Оплата        06.09.2019   

Как сделать часы своими руками? Как сделать своими руками таймер из электронных часов.

Часы со светодиодным семисегментным индикатором на микросхеме К145ИК1911

История этих часов появления на сайте немного иная, от других схем на сайте.

Обычный выходной, захожу на почту,роюсь, и на хожу наш читатель Федоренко Евгений, прислал схему часов,с описанием и со всеми фотографиями.

Кратко о схеме.Это схема электронных часов своими руками выполненная на микросхеме К145ИК1911 , и время выводится на семи сегментные светодиодные индикаторы.И так его статья.Смотрим все.

Схема часов:


Для увеличения снимка, его просто стоит увеличить нажатием.И сохранить компьютер.

Не так давно передо мной встала задача – либо купить новые часы, либо собрать новые самостоятельно. Требования к часам выдвигались простые – на дисплее должны отображаться часы и минуты, должен быть будильник, причём, в качестве устройства отображения должны использоваться светодиодные семисегментные индикаторы. Не хотелось нагромождать кучу логических микросхем, а с программированием контроллеров связываться не было желания. Выбор остановил на разработке советской электронной промышленности – микросхеме К145ИК1901 .

В магазине на тот момент её не оказалось, но был аналог, в 40 выводном корпусе – К145ИК1911. Наименование выводов данной микросхемы ничем не отличается от предыдущей, различие – в нумерации.



Минусом этих микросхем является то, что они работают только с вакуумными люминесцентными индикаторами. Для обеспечения стыковки со светодиодным индикатором потребовалось построить схему согласования на полупроводниковых ключах.

В качестве драйверов строк – J1-J7 можно применить транзисторы КТ3107 с буквенным индексом И, А, Б. Для драйверов выбора сегментов D1-D4 пойдут КТ3102И, либо КТ3117А, КТ660А, а также любые другие с максимальным напряжением коллектор-эмиттер не менее 35 В и током коллектора не менее 100 мА. Ток сегментов индикаторов регулируется резисторами в коллекторных цепях драйверов строк.



Для разделения разрядов часов и минут используется точка, мигающая с частотой 1 Гц.

Эта частота присутствует на выводе микросхемы Y4, после того, как начался отсчёт времени. В данной схеме также предусмотрена возможность отображения на дисплее вместо часов и минут – минут и секунд соответственно. Переход в данный режим осуществляется нажатием на кнопку «Сек.». Возврат к индикации времени часов и минут осуществляется после нажатия кнопки «Возврат». Данная микросхема обеспечивает возможность установки двух будильников одновременно, но в данной схеме второй будильник не используется за ненадобностью. В качестве звукоизлучателя использована пьезо-пищалка со встроенным генератором, с напряжением питания 12В. Сигнал включения будильника снимается с вывода Y5 микросхемы. Для обеспечения прерывистого звучания, сигнал модулируется частотой 1 Гц, используемой для индикации секундного ритма (точки). Для более подробного изучения функционала микросхемы К145ИК1901(11) можно обратиться к документации, которую в последнее время можно без труда найти в сети. Питание микросхемы должно осуществляться отрицательным напряжением -­27В±10%. Согласно проведённым экспериментам, микросхема сохраняет работоспособность даже при напряжении -19В, причём точность хода часов при этом ничуть не пострадала.

Схема часов приведена на рисунке выше. В схеме были применены чип-резисторы типоразмера 1206, что позволяет существенно уменьшить габариты устройства. В качестве семисегментных индикаторов подойдут любые, с общим анодом.

Ну вот кончилась статься на данный момент.Которая будет еще дорабатываться и пополняться.А я выражаю благодарность ее автору-Федоренко Евгений,по всем вопросам а так же дать его почту.Пишите на Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра.

На фото прототип, собранный мной для отладки программы, которая будет управлять всем этим хозяйством. Вторая arduino nano в верхнем правом углу макетки не относится к проекту и торчит там просто так, внимание на нее можно не обращать.

