Проблемы и ошибки        01.08.2019   

Светодиодные лампы для дома - как выбрать? Кпд светодиодных ламп.

Мечта о долговечном, практичном и экономном источнике света, который светит и не греет, стала реальной благодаря стремительному развитию полупроводниковых технологий. И, несмотря на то, что на сегодняшний день стоимость светодиода сравнительно высока, он скоро вполне может вытеснить другие, традиционные источники света. Как минимум, на ближайшие 15-20 лет беззаботное будущее ему уже обеспечено.

О светодиодах как источниках света, способных не только мерцать в елочных гирляндах, но и служить для полноценного освещения фасадов, интерьеров, придомовых территорий, парков и бассейнов, заговорили лет пять-шесть назад. А практика их применения в этой сфере началась буквально пару-тройку лет назад. И хотя такой срок для глобального анализа перспектив еще сравнительно мал, этот источник света все же вполне может вытеснить другие. Хотя бы потому, что на сегодняшний день традиционные источники освещения уже достигли своей максимальной световой эффективности, а светодиоды только приблизились к 10% своих возможностей. В качестве примера хотелось бы привести тот факт, что современные светодиоды светят уже в сто раз ярче, чем самые яркие светодиоды всего пять лет назад.

К ОПРЕДЕЛЕНИЮ

Светодиод, или светоизлучающий диод, изобретен в начале 1960-х годов англичанином Ником Холоньяком. Поэтому этот источник света еще называют LED (Light Emitting Diode).
Светодиод - это органический твердотелый источник света или полупроводниковый кристалл, который выполнен из пластов полимерного полупроводника. Светодиоды не содержат стекла, нитей накаливания, сменных деталей. Они миниатюрны, компактны, мощны. К тому же, излучают уникальный по своим характеристикам свет.

О ПРЕИМУЩЕСТВАХ И НЕДОСТАТКАХ

Преимуществ у светодиодов, по сравнению с классическими источниками света, множество. Среди них:

  • Экономичность потребления электроэнергии. Потребляемая мощность светодиодов - максимум 5 Вт. Светильники с этим источником света потребляют в 5-10 раз меньше энергии, чем светильники на основе галогеновых ламп и ламп накаливания с аналогичной яркостью. КПД преобразования светодиодом электрической энергии в световую на порядок выше, чем КПД обычной лампы накаливания. Например, обычная лампа накаливания мощностью 100 Вт имеет мощность светового излучения, эквивалентную всего 3-5 Вт. А светодиодный источник света, дающий такую же мощность светового излучения, потребляет не 100, а всего 1,5 Вт. Высокая экономичность потребления светодиодом электроэнергии особенно актуальна на современном этапе, так как растущие потребности человечества в освещении требуют увеличения производства электроэнергии. Для этого нужны дополнительные капиталовложения на строительство электростанций, выработку месторождений энергоносителей и последующую утилизацию отходов производства. К тому же на государственном уровне внедряется программа по энергосбережению. А светодиоды - это альтернативный высокоэффективный источник света, способный удовлетворить спрос на освещение, не наращивая при этом производства и затрат на электроэнергию.
  • Возможность работы от низковольтного питания. Светодиодные светильники можно устанавливать в местах, где нет сетевого питания (от 2,8 В до 28 В постоянного напряжения).
  • Высокий КПД. Для светодиодного светильника КПД составляет 75-90% (свет). А на выделение тепла уходит всего лишь 10-25%. Для сравнения: КПД лампы накаливания 5-10% - это свет. Остальные 90-95% уходят на бессмысленный нагрев окружающей среды.
  • Практичность в эксплуатации. Благодаря долговечности светодиодов нет необходимости в их частой замене и обслуживании установки.
  • Достаточная мощность излучения. Яркость светодиода, превышающая неон, ведет к большому увеличению расстояния восприятия информации человеческим глазом (это связано с почти монохроматичным излучением светодиода). Например, светодиод мощностью всего 1 Вт может осветить колонну высотой 6 метров.
  • Отсутствие чувствительности к изменениям в электросетях. Время реакции на изменения напряжения питания для светодиода измеряется десятками микросекунд, что значительно меньше аналогичных показателей для ламп накаливания. Светодиоды обладают низкой инерционностью, и могут без ущерба для себя работать в импульсном режиме.
  • Широкая цветовая гамма. Благодаря тому что излучение происходит в узкой полосе спектра, КПД цветных светодиодов значительно выше, чем КПД лампы накаливания с фильтром аналогичного оттенка. Основные цвета свечения светодиодов: красный, синий, зеленый, янтарный, бирюзовый, оранжевый, белый.
  • Динамическая смена цвета. Светодиодные источники света легко управляются любой электроникой. Им можно задавать практически любые цветовые и временные программы работы. А излучение светодиода можно регулировать, создавая красивейшие динамические и световые эффекты. Помимо статичного режима работы цвета можно смешивать, получая до 16 млн. оттенков, управлять ими, а также создавать различные динамические эффекты.
  • Противопожарная безопасность и безопасность для пользователя. Светодиоды практически не нагреваются, благодаря чему не создают пожароопасной ситуации. К тому же, в их свечении отсутствуют инфракрасное и ультрафиолетовое излучение, что делает их самым безопасным для глаз источником света.
  • Экологичность. Светодиоды не содержат ртути. И не требуют после завершения срока эксплуатации дорогостоящей утилизации.
  • Широкий спектр применения. Светодиоды сравнительно малы, что позволяет использовать их практически везде, например, размещать внутри практически любого устройства, или изготовить светодиодный светильник любой формы, цвета и дизайна.

