеров, остаются два пути - сделать самому или купить чиллер, предназначенный для другого применения.
Существует два основных вида ватерчиллеров: на основе фазового перехода (phase-change) или с использованием модулей Пельтье. Первые представляют собой двухконтурную систему, где испаритель "фреонки" охлаждает хладагент в контуре жидкостного охлаждения. Во втором случае вода или другой хладагент проходит через ватерблок, охлаждаемый модулями Пельтье. Этот вид чиллеров компактнее и проще в изготовлении, но сильно проигрывает в температурах и соотношении "эффективность/потребляемая энергия". Так, 500Вт суммарной мощности модулей дают температуру жидкости чуть ниже нуля градусов при нагрузке около 100Вт...
Итак, решено - будем делать phase-change waterchiller с тремя охлаждаемыми элементами (процессор, северный мост, ядро видеокарты).

Компоненты системы

Проще всего собирать чиллер на базе бытового конциционера. Желательно найти кондиционер, который использует газ R22, а не R134а, так как R22 испаряется при низшей температуре. Для данных целей также подходит система от холодильника. Я использовал кондиционер 5000BTU, обычно в них устанавливаются компрессоры мощностью в 1/2 л.с.

В качестве резервуара подойдет любая ёмкость с теплоизоляцией, а в крайнем случае можно сделать самому. В моем случае - это изолированный бачок для холодной воды.

Главная головная боль тех, кто рискнул заниматься экстремальным охлаждением - теплоизоляция для предотвращения конденсата. Простых методов, описанных в статье "Теплоизоляция ватерблоков" перестанет хватать, если температура приблизится к нулю и ниже. Поэтому в ход пойдет "тяжелая артиллерия". Для теплообменников - монтажная пена-заполнитель и изолента, для трубок и шлангов - поролон с закрытыми порами. Обязательно использование диэлектрической смазки для мест установки ватерблоков (также можно использовать силиконовое покрытие, но его потом невозможно удалить с плат).

Собственно компоненты системы водяного охлаждения, ватерблоки и помпа. Мой комплект состоит из PolarFlo CPU waterblock, Danger Den Z-Chip block, Swiftech MCW50 VGA block и помпы Rio Aqua 1400.

Следующий вопрос - выбор хладагента. В данном случае я руководствовался двумя параметрами: жидкость не должна замерзать при низких температурах и иметь как можно большую теплопроводность. Для низких температур подходят антифриз (кто бы сомневался;)), водка или смесь вода+метанол. Я выбрал метанол: он ядовит (внимание!), но обладает наилучшей теплопроводностью. Один из самых простых способов его достать - купить в автомагазине жидкость для стеклоочистителя.

Сборка

Здесь фотографии помогут больше, чем длительное описание на словах.

Я начал с теплоизоляции ватерблоков. Блок заливался пеной, после высыхания ставилась изоляция на трубки и всё вместе закрывалось изолентой.

Таким образом я теплоизолировал все три ватерблока.

Осталось изолировать материнскую плату. Всё пространство вокруг сокета и чипсета намазал диэлектрической смазкой, тоже самое проделал с блоками, потом сделал прокладки из поролона. Аналогичным образом обработал заднюю сторону материнки и видеокарты, затем установил поролон и закрепил пластинами из акрила.

Когда блоки были готовы, занялся кондиционером. Полностью разобрал его, стараясь ничего не сломать.

Для легкого и безболезненного сгибания трубок в нужных местах рекомендую использовать инструмент под названием "pipe bender" (не знаю точного русского названия).

Оверклокинг - в одном этом слове заключено очень многое. Под ним можно подразумевать увеличение производительности для повседневного использования, кратковременное максимально возможное увеличение быстродействия, бенчмаркинг, улучшение температурных показателей комплектующих и многое другое. Тенденция такова, что производители (имеются в виду производители аксессуаров для оверклокеров) стараются выпускать для каждого из направлений узкоспециализированные комплектующие. Разница наиболее заметна в системах охлаждения: воздушные, водяные, с элементами Пельтье. При этом истинно универсальных продуктов, которые могли бы использоваться одновременно, например, как для повседневного использования, так и для бенчмаркинга, очень мало. Впрочем, о причинах апгрейда компьютерного охлаждения я еще скажу пару слов чуть позже.

Почему фреонка?

Для примера возьмем один из наиболее универсальных продуктов на сегодня - Scythe Infinity . Это огромных размеров суперкулер, совмещающий в себе как достаточную производительность в пассивном режиме, так и рекордные показатели при должном обдуве всей конструкции с помощью нескольких 120-мм вентиляторов. Но из-за их использования неизбежно возникает шум и в кулере накапливается много пыли. Допустим, мы приобрели систему водяного охлаждения. При грамотном подходе к выбору комплектующих от СВО можно получить намного большую эффективность с минимальным уровнем шума. Пыль на радиаторе не так остро сказывается на тепловых показателях процессоров и не оседает непосредственно на печатных платах компонентов, оказывая влияние на стабильность. Обычный пользователь годами может довольствоваться СВО, но так как в последнее время бенчмаркинг набирает популярность, наверняка среднестатистический оверклокер тоже попадет под это влияние.

Но проблема в том, что при экстремальном разгоне на водяном охлаждении получить более-менее приличные результаты невозможно. Конечно, выходы для уменьшения температуры на теплообменниках есть - можно добавить в расширительный бачок сухого льда или включить компоненты СВО в состав ватерчиллера, установить модуль Пельтье. Но практически все современные ватерблоки не приспособлены для использования с температурой хладагента ниже нуля. В силу популярности моддинга в них повсеместно используется резина, оргстекло и пластмасса. Эти материалы после нескольких бенч-сессий дают течь, трескаются. Допустим, вы заменили их более простыми и надежными (SilentChill, Waterworker - примеров много), с трудом достали силиконовые шланги, которые, в отличие от популярных пищевых трубок, не становятся полностью "деревянными". Преодолена еще одна ступень усовершенствования системы охлаждения ПК, но и у нее есть свои очевидные минусы, самый значительный из которых - относительно большие теплопритоки. В отличие от DirectDie-фреонок, хладагент в ватерчиллерах преодолевает долгий путь, неизбежно теряя холод. Из-за этого обладатель такого охлаждения вполне может осознать "нерациаонльность" его использования. Рассчитывая получить максимальную производительность, он получает лишь множество мелких, неприятных в повседневном использовании проблем. После этого остается только пользоваться системой, именуемой в простонародье фреонкой.

Принцип ее работы - очень объемный материал, достойный отдельной статьи. Если вкратце - она работает так же, как холодильник. Холод образуется вследствие того, что компрессор гоняет фреон по контуру. Из компрессора хладагент в газообразном состоянии попадает в конденсатор. Там он превращается в жидкость, после чего проходит через фильтр-осушитель в капилляр, который ведет к испарителю. На этом пути, из-за низкого давления, фреон начинает кипеть при минусовой температуре и по обратной линии попадает в компрессор уже в газообразном состоянии. Вот почему такое название - система фреонового охлаждения на основе фазового перехода. Она является полностью закрытой и не требует обслуживания или какой-либо подстройки. Об остальных плюсах и минусах такой системы и непосредственно об Asetek VapoChill LightSpeed поговорим в процессе обзора.

Цены

Отдельно о неприятном - о ценах. К сожалению, официальный дистрибьютор в Украине только один, а именно компания Nebesa . Используя свое эксклюзивное положение, он доводит цены до 1000 долларов за версию с панелями из полированного алюминия и 1050 долларов за черный цвет корпуса. Теоретически мы должны говорить "спасибо" Asetek за то, что в стандартной комплектации нет покраски, якобы пользователю предоставляется возможность не переплачивать, а приобрести в последующем панели нужного цвета (выбор невелик: черный, красный и синий) в официальном интернет-магазине компании за 140 долларов.

Там же можно купить эти же VapoChill LS по цене 906 и 977 долларов. Но в стоимость не входит доставка. А это 49 долларов и максимум 11 дней ожидания посылки. Непонятным является факт существования отдельных моделей для рынка США. На сайте указано только одно отличие, а именно - рабочее напряжение 115 вольт. При этом они дороже на 229 (198 с черным корпусом) долларов. Неужели за эти немалые деньги разработчики просто переключили тумблер внутри корпуса?!

Изделия от ECT будем считать неконкурентоспособными. Эти модели все еще можно найти в продаже (в основном на барахолках форумов), однако даже флагман Prometeia Mach II GT похвастаться достойными показателями производительности не может.

Нельзя упускать из внимания перспективную бюджетную фреонку OCZ Cryo-Z . Но, судя по заявленной цене в 500 долларов, результаты разгона будут на столь же низком уровне.

Кроме этого существуют отдельные частные изготовители. Продукты, равные по эффективности VapoChill LS, обойдутся в среднем на треть дешевле, но последующее гарантийное обслуживание на протяжении 12 месяцев при этом отсутствует. Если хочется большего - есть шанс найти у энтузиастов каскадные фреонки. На них можно получить около -100 градусов при нагрузке. Но цена самых простых вариантов может достигать 1000 евро и выше.