Немного о принципе работы: ардуино берет данные у таймера DS323, перерабатывает их, определяет уровень освещенности с помощью фоторезистора, затем все посылает на MAX7219, а она в свою очередь зажигает нужные сегменты с нужной яркостью. Так же с помощью трех кнопок можно выставить год, месяц, день, и время по желанию. На фото индикаторы отображают время и температуру, которая взята с цифрового термодатчика

Основная сложность в моем случае - это то, что 2.7 дюймовые индикаторы с общим анодом, и их надо было во первых как то подружить с max7219, которая заточена под индикаторы с общим катодом, а во вторых решить проблему с их питанием, так как им нужно 7,2 вольта для свечения, чего одна max7219 обеспечить не может. Попросив помощи на одном форуме я получил таки ответ.

Решение на скриншоте:


К выходам сегментов из max7219 цепляется микросхемка , которая инвертирует сигнал, а к каждому выводу, который должен подключаться к общему катоду дисплея цепляется схемка из трех транзисторов, которые так же инвертируют его сигнал и повышают напряжение. Таким образом мы получаем возможность подключить к max7219 дисплеи с общим анодом и напряжением питания более 5 вольт

Для теста подключил один индикатор, все работает, ничего не дымит

Начинаем собирать.

Схему решил разделить на 2 части из-за огромного количества перемычек в разведенном моими кривыми лапками варианте, где все было на одной плате. Часы будут состоять из блока дисплея и блока питания и управления. Последний было решено собрать первым. Эстетов и бывалых радиолюбителей прошу не падать в обморок из-за жестокого обращения с деталями. Покупать принтер ради ЛУТа нет никакого желания, поэтому делаю по старинке - тренируюсь на бумажке, сверлю отверстия по шаблону, рисую маркером дорожки, затем травлю.

Принцип крепления индикаторов оставил тот же, как и на .

Размечаем положение индикаторов и компонентов, с помощью шаблона из оргстекла, сделанного для удобства.

Процесс разметки







Затем с помощью шаблона сверлим отверстия в нужных местах и примеряем все компоненты. Все встало безупречно.

Рисуем дорожки и травим.




купание в хлорном железе

Готово!
плата управления:


плата индикации:


Плата управления получилась отлично, на плате индикации не критично сожрало дорожку, это поправимо, настало время паять. В этот раз я лишился SMD-девственности, и включил 0805 компоненты в схему. Худо-бедно первые резисторы и конденсаторы были припаяны на места. Думаю дальше набью руку, будет легче.
Для пайки использовал флюс, который купил . Паять с ним одно удовольствие, спиртоканифоль использую теперь только для лужения.

Вот готовые платы. На плате управления имеется посадочное место для ардуино нано, часов, а так же выходы для подключения к плате дисплея и датчики (фоторезистор для автояркости и цифровой термометр ds18s20) и блок питания на с регулировкой выходного напряжения (для больших семисегментников) и для питания часов и ардуино, на плате индикации находятся посадочные гнезда для дисплеев, панельки для max2719 и uln2003a, решение для питания четырех больших семисегментников и куча перемычек.




плата управления сзади

Плата индикации сзади:

Ужасный монтаж смд:


Запуск

После припаивания всех шлейфов, кнопок и датчиков пришло время все это включить. Первый запуск выявил несколько проблем. Не светился последний большой индикатор, а остальные светились тускло. С первой проблемой расправился пропаиванием ножки смд-транзистора, со второй - регулировкой напряжения, выдаваемого lm317.
ОНО ЖИВОЕ!

В продаже можно встретить много различных моделей и вариантов электронных цифровых часов, но большинство из них расчитаны на использование внутри помещений, так как цифры маленькие. Однако иногда требуется разместить часы на улице - например на стене дома, или на стадионе, площади, то есть там, где они будут видны на большом расстоянии многими людьми. Для этого и была разработана и успешно собрана данная схема больших светодиодных часов, к которым можно подключить (через внутренние транзисторные ключи) LED индикаторы сколь угодно большого размера. Увеличить принципиальную схему можно кликнув по ней:

Описание работы часов

  1. Часы. В данном режиме идёт стандартный вид отображения времени. Имеется цифровая коррекция точности хода часов.
  2. Термометр. В этом случае устройство производит измерение температуры комнаты либо воздуха на улице, с одного датчика. Диапазон от -55 до +125 градусов.
  3. Предусмотрен контроль источника питания.
  4. Вывод информации на индикатор попеременно - часов и термометра.
  5. Для сохранения настроек и установок при пропадании 220В, применена энергонезависимая память.