Недостатков у светодиодов практически нет. Разве что - высокая, по сравнению с традиционными источниками света, цена. Но первоначальные затраты окупаются за счет низкого потребления электроэнергии и низкого расхода финансовых средств в течение периода эксплуатации. Например, эксплуатация светодиодных ламп обходится в 2,5-3 раза дешевле, чем ламп накаливания.

О ВОЗМОЖНОСТЯХ И ПРИМЕНЕНИИ

Возможности светодиодов чрезвычайно широки. С их помощью можно:

  • получать 100% света сразу при включении;
  • обеспечивать равномерную освещенность поверхности;
  • создавать яркие насыщенные цвета;
  • создавать и регулировать яркость и цветность света;
  • создавать конструкции светильников без необходимости замены ламп а также вандалозащищенные светильники;
  • «прятать» источник света, показывая только свет и т.д.

Спектр применения светодиодов достаточно велик. Их использование, например, оптимально, когда на освещение выделяется слишком малая для других источников света мощность. Также они могут стать незаменимыми в местах, где нежелательна частая и проблемная (в связи с труднодоступностью) замена традиционных ламп. Но особый интерес они могут представлять для дизайнеров и архитекторов, поскольку позволяют реализовать их самые смелые решения.

Светодиоды применяют для оформления интерьеров и экстерьеров, вывесок, витрин и указателей, архитектурного, декоративного освещения, а также веселого декоративного светосопровождения какого-либо праздника.
Светодиоды можно монтировать в стены, ступени, подиумы; использовать в качестве подсветок паркингов, пешеходных дорожек, ландшафта, фонтанов и бассейнов.

Поскольку светодиоды легко управляются электроникой, возможны точная направленность света, управление и регулирование цветом и интенсивностью излучения, миксирование цветов (что, в особенности, может быть интересно для создания сценического света, световых картин, графики, панно).
Светодиоды, благодаря монохромности, являются уникальными генераторами цветного света. Причем, живое богатство красок достигается гораздо эффективнее, чем в случае, если бы применялся светофильтр для стандартных источников света. Таким образом, с помощью светодиодов предметы, пространство и окружение можно свободно «раскрасить» глубокими живыми и яркими красками. Или изменить его простым нажатием кнопки пульта управления, создав определенную атмосферу в помещении.

На основе светодиодов можно изготавливать светильники любого цвета, дизайна, формы и конфигурации для бытовых и промышленных нужд, а также подводного использования. Такое разнообразие предоставляет широкую свободу выбора для любого варианта применения: горизонтального и вертикального, подвешивания, встраивания и т.д.