Осмотр

Заказывая VapoChill LS, мы должны получить относительно большую, красивую коробку белого цвета с логотипом модели. Ее размеры 60x31x40 см, вес около 18 килограмм. Но это не всегда так.

При получении посылки постарайтесь распаковать коробку и проверить боковые панели фреонки на наличие вмятин, особенно с левой стороны, где компрессор установлен практически вплотную. Если видимых повреждений нет - любые другие "поломки" можно будет списать на производителя и включать агрегат для проверки нет особого смысла.

В моем случае в магазине не удосужились закрепить компрессор крепежными винтами после тестовой проверки на работоспособность. Если до пункта назначения далеко и у вас нет машины - лучше сразу позаботиться о такси. Не советую класть коробку в багажник - только на руки, в салон. Наши дороги даже при минимальной скорости приводят к встряхиванию внутренностей компрессора, что может вывести его из строя. Также желательно не переворачивать агрегат и держать его горизонтально. Если уж пришлось это сделать, и вы не уверены в правильности транспортировки до места получения - производитель рекомендует поставить систему на 12 часов в нормальное для нее положение. За это время теоретически все масло из трубок и обмотки должно скопиться в картере. Извлечение VapoChill LS без разрезания коробки в одиночку практически невозможно, ведь блоки из полистирола очень плотно сидят внутри. Кроме непосредственно фреонки в варианте с креплением для 775-го сокета мы должны найти такие комплектующие:

  • Руководство пользователя
  • Брошюра по установке испарителя
  • Прижимная пластина
  • Тюбик диэлектрической субстанции для предотвращения коррозии процессора и сокета
  • Специальная палочка для нанесения вышеуказанной субстанции
  • Двухжильный провод для включения материнской платы
  • Два USB-кабеля
  • Chill Сontrol - плата, по сути "мозг" системы
  • Три прокладки: две над сокетом и вокруг него, другая для приклеивания к прижимной пластине
  • Два нагревательных элемента
  • Чертеж для вырезания отверстия под гофру в корпусе
  • Корпус для испарителя с внутренним изолятором из твердого материала
  • 4 бочонка, 4 пружины, 8 пластмассовых шайб, 4 пластмассовых колечка и, как вариант, 4 болта, которые используются для фиксации компрессора

Также существует вариант поставки с предустановленным китом для сокетов 754, 940, 939 и 478.

Осмотрим фреонку.

Собственно размеры корпуса - 49x21x21 см. Как мы можем видеть, декоративные алюминиевые панели выполнены в стиле корпусов Lian-Li прошлого поколения, а именно моделей: PC-60, PC-61, PC-65, PC-7, PC-12, PC-37, PC-82, PC-601, PC-0700, PC-0716a, PC-0716s, PC-6077, PC-6085A. Производитель рекомендует использовать именно эти корпуса, так как они лучше подходят с эстетической точки зрения. Проблема состоит в том, что они довольно редкие гости в отечественных магазинах. Толщина панелей – 1,5 мм. Заменить их вручную очень просто - все легко снимается с помощью шестигранника. Если захотите снять панели - будьте бдительны! На них наклеены стикеры, в случае деформации которых (они очень легко рвутся) вы теряете гарантию. Если такое произошло, по советам официальных лиц, вам необходимо отправить письмо непосредственно представителям Asetek или лучше прямо на форуме оставить пост с объяснением того, что заставило вас снять панели - и, возможно, тогда все будет хорошо.

Одна расположена сразу возле места выхода гофры, а другая - в начале левой панели посередине. Если первую можно отклеить без труда, то чтобы добраться до второй, нужно сначала открутить переднюю панель (осторожно снимайте, иначе можно поцарапать контуры дисплея) и только потом можно пытаться отклеить ее через довольно маленький проем. Также все панели отличаются просто ужасным качеством изготовления - везде заусенцы, с внутренней стороны - линии разметки и грязь. Дно испарителя отполировано хорошо, но не до зеркальной поверхности, да и его ровность также не безупречна.

Синий дисплей имеет регулируемую контрастность и белую подсветку. В выключенном состоянии выводится название "VapoChill LightSpeed by Asetek Inc.", а при работе - температура испарителя. Но последнее можно легко заменить показаниями любого термодатчика или вывести скорость одного из подключенных вентиляторов. Также предусмотрена возможность набора индивидуального текста.

Сверху на корпусе имеются 4 крепежных винта, которые используются для фиксации корпуса компьютера. Для этого требуется высверлить отверстия под них и соответственно под гофру. Вот тут и пригодится чертеж из комплекта. Делать это, конечно, не обязательно - при использовании открытого стенда достаточно лишь разместить поблизости материнскую плату. При этом наверняка возникнут проблемы с проводами из-за их недостаточной длины, короткой гофры.

Переходим к осмотру внутренних компонентов.

Первое, что разочаровало - окалина после пайки на всех трубках. В корпусе трудятся два 120 мм вентилятора Panaflo на выдув, а холодный воздух поступает через сквозные боковые отверстия. При довольно больших размерах лопастей они оказались тихими, в сравнении с турбиной серии Radeon Х1800/1950 от ATI, даже на максимальных оборотах, которые можно выставить с помощью VapoChill Control Panel . В целом вся система при работе издает приличный шум, но к нему можно привыкнуть и он не раздражает.

В данной системе используется компрессор Danfoss FR8.5CL. В отличие от устарелых Vapochill XE и Mach II GT, в которых использовался фреон R404a, VapoChill LS заправлен более эффективным 507-м. Стоковая VapoLS справляется с тепловыделением всех современных процессоров, в том числе и Quad Core. Но по причине неразвитого дизайна испарителя, разработанного небезызвестным Chilly1, конденсатором малой мощности, настройкой на другое тепловыделение, обладатели четырехъядерных процессоров должны довольствоваться ограничениями по разгону в виде 3,6 ГГц на старом степпинге и примерно 4 ГГц на новом. В противном случае из-за постоянного перегрева компрессор может выйти из строя. Чтобы выжать максимум из этих процессоров, достаточно только перенастроить VapoChill LS на нагрузку около 300 Вт, ведь феонка рассчитана всего лишь на 225 Вт - чуть меньше выделяли разогнанные Prescott в 2004 году. Также для улучшения показателей заодно можно сменить конденсатор. Снятие боковых панелей тоже улучшает температурный режим. Для бенчмаркинга очень советую дополнительно использовать кондиционер - результат примерно равен приросту от отключения одного ядра на Conroe +100 МГц.

Установка

Процесс относительно сложный. Интуитивно заставить все работать, скорее всего, не получится. Лучше всего воспользоваться подробным руководством по установке с официального сайта, но и оно имеет несколько недочетов. Стоит отметить, что использование нагревательных элементов при бенчмаркинге неоправданно. Тепловыделение процессоров не дает промораживаться ни сокету, ни изоляции испарителя. Конечно, установить их стоит, ведь отключить все можно и посредством ПО. С открытым стендом будьте бдительны - испаритель надо устанавливать только в одном возможном положении, иначе элементы на материнской плате вокруг сокета будут препятствовать плотному прилеганию изоляции. По рекомендации Asetek, диэлектрическую пасту использовать стоит только на свой страх и риск. Ничего, кроме мнимого чувства безопасности и потери товарного вида материнской платы вы от этого не получите. Вычистить сокет даже при помощи струи сжатого воздуха очень тяжело. Если уж решились на этот шаг - не используйте мягкую палочку из комплекта - ею очень легко повредить хрупкие ножки. Лучше всего это делать пальцем.

Кстати, о Chill Control. Эта маленькая плата не только координирует работу всей системы охлаждения, но и является неплохим реобасом и термометром. Кроме необходимых коннекторов на ней размещено два трехпиновых разъема для вентиляторов, 4 разъема для нагревательных элементов, 5 разъемов для подключения датчиков температуры. Первый, по умолчанию, используется встроенным в испаритель датчиком, и подключение к нему невозможно. Последнее руководство предназначено для версии 2.2, но в комплекте поставки на последних VapoChill LS идет версия 3.2. Большое количество этих деталей идет с браком. Из-за этого пользователь получает полностью неработоспособную систему. О поломке сигнализирует красный светодиод при подключенных кабелях и питании. Для ее установки в комплекте поставки имеется четыре штырька на клейкой субстанции. Они одноразовые, так что переклеивать их с места на место не получится. Хочется отметить потребность в существовании простой кнопки, при которой бы включалась фреонка, но производитель этого не предусмотрел.

Все готово для старта системы. Уже в операционной системе устанавливаем Control Panel. С помощью этой утилиты можно контролировать показатели термодатчиков и скорости вентиляторов. Также можно устанавливать следующие настройки:

  • Нужная температура на испарителе для старта компьютера
  • Температура, при которой срабатывает предупреждение о перегреве
  • Температура, при которой происходит экстренное выключение
  • Скорость вентиляторов
  • Мощность нагревателей

Практика

В технической спецификации на официальном сайте заявлено о -25,5°С при 200 Ваттах нагрузки. В режиме простоя -48°С. На практике каждый юнит будет отличается по производительности. Мне попался экземпляр, способный на -60° в простое. На рабочий режим в 20 градусов ниже нуля агрегат выходит за минуту.

Конечно, опытные люди, основываясь на этом показателе, могут сказать, какие результаты можно получить с тем или иным процессором, но лучше проверить на практике. В наличии имеются два процессора, а именно: Intel Core Duo E6400 (Conroe B2, L630A, 2 Мб кэша второго уровня) и Intel Celeron D 352 (Cedar Mill C1, 5629B) на архитектурах Core и NetBurst соответственно. Оба ядра выполнены по современной 65-нм технологии.

Конфигурация тестового стенда:

  • Материнская плата ASUS Commando
  • Оперативная память Geil GX21GB8500PDC (2х512 Мб Micron D9GCT)
  • Видеокарта Sapphire X1950XT
  • Блок питания FSP FX700-GLN

При использовании материнских плат на основе чипсета Intel P965 советую сделать включение VapoChill LS ручным из-за проблем со старт-стопами. В таком режиме электроника иногда дает сбой и фреонка работает постоянно, не обращая внимания на команды. Выключение в этом случае возможно только посредством обесточивания.

Методика тестирования представляет собой замер температуры процессора, как в номинальном режиме, так и в разгоне, при максимальном тепловыделении. Загрузкой процессоров будет заниматься утилита TAT 2.05. Доверим результирующие показания температуры программе S&M 1.9.0b. Для лучшей достоверности теплораспределитель процессора Celeron D 352 был отполирован. Поверхность Е6400, на удивление, очень ровная. Так как рабочие температуры не превышают -50°С, то будет использоваться термопаста КПТ-8. Для наглядности результаты занесены в сводную таблицу.

Default Разгон
Idle Burn Idle Burn
E6400 @ 2,13 ГГц 1,28 В/4,26 ГГц* -38 (-50) -20 (-43) -7,5 (-37) 39 (-30)
Celeron 352 @ 3,2 ГГц 1,2 В/5,5 ГГц* -42 (-48) -27,5 (-45) -13,5 (-35,4) 32 (-27)
* - использовалось напряжение 1,73 В vcore и 1,55 В vsfb

В скобках указана температура испарителя. Плюсовые температуры в нагрузке, конечно, могут пугать, но ведь это тестовая утилита, а в повседневном использовании подобные нагрузки получить невозможно. Результаты разгона процессоров не менее впечатляющие. Максимальная частота, при которой Е6400 прошел валидацию, составляет 4,45 ГГц , а Celeron D 352 – 6,1 ГГц - практически двукратный прирост частоты. Благодаря Asetek VapoChill LS я добился прохождения SuperPi 1M за 13,23 секунды на первом процессоре и за 23,91 сек. на втором.

Выводы

Плюсы:

  • Лучшая производительность
  • Стилизованный под корпуса Lian-Li внешний вид
  • Полная защита от конденсата
  • Сменные алюминиевые панели

Минусы:

  • Относительно шумная работа
  • Ограниченный разгон процессоров на ядре Kentsfield
  • Увеличенное потребление электроэнергии в сравнении с СВО/кулерами
  • Главным минусом Asetek VapoChill LS является цена

А если посчитать, во что обойдется постройка аналогичной системы фреонового охлаждения? Как минимум месяц на изучение объемного теоретического материала с разных форумов, сайтов. Мало прочитать - нужно все запомнить и осознать. Достойные комплектующие, материалы и инструменты обойдутся уже в 500 долларов. Добавьте к этому нелегкие поиски меди на испаритель и хорошего токаря. Затем долгий и в какой-то мере опасный процесс сборки с последующей настройкой. VapoChill LS - это неплохой выбор для тех, кто желает понять, что такое фреонка на практике - и только после этого принять решение, в каком плане двигаться дальше. Для бенчинга это может быть безболезненный и простой переход на стаканы для DI/LN2 (сухой лед/жидкий азот) или более сложный - постройка своей фреонки с последующей практикой и наработке знаний и умения для каскада. Ну а если Вы просто геймер или активный участник проекта Folding@Home - лучшего варианта не найти. Только с помощью Asetek VapoChill LS можно получить максимальный разгон в сочетании с повседневным использованием.