Основой устройства является МК ATMega8, который прошивают выставляя фузы согласно таблице:

Работа и управление часами

Включив часы в первый раз, на экране появится рекламная заставка, после чего переключится на отображение времени. Нажимая на кнопку SET_TIME индикатор пойдёт по кругу из основного режима:

  • режим отображения минут и секунд. Если в этом режиме одновременно нажать на кнопку PLUS и MINUS , то произойдет обнуление секунд;
  • установка минут текущего времени;
  • установка часов текущего времени;
  • символ t . Настройка продолжительности отображения часов;
  • символ o . Время отображения символов индикации внешней температуры (out);
  • величина ежесуточной коррекции точности хода часов. Символ c и значение коррекции. Пределы установки от -25 до 25 сек. Выбранная величина будет ежесуточно в 0 часов 0 минут и 30 секунд прибавлена или вычтена из текущего времени. Более подробно читайте в инструкции, что в архиве с файлами прошивки и печатных плат.

Настройка часов

Удерживая кнопки PLUS /MINUS делаем ускоренную установку значений. После изменения каких-либо настроек, через 10 секунд новые значения запишутся в энергонезависимую память и будут считаны оттуда при повторном включении питания. Новые настройки вступают в силу по ходу установки. Микроконтроллер отслеживает наличие основного питания. При его отключении питание прибора осуществляется от внутреннего источника. Схема резервного модуля питания показана ниже:


Для уменьшения тока потребления отключаются индикатор, датчики и кнопки, но сами часы продолжают отсчитывать время. Как только напряжение сети 220В появится - все функции индикации восстанавливаются.


Так как устройство задумывалось как большие светодиодные часы, в них есть два дисплея: большой светодиодный - для улицы, и маленький ЖКИ - для удобства настройки основного дисплея. Большой дисплей расположен на расстоянии несколько метров от блока управления и соединен двумя кабелями по 8 проводов. В управление анодами внешнего индикатора индикаторов, применены транзисторные ключи по приведенной в архиве схеме. Авторы проекта: Александрович & SOIR.

Светодиодные простые часы можно сделать на дешёвом контроллере PIC16F628A. Конечно, в магазинах полно различных электронных часов, но по функциям у них может или нехватать термометра, или будильника, или они не светятся в темноте. Да и вообще, иногда прото хочется что-то спаять сам, а не покупать готовое. Чтобы увеличить рисунок схемы - клац.

В предлагаемых часах есть календарь. В нём два варианта отображения даты - месяц цифрой или слогом, всё это настрайвается после ввода даты переключением дальше кнопкой S1 во время отображения нужного параметра, термометр. есть прошивки под разные датчики. Смотрите устройство внутри корпуса:


Все знают, что кварцевые резонаторы не идеальные по точности, и в течение нескольких недель набегает погрешность. Для борьбы с этим делом, в часах предусмотрена корекция хода, которая устанавливается параметрами SH и SL . Подробнее:

SH=42 и SL=40 - это вперёд на 5 минут в сутки;
SH=46 и SL=40 - это назад на 3 минуты в сутки;
SH=40 и SL=40 - это вперёд на 2 минуты в сутки;
SH=45 и SL=40 - это назад на 1 минуту в сутки;
SH=44 и SL=С0 - это вперёд на 1 минуту в сутки;
SH=45 и SL=00 - это корекция отключена.

Таким образом можно добится идеальной точности. Хотя придётся несколько раз погонять коррекцию, пока выставите идеально. А теперь наглядно показывается работа электронных часов:

температура 29градусов цельсия

В качестве индикаторов можно поставить или светодиодные циферные сборки, что указаны в самой схеме, или заменить их обычными круглыми сверхяркими светодиодами - тогда эти часы будут видны издалека и их можно вывешивать даже на улице.

Как видно из названия, главное предназначение данного устройства - узнавать текущее время и дату. Но оно имеет ещё множество других полезных функций. Идея его создания появилась после того, как мне на глаза попались полусломанные часы с относительно большим (для наручных) металлическим корпусом. Я подумал, что туда можно вставить самодельные часы, возможности которых ограничиваются только собственной фантазией и умением. В результате появилось устройство со следующими функциями:

1. Часы - календарь:

    Отсчёт и вывод на индикатор часов, минут, секунд, дня недели, числа, месяца, года.

    Наличие автоматической корректировки текущего времени, которая производится каждый час (максимальные значения +/-9999 ед., 1 ед. = 3,90625 мс.)

    Вычисление дня недели по дате (для текущего столетия)

    Автоматический переход на летнее и зимнее время (отключаемый)

  • Учитываются високосные годы

2. Два независимых будильника (при срабатывании звучит мелодия)
3. Таймер с дискретностью 1 сек. (Максимальное время отсчета 99ч 59м 59с)
4. Двухканальный секундомер с дискретностью счета 0,01 сек. (максимальное время счета 99ч 59м 59с)
5. Секундомер с дискретностью счета 1 сек. (максимальное время счета 99 суток)
6. Термометр в диапазоне от -5°С. до 55°С (ограничен температурным диапазоном нормальной работы устройства) с шагом 0,1°С.
7. Считыватель и эмулятор электронных ключей - таблеток типа DS1990 по протоколу Dallas 1-Wire (память на 50 штук, в которой уже имеется несколько универсальных ”ключей-вездеходов”) с возможностью побайтного просмотра кода ключа.
8. Дистанционный пульт управления на ИК лучах (реализована только команда "Сделать снимок") для цифровых фотокамер "Pentax", "Nikon", "Canon"
9. Светодиодный фонарик
10. 7 мелодий
11. Звуковой сигнал в начале каждого часа (отключаемый)
12. Звуковое подтверждение нажатия кнопок (отключаемое)
13. Контроль напряжения батареи питания с функцией калибровки
14. Цифровая регулировка яркости индикатора

Может такая функциональность и избыточна, но мне нравятся универсальные вещи, ну и плюс моральное удовлетворение от того, что данные часы будут сделаны своими руками.

Принципиальная схема часов

Устройство построено на микроконтроллере АТmega168PA-AU. Часы тикают по таймеру Т2, работающему в асинхронном режиме от часового кварца на 32768 Гц. Микроконтроллер почти всё время находится в спящем режиме (индикатор при этом выключен), просыпаясь раз в секунду, чтобы добавить эту самую секунду к текущему времени и снова засыпает. В активном режиме МК тактируется от внутреннего RC осциллятора на 8 МГц, но внутренний прескалер делит её на 2, в итоге ядро тактируется от 4 МГц. Для индикации используется четыре одноразрядных светодиодных цифровых семисегментных индикатора c общим анодом и децимальной точкой. Так же имеется 7 статусных светодиодов, назначение которых следующее:
D1- Признак отрицательного значения (минус)
D2- Признак работающего секундомера (мигает)
D3- Признак включенного первого будильника
D4- Признак включенного второго будильника
D5- Признак подачи звукового сигнала в начале каждого часа
D6- Признак работающего таймера (мигает)
D7- Признак низкого напряжения батареи питания

R1-R8 - токоограничительные резисторы сегментов цифровых индикаторов HG1-HG4 и светодиодов D1-D7. R12,R13 – делитель для контроля напряжения батареи. Поскольку напряжение питания часов 3V, а белому светодиоду D9 требуется около 3,4-3,8V при номинальном токе потребления, то он светится не в полную силу (но её хватает, чтобы не споткнуться в темноте) и поэтому подключен без токоограничительного резистора. Элементы R14, Q1, R10 предназначены для управления инфракрасным светодиодом D8 (реализация дистанционного управления для цифровых фотокамер). R19, R20, R21 служат для сопряжения при общении с устройствами, имеющими интерфейс 1-Wire. Управление осуществляется тремя кнопками, которые я условно назвал: MODE (режим), UP (вверх), DOWN (вниз). Первая из них также предназначена для пробуждения МК по внешнему прерыванию (при этом индикация включается), поэтому она подключена отдельно на вход PD3. Нажатия остальных кнопок определяется при помощи АЦП и резисторов R16,R18. Если кнопки не нажимаются в течении 16 сек, то МК засыпает и индикатор гаснет. При нахождении в режиме “Пульт ДУ для фотокамер” этот интервал составляет 32 сек., а при включенном фонарике - 1 минуту. Также МК можно усыпить вручную, используя кнопки управления. При запущенном секундомере с дискретностью счета 0,01 сек. устройство не переходит в спящий режим.

Печатная плата

Устройство собрано на двухсторонней печатной плате круглой формы по размеру внутреннего диаметра корпуса наручных часов. Но при изготовлении я использовал две односторонние платы толщиной 0,35 мм. Такую толщину опять же получил отслоив её от двухстороннего стеклотекстолита толщиной 1,5 мм. Платы затем склеил. Все это делалось потому что, у меня не было тонкого двухстороннего стеклотекстолита, а каждый сэкономленный миллиметр толщины в ограниченном внутреннем пространстве корпуса часов очень ценен, да и отпала надобность совмещения при изготовлении печатных проводников методом ЛУТ. Рисунок печатной платы и расположение деталей находятся в прилагаемых файлах. На одной стороне размещены индикаторы и токоограничительные резисторы R1-R8. На обратной - все остальные детали. Имеются два сквозных отверстия для белого и инфракрасного светодиодов.

Контакты кнопок и держатель батареи выполнены из гибкой пружинящей листовой стали толщиной 0,2…0,3мм. и залужены. Ниже приведены фото платы с двух сторон:

Конструкция, детали и их возможная замена

Микроконтроллер ATmega168PA-AU можно заменить на ATmega168P-AU, ATmega168V-10AU ATmega168-20AU. Цифровые индикаторы - 4 штуки KPSA02-105 суперяркие красного цвета свечения с высотой цифры 5,08мм. Mожно поставить из этой же серии KPSA02-xxx или KCSA02-xxx. (только не зеленые – они будут слабо светиться) Другие аналоги подобных размеров с достойной яркостью мне неизвестны. У HG1, HG3 соединение катодов сегментов отличается от HG2, HG4, потому что мне так было удобнее для разводки печатной платы. В связи с этим для них в программе применена различная таблица знакогенератора. Используемые резисторы и конденсаторы SMD для поверхностного монтажа типоразмеров 0805 и 1206, светодиоды D1-D7 типоразмера 0805. Белый и инфракрасный светодиоды диаметром 3мм. На плате имеется 13 сквозных отверстий, в которые необходимо установить перемычки. В качестве температурного датчика применён DS18B20 c интерфейсом 1-Wire. LS1 – обычная пьезоэлектрическая пищалка, вставляется в крышку. Одним контактом она соединяется с платой при помощи пружинки, установленной на ней, другим соединяется с корпусом часов самой крышкой. Кварцевый резонатор от наручных часов.

Программирование, прошивка, фьюзы

Для внутрисхемного программирования на плате имеются только 6 круглых контактных пятачка (J1), так как полноценный разъем не уместился по высоте. К программатору их подключал, используя контактное устройство, сделанное из штыревой вилки PLD2x3 и напаянных на них пружинками, прижимая их одной рукой к пятачкам. Ниже прилагается фото приспособления.

Я использовал его, так как в процессе отладки приходилось много раз перепрошивать МК. При разовой прошивке проще подпаять к пятачкам тонкие провода, подключенные к программатору, а после снова отпаять. МК удобнее прошивать без батареи, но чтобы питание поступало либо от внешнего источника +3V, либо от программатора c таким же напряжением питания. Программа написана на ассемблере в среде VMLAB 3.15. Исходные коды, прошивки для FLASH и EEPROM в приложении.

FUSE-биты микроконтроллера DD1 должны быть запрограммированы следующим образом:
CKSEL3...0 = 0010 - тактирование от внутреннего RC осциллятора 8 МГц;
SUT1...0 =10 - Start-up time: 6 CK + 64 ms;
CKDIV8 = 1 - делитель частоты на 8 отключён;
CKOUT = 1 - Output Clock on CKOUT запрещен;
BODLEVEL2…0 = 111 - контроль напряжения питания отключён;
EESAVE = 0 - стирание EEPROM при программировании кристалла запрещено;
WDTON = 1 - Нет постоянного включения Watchdog Timer;
Остальные FUSE – биты лучше не трогать. FUSE–бит запрограммирован, если установлен в “0”.

Прошивка EEPROM прилагаемым в архиве дампом обязательна.

В первых ячейках EEPROM размещается начальные параметры устройства. В приведённой ниже таблице описывается назначение некоторых из них, которые можно менять в разумных пределах.