Таким образом, при помощи светодиодных технологий можно создать неповторимый архитектурный образ или уникальную и незабываемую атмосферу в местах отдыха и развлечений; подчеркнуть индивидуальность и неповторимый облик дома и сделать комфортными условия работы в офисе.

Традиционный подход к светодиодным светильникам часто приводит к непониманию принципиальных обстоятельств. Речь идет о КПД светильников и влиянии конструкции светильников светодиодных и обычных на КПД.

КПД светильника — это отношение выходящего из светильника светового потока ко всему световому потоку, создаваемому источником света. Например, светильник в виде лампочки без осветительной арматуры, в первую очередь без отражателя, имеет КПД — 100 %. Это вовсе не значит, что это идеал, к которому надо стремиться, для светильников — меньше КПД, это ещё не значит хуже. Любые попытки сконцентрировать свет (направить) приводит к уменьшению КПД. Но способ концентрации и качество отражателя могут быть разными, и светильники будут иметь разный КПД. Сравнивать светильники по КПД можно только те, которые имеют похожее светораспределение (КСС), в этом случае КПД будет определяться качеством оптической системы светильника (отражателя, стекла). Светильники с разными КСС сравнивать по КПД не имеет смысла!

Принципиальное отличие светодиодов от ламп в том, что они светят только в одной полуплоскости. То есть светодиодный светильник без осветительной арматуры (100 % КПД) будет направленным! Угол излучения у светодиодов без вторичной оптики 90-120 градусов. Например, если сравнивать два «светильника» в виде лампочки и светодиода (100 % КПД) с одинаковым световым потоком, то на оси лампы на одинаковом расстоянии освещенность будет примерно в 2 раза меньше, чем на оси светодиода. Если же попытаться собрать световой поток лампы при помощи отражателя (добиться того же угла излучения), то в любом случае получить такую же освещенность, которую даёт светодиод не удастся из-за потерь на отражении. В этой связи замена источника света в виде лампочки на светодиодный источник в направленных светильниках будет иметь смысл, даже если эти источники имеют одинаковую световую эффективность (лм / Вт).

Если в светильнике с лампой имеется плоское стекло, то есть весь источник света «погружен» внутрь светильника, КПД светильника значительно уменьшится из-за того, что основная часть света, выходящая из светильника, будет отраженной, то есть с потерями на отражении. Для светодиодного светильника такой конструкции уменьшение КПД практически не происходит (только потери в стекле порядка 5 %), хотя интуитивно кажется, что по аналогии с ламповыми светильниками КПД должно уменьшиться.

Ламповый светильник с плоским стеклом будет иметь КПД порядка 50-60 %.

Светодиодный светильник с плоским стеклом будет иметь КПД порядка 95 %.

Это и есть основное принципиальное отличие светодиодных светильников от ламповых. Направленные светодиодные светильники гораздо более эффективны направленных ламповых светильников. Это связано в значительной степени с конструктивными особенностями светодиодов, а не только с их высокой световой эффективностью.

Понимание этого обстоятельства должно привести к пересмотру подходов в расчетах осветительных установок с применением светодиодных светильников.

Путем соответствующего выбо­ра полупроводникового материала и присадки можно целенаправленно воздействовать на характеристики светового излучения светодиодно­го кристалла, прежде всего на спект­ральную область излучения и эффек­тивность преобразования подводимой энергии в свет:

  • GaALAs - арсенид галлия алюминия; на его базе - красные и инфракрас­ные светодиоды.
  • GaAsP - фосфид арсенида галлия; AlInGaP - фосфид алюминий-ин­дий-галлий; красные, оранжевые и желтые светодиоды.
  • GaP - фосфид галлия; зеленые све­тодиоды.
  • SiC - карбид кремния; первый, ком­мерчески доступный голубой светодиод с низкой световой эффектив­ностью.
  • InGaN - нитрид индия-галлия; GaN - нитрид галлия; УФ голубые и зеле­ные светодиоды.

Для получения белого излучения с той или иной цветовой температурой имеются три принципиальные возмож­ности:

