Оплата        19.06.2020   

От чего зависят величины эдс обмоток трансформатора. Особенности исполнения магнитопровода трансформатора

В 1876 г. П.И. Яблочков предложил пользоваться трансформатором для питания свечей. В дальнейшем конструкции трансформаторов разрабатывал другой русский изобретатель, механик И.Ф. Усагин, который предложил применять трансформаторы для питания не только свечей Яблочкова, но и других потребителей электрической энергии.

Трансформатор представляет собой электрический аппарат, основанный на явлении взаимоиндукции и предназначенный для преобразования переменного тока одного напряжения в переменный ток другого напряжения, но той же самой частоты. Простейший трансформатор имеет стальной сердечник и две обмотки, изолированные как от сердечника, так и друг от друга.

Обмотка трансформатора, которая подключается к источнику напряжения, называется первичной обмоткой, а та обмотка, к которой подключаются потребители или линии передач, ведущие к потребителям, называется вторичной обмоткой.

Переменный ток, проходя по первичной обмотке, создает переменный магнитный поток, который сцепляется с витками вторичной обмотки и наводит в них ЭДС.

Так как магнитный поток переменный, то индуктированная ЭДС во вторичной обмотке трансформатора также переменная и частота ее равна частоте тока в первичной обмотке.

Переменный магнитный поток, проходящий по сердечнику трансформатора, пересекает не только вторичную обмотку, но и первичную обмотку трансформатора. Поэтому в первичной обмотке также будут индуктироваться ЭДС.

Величины ЭДС, индуктирующихся в обмотках трансформатора, зависят от частоты переменного тока, числа витков каждой обмотки и величины магнитного потока в сердечнике. При определенной частоте и неизменном магнитном потоке величина ЭДС каждой обмотки зависит только от числа витков этой обмотки. Эту зависимость между величинами ЭДС и числами витков обмоток трансформатора можно выразить формулой: ?1 / ?2 = N1 / N2, где?1 и?2 – ЭДС первичной и вторичной обмоток, N1 и N2 – числа витков первичной и вторичной обмоток.

Разница между ЭДС и напряжением так мала, что зависимость между напряжениями и числами витков обеих обмоток можно выразить формулой: U1 / U2 = = N1 /N2. Разница между ЭДС и напряжением в первичной обмотке трансформатора становится особенно малой тогда, когда вторичная обмотка разомкнута и ток в ней равен нулю (холостая работа), а в первичной обмотке протекает только небольшой ток, называемый током холостого хода. При этом напряжение на зажимах вторичной обмотки равно наводимой в ней ЭДС.

Число, показывающее, во сколько раз напряжение в первичной обмотке больше (или меньше) напряжения во вторичной обмотке, называется коэффициентом трансформации и обозначается буквой k. k = U1 / U2 ? N1 / N2.

Номинальное напряжение обмоток высшего и низшего напряжений, указанное на заводском щитке трансформатора, относится к режиму холостого хода.

Трансформаторы, которые служат для повышения напряжения, называют повышающими; коэффициент трансформации у них меньше единицы. Понижающие трансформаторы понижают напряжение; коэффициент трансформации у них больше единицы.

Режим, при котором вторичная обмотка трансформатора разомкнута, а на зажимы первичной обмотки подано переменное напряжение, называется холостым ходом или холостой работой трансформатора.

Принцип действия трансформатора основан на явлении электромагнитной индукции (взаимоиндукции). Взаимная индукция состоит в наведении ЭДС в индуктивной катушке при изменении тока другой катушке.

Под воздействием переменного тока в первичной обмотке в магнитопроводе создается переменный магнитный поток

который пронизывает первичную и вторичную обмотки и индуктирует в них ЭДС

где – амплитудные значения ЭДС.

Действующее значение ЭДС в обмотках равны

; .

Отношение ЭДС обмоток называется коэффициентом трансформации

Если , то вторичная ЭДС меньше первичной и трансформатор называ­ется понижающим, при– трансформатор повышающий.

Вопрос 8 . Векторная диаграмма холостого хода идеального трансформатора.

Так как мы рассматриваем идеальный трансформатор, т.е. без рассеяния и потерь мощности, то ток х.х. является чисто намагничивающим – , т.е. он создаёт намагничивающую силу, которая создаёт поток, где– магнитное сопротивление сердечника, состоящее из сопротивления стали и сопротивления в стыках сердечника. Как амплитуда, так и форма кривой тока зависят от степени насыщения магнитной системы. Если поток изменяется синусоидально, то при ненасыщенной стали кривая тока холостого хода практически тоже синусоидальна. Но при насыщении стали кривая тока всё более отличается от синусоиды (рис. 2.7.) Кривую тока х.х. можно разложить на гармоники. Так как кривая симметрична относительно оси абсцисс, то ряд содержит гармонические только нечётного порядка. Первая гармоника токаi ( 01) совпадает по фазе с основным потоком. Из высших гармоник сильнее всего выражена третья гармоника тока i ( 03) .

Рис 2.7 Кривая тока Х.Х

Действующее значение тока холостого хода:

. (2.22)

Здесь I 1 m , I 3 m , I 5 m – амплитуды первой, третьей и пятой гармоник тока холостого хода.

Так как ток холостого хода отстаёт от напряжения на 90  , то активная мощность, потребляемая идеальным трансформатором из сети, тоже равна нулю, т.е. идеальный трансформатор потребляет из сети чисто реактивную мощность и намагничивающий ток.

Векторная диаграмма идеального трансформатора представлена на рис. 2.8.

Рис. 2.8. Векторная диаграмма идеального трансформатора

Вопрос 9 Векторная диаграмма холостого хода реального трансформатора.

В реальном трансформаторе существуют рассеяние, и потери в стали и в меди. Эти потери покрываются за счёт мощности Р 0 , поступающей в трансформатор из сети.

где I 0а – действующее значение активной составляющей тока холостого хода.

Следовательно, ток холостого хода реального трансформатора имеет две оставляющие: намагничивающую – , создающую основной потокФ и совпадающую с ним по фазе, и активную:

Векторная диаграмма реального трансформатора представлена на рис. 2.9.

Обычно , поэтому на величину тока холостого хода эта составляющая влияет мало, а больше влияет на форму кривой тока и его фазу. Кривая тока холостого хода явно несинусоидальна, и сдвинута во времени относительно кривой потока на угол, называемый углом магнитного запаздывания

При замене действительной кривой тока холостого хода эквивалентной синусоидой, можно написать уравнение напряжений в комплексной форме, где все величины изменяются синусоидально:

Учитывая, что ЭДС рассеяния,

Рис. 2.9. Векторная диаграмма реального трансформатора

Рис. 2.11. Векторная диаграмма напряжений трансформатора, режим холостого хода

Содержание статьи

ТРАНСФОРМАТОР ЭЛЕКТРИЧЕСКИЙ, не имеющее подвижных частей электромагнитное устройство, служащее для передачи посредством магнитного поля электрической энергии из одной цепи переменного тока в другую без изменения частоты. Трансформатор может повышать его напряжение (повышающий трансформатор), понижать (например, измерительный трансформатор) или передавать энергию при том же напряжении, при каком он ее получил (разделительный трансформатор). Трансформаторы обладают высоким КПД: от 97% при небольших мощностях до свыше 99% при больших. Они имеют достаточно прочную конструкцию и относительно низкую стоимость на единицу передаваемой мощности.

Трансформатор состоит из магнитопровода, представляющего собой набор пластин, которые обычно изготавливаются из кремнистой стали (рис. 1). На магнитопроводе располагаются две обмотки – первичная P и вторичная S . Для простоты обмотки показаны на разных стержнях магнитопровода. На самом деле при таком расположении обмоток переменный магнитный поток, создаваемый первичной обмоткой в магнитопроводе, недостаточно эффективно используется для наведения ЭДС во вторичной обмотке. Кроме того, такой трансформатор плохо поддавался бы регулированию. На практике первичные и вторичные обмотки располагают близко друг к другу (рис. 2).

На рис. 1 генератор переменного тока A подает ток I 0 напряжения E 1 на первичную обмотку P . В рассматриваемый момент ток в верхнем проводнике имеет положительное направление и возрастает, так что первичная обмотка создает в магнитопроводе магнитный поток F по часовой стрелке. Этот поток, пронизывающий обе обмотки, называется потоком взаимоиндукции; его изменение индуцирует электродвижущую силу (ЭДС) как в первичной, так и во вторичной обмотке. ЭДС, индуцированная в первичной обмотке, направлена против тока питания в ней и соответствует противо-ЭДС электродвигателя. ЭДС, индуцированная во вторичной обмотке, соответствует ЭДС электрогенератора и может быть подана на нагрузку.

Величина индуцированной в обмотке трансформатора ЭДС дается формулой E = 4,44 F m fN 10 - 8 В, где F m – максимальное мгновенное значение магнитного потока F в максвеллах, f – частота в герцах и N – число витков. Поскольку поток F m является общим для обеих обмоток, индуцированная в каждой из них ЭДС пропорциональна числу витков в соответствующей обмотке:

E 2 /E 1 = N 2 /N 1 .

В обычном трансформаторе напряжения на зажимах отличаются от индуцированных ЭДС лишь на несколько процентов, так что для большинства практических целей указанные напряжения фактически пропорциональны соответствующим числам витков, V 2 /V 1 = N 2 /N 1 .

Ток I 0 в отсутствие нагрузки (ток холостого хода) создает магнитный поток F и вместе с приложенным напряжением является источником потерь в магнитопроводе на гистерезис и вихревые токи. В режиме холостого хода потери I 0 2 R в меди первичной обмотки ничтожны. Ток холостого хода I 0 составляет обычно от 1 до 2% номинального тока трансформатора, хотя в низкочастотных (25 Гц) трансформаторах он может достигать величины 5 или 6%.

Если на рис. 1 переключатель X вторичной цепи замкнут, в ней течет ток. Согласно правилу Ленца, направление тока во вторичной обмотке таково, что он противодействует потоку F . Когда этот поток уменьшается, противо-ЭДС E 1 первичной обмотки тоже уменьшается и ток в ней становится больше, обеспечивая передачу мощности, которая снимается затем со вторичной обмотки. Противо-ЭДС E 1 отличается от приложенного напряжения V 1 всего на 1–2%. Напряжение V 1 постоянно. Если E 1 постоянна, то поток взаимоиндукции F также постоянен, и, следовательно, постоянна магнитодвижущая сила (число ампер-витков), действующая на магнитопровод. Таким образом, увеличение МДС вторичной обмотки при приложении нагрузки должно уравновешиваться противоположной величиной МДС первичной обмотки. Ток холостого хода мал по сравнению с токами нагрузки и обычно значительно отличается от них по фазе. Пренебрегая им, имеем

N 2 I 2 = N 1 I 1 и I 2 /I 1 = N 1 /N 2 .

Таким образом, в трансформаторе токи практически обратно пропорциональны количеству витков в соответствующих обмотках.

Зависимость напряжения от нагрузки.

На рис. 2 показан поперечный разрез одного плеча трансформатора со связанными первичной и вторичной обмотками P и S , причем первичная охватывает вторичную. Практически всегда имеется некоторая часть потока F , создаваемого первичным током, которая замыкается на одной лишь первичной обмотке P ; это первичный поток рассеяния. Аналогично существует вторичный поток рассеяния. Оба эти потока создают реактивное сопротивление рассеяния в соответствующих цепях, что в сочетании с активным сопротивлением уменьшает напряжение на зажимах вторичной обмотки с включенной нагрузкой. На рис. 3 величина V 1 представляет напряжение на зажимах первичной обмотки, а I 1 – ток в ней, запаздывающий по отношению к V 1 на q градусов. Напряжение I 1 R 01 (находящееся в фазе с I 1) и напряжение I 1 X 01 (сдвинутое по отношению к I 1 на 90° и опережающее его) суммируются векторно с V 1 , давая E 1 . В результате имеем

Опережающий ток берется со знаком минус. Если коэффициент мощности равен 1, то cosq = 1 и sinq = 0. При этом относительное изменение напряжения на первичной обмотке трансформатора при изменении нагрузки от оптимальной до режима холостого хода определяется отношением

Для вторичной обмотки имеем R 02 = R 01 (N 2 /N 1) 2 и X 02 = X 01 (N 2 /N 1) 2 . Записывая аналогично предыдущему уравнение для Е 2 , получим такое же соотношение. Потери на активном и реактивном сопротивлениях трансформатора составляют от одного до трех процентов от напряжения на зажимах (на рис. 3 они показаны в увеличенном масштабе).

КПД преобразования трансформаторов настолько близок к единице, что при прямых измерениях на входе и выходе точность оказывается недостаточной. Более точный метод определения КПД состоит в измерении потерь P c в магнитопроводе путем измерения мощности одной из обмоток без нагрузки, когда эта обмотка работает при номинальном напряжении. Тогда КПД (h ) можно получить из формулы

Автотрансформаторы.

Автотрансформатором называют трансформатор, в котором часть обмотки является общей как для первичной, так и для вторичной цепи. При низком коэффициенте трансформации автотрансформатор обеспечивает значительную экономию в стоимости и увеличение КПД по сравнению с обычным двухобмоточным трансформатором.

На рис. 4,а показан автотрансформатор с коэффициентом трансформации 2. Предполагается, что коэффициент мощности равен 1, а потери и ток холостого хода незначительны. Непрерывная обмотка ac на магнитопроводе трансформатора может быть распределена между несколькими катушками на противоположных плечах магнитопровода. Чтобы получить коэффициент трансформации 2, делается отвод b от средней точки обмотки ac , а нагрузка вторичной обмотки подсоединяется между точками b и c . Для преобразования мощности обмотка ab является первичной, а bc – вторичной. Допустим, что ток нагрузки I составляет 20 А при 50 В. Ток 10 А течет от a к b и отсюда к нагрузке dd ў . Мощность, создаваемая током 10 А при падении напряжения 50 В на участке ав , составляет 500 Вт; эта мощность наводит магнитное поле в магнитопроводе, которое проявляется в индуцированном токе I 2 = 10 А при напряжении 50 В между c и b . Таким образом, из суммарной мощности 1000 Вт на нагрузке 500 Вт передаются от a к b по проводам без трансформации, а 500 Вт – в результате трансформации. В обычном двухобмоточном трансформаторе потребовалась бы не только обмотка ac , рассчитанная на 100 В и 10 А, но также вторичная обмотка, рассчитанная на 50 В и 20 А и содержащая то же количество меди. Более того, при одной обмотке нужно меньше железа для магнитопровода (сердечника). Следовательно, в автотрансформаторе с коэффициентом трансформации 2 или 1/2 требуется вдвое меньше, чем в двухобмоточном трансформаторе, материала, да и потери сокращаются примерно наполовину.

На рис. 4,б показан автотрансформатор с первичной обмоткой на 100 В и коэффициентом трансформации 4/3. Нагрузка вторичной обмотки составляет 20 А при 75 В, что соответствует мощности на выходе 1500 Вт. Следовательно, первичный ток должен иметь величину 15 А. Отвод b сделан в точке, соответствующей трем четвертям числа витков от c к a. Ток 15 А течет от a к b и отсюда к нагрузке dd ў . Этот ток при падении напряжения 25 В на ab дает 15ґ 25 = 375 Вт магнитному полю, которое индуцирует ток между c и b 5 А при 75 В, так что подвергаются трансформации только 375 Вт, а остальные 1125 Вт мощности передаются от 100 В- к 75 В-цепи по проводам. Таким образом, чтобы осуществлять трансформацию всей заданной мощности, для указанного трансформатора достаточно всего одной четвертой от того значения мощности, которое должен иметь соответствующий двухобмоточный трансформатор.

Автотрансформаторы обычно используются для регулирования вторичного напряжения и трансформации с небольшими коэффициентами, такими, как 2 или 1/2. Они используются также для пускателей двигателей, уравнительных катушек и для многих других целей, требующих небольших коэффициентов трансформации.

Возьмем катушку с ферромагнитным сердечником и вынесем отдельным элементом омическое сопротивление обмотки как это показано на рисунке 1.


Рисунок 1. Катушка индуктивности с ферромагнитным сердечником

При подаче переменного напряжения e c в катушке, cогласно закону электромагнитной индукции, возникает ЭДС самоиндукции е L .

(1) где ψ — потокосцепление, W — число витков в обмотке, Ф — основной магнитный поток.

Потоком рассеяния пренебрегаем. Приложенное к катушке напряжение и наведённая ЭДС уравновешиваются. По второму закону Кирхгофа для входной цепи можно записать:

е c + е L = i × R обм, (2)

где R обм — активное сопротивление обмотки.

Поскольку е L >> i × R обм, то падением напряжения на омическом сопротивлении пренебрегаем, тогда е c ≈ −e L . Если напряжение сети гармоническое, е с = E m cosωt , то:

(3)

Найдем из этой формулы магнитный поток. Для этого перенесем количество витков в обмотке в левую часть, а магнитный поток Ф в правую:

(4)

Теперь возьмем неопределённый интеграл от правой и левой частей:

(5)

Так как магнитопровод считаем линейным, то в цепи протекает только гармонический ток и нет постоянного магнита или постоянной составляющей магнитного потока, то постоянная интегрирования с = 0 . Тогда дробь перед синусом является амплитудой магнитного потока

(6)

откуда выразим амплитуду входной ЭДС

E m = Ф m × W × ω (7)

Его действующее значение равно

(8) (9)

Выражение (9) называют основной формулой трансформаторной ЭДС , которая справедлива только для гармонического напряжения. При негармоническом напряжении её видоизменяют и вводят так называемый коэффициент формы, равный отношению действующего значения к среднему:

(10)

Найдем коэффициент формы для гармонического сигнала, при этом среднее значение находим на интервале от 0 до π/2

(11)

Тогда коэффициент формы равен и основная формула трансформаторной ЭДС принимает окончательный вид:

(12)

Если сигнал является последовательностью прямоугольных импульсов одинаковой длительности (меандр), то амплитудное, действующее и среднее значения за половину периода равны между собой и его k ф = 1 . Можно найти коэффициент формы и для других сигналов. Основная формула трансформаторной ЭДС будет справедлива.

Построим векторную диаграмму катушки с ферромагнитным сердечником. При синусоидальном напряжении на зажимах катушки её магнитный поток тоже синусоидальный и отстаёт по фазе от напряжения на угол π/2 как показано на рисунке 2.

Возьмем катушку с ферромагнитным сердечником и вынесем отдельным элементом омическое сопротивление обмотки как это показано на рис.2.8.

Рисунок 2.8 – К выводу формулы трансформаторной ЭДС

При включении переменного напряжения e c в катушке, cогласно закону электромагнитной индукции, возникает ЭДС самоиндукции е L .

(2.8)

где ψ – потокосцепление,

W – число витков в обмотке,

Ф – основной магнитный поток.

Потоком рассеяния пренебрегаем. Приложенное к катушке напряжение и наведённая ЭДС уравновешиваются. По второму закону Кирхгофа для входной цепи можно записать:

е c + е L = i * R обм, (2.9)

где R обм – активное сопротивление обмотки.

Поскольку е L >> i * R обм, то падением напряжения на омическом сопротивлении пренебрегаем, тогда е c ≈ – . Если напряжение сети гармоническое е с = E m cos ωt, то E m cos ωt = , откуда . Найдём магнитный поток. Для этого берём неопределённый интеграл от правой и левой частей. Получаем

, (2.10)

но так как магнитопровод считаем линейным, в цепи протекает только гармонический ток и нет постоянного магнита или постоянной составляющей, то постоянная интегрирования с = 0. Тогда дробь перед гармоническим множителем есть амплитуда магнитного потока , откуда выразим E m = Ф m *W*ω. Его действующее значение равно

Или получаем

где s – сечение магнитопровода (сердечника, стали).

Выражение (2.11) называют основной формулой трансформаторной ЭДС, которая справедлива только для гармонического напряжения. Обычно её видоизменяют и вводят так называемый коэффициент формы, равный отношению действующего значения к среднему:

. (2.12)

Найдем его для гармонического сигнала, но среднее значение находим на интервале

Тогда коэффициент формы равен и основная формула трансформаторной ЭДС принимает окончательный вид:

(2.13)

Если сигнал меандр, то амплитудное, действующее и среднее значения за половину периода равны между собой и его . Можно найти коэффициент формы и для других сигналов. Основная формула трансформаторной ЭДС будет справедлива.

Построим векторную диаграмму катушки с ферромагнитным сердечником. При синусоидальном напряжении на зажимах катушки её магнитный поток тоже синусоидальный и отстаёт по фазе от напряжения на угол π/2 как показано на рис.2.9а.

Рисунок 2.9 – Векторная диаграмма катушки с ферромагнитным

сердечником а) без потерь; б) с потерями

В катушке без потерь намагничивающий ток – реактивный ток (I p) совпадает по фазе с магнитным потоком Ф m . Если имеют место потери в сердечнике (), то угол – угол потерь на перемагничивание сердечника. Активная составляющая тока I а характеризует потери в магнитопроводе.