Адрес ячейки

Назначение

Параметр

Примечание

Величина напряжения батареи, при которой происходит сигнал о её низком уровне

260($104) (2,6V)

коэффициент для коррекции значения измеренного напряжения батареи

интервал времени на переход в режим сна

1 ед. = 1 сек

интервал времени на переход в режим сна при включенном фонарике

1 ед. = 1 сек

интервал времени на переход в режим сна при нахождении в режиме ДУ для фотокамер

1 ед. = 1 сек

Здесь хранятся номера IButton ключей

Небольшие пояснения по пунктам:

1 пункт. Здесь указывается величина напряжения на батарее, при которой загорится светодиод, сигнализирующий о её низком значении. Я поставил 2,6V (параметр - 260). Если нужно другое, например 2,4V, то надо записать 240($00F0). В ячейку по адресу $0000 заносится младший байт, соответственно в $0001 – старший.

2 пункт. Поскольку я не установил на плату переменный резистор для подстройки точности измерения напряжения батареи питания ввиду отсутствия места, то я ввел программную калибровку. Порядок калибровки для точного измерения следующий: изначально в данной ячейке EEPROM записан коэффициент 1024($400), необходимо перевести устройство в активный режим и посмотреть на индикаторе напряжение, и тут же замерить вольтметром реальное напряжение на батарее. Коэффициент коррекции (К), который необходимо выставить, вычисляется по формуле: K=Uр/Uи*1024 где Uр – реальное напряжение, измеренное вольтметром, Uи – напряжение которое, измерило само устройство. После подсчёта коэффициента ”K” его заносят в устройство (как это делается сказано в инструкции по эксплуатации). После калибровки у меня погрешность не превысила 3%.

3 пункт. Здесь задается параметр времени, через которое устройство перейдет в спящий режим, если кнопки не нажимаются. У меня стоит 16 сек. Если допустим надо, чтобы засыпало через 30 сек, то надо записать 30($26).

В 4 и 5 пунктах аналогично.

6 пункт. По адресу $0030 хранится код семейства нулевого ключа (dallas 1-Wire), затем его 48 битный номер и CRC. И так 50 ключей последовательно.

Настройка, особенности работы

Настройка устройства сводится к калибровке измерения напряжения батареи, как описано выше. Также необходимо засечь отклонение хода часов за 1 час, посчитать и внести соответствующее значение коррекции (процедура описана в инструкции по эксплуатации).

Устройство питается от литиевой батареи CR2032 (3V) и потребляет в режиме сна примерно 4 мкА, а в активном режиме 5…20 мА в зависимости от яркости индикатора. При ежедневном пятиминутном использовании активного режима батареи должно хватить примерно на 2….8 месяцев в зависимости от яркости. Корпус часов соединен с минусом батареи.

Считывание ключей проверялось на DS1990. Эмуляция проверена на домофонах ”МЕТАКОМ”. Под порядковыми номерами от 46 до 49(последние 4) прошиты (все ключи хранятся в EEPROM, их можно изменять перед прошивкой) универсальные ключи для домофонов. Ключ, прописанный под номером 49 открывал все домофоны ”МЕТАКОМ”, которые мне попадались, остальные универсальные ключи тестировать не довелось, их коды я взял из сети.

Дистанционное управление для фотокамер проверялось на моделях Pentax optio L20, Nikon D3000. Canon не удалось заполучить для проверки.

Инструкция пользователя занимает 13 страниц, поэтому я не стал её включать в статью, а вынес в приложение в формате PDF.

Архив содержит:
Схема в и GIF;
Рисунок печатной платы и расположение элементов в формате ;
Прошивка и исходники на ассемблере;

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
DD1 МК AVR 8-бит

ATmega168PA

1 PA-AU В блокнот
U2 Датчик температуры

DS18B20

1 В блокнот
Q1 MOSFET-транзистор

2N7002

1 В блокнот
С1, С2 Конденсатор 30 пФ 2 В блокнот
С3, С4 Конденсатор 0.1 мкФ 2 В блокнот
С5 Электролитический конденсатор 47 мкФ 1 В блокнот
R1-R8, R17 Резистор

100 Ом

9 В блокнот
R9 Резистор

10 кОм

1 В блокнот
R10 Резистор

8.2 Ом

1 В блокнот
R11 Резистор

300 Ом

1 В блокнот
R12 Резистор

2 МОм

1 В блокнот
R13 Резистор

220 кОм

1 В блокнот
R14 Резистор

30 кОм

1 В блокнот
R15, R19 Резистор

4.7 кОм

2 В блокнот
R16 Резистор

20 кОм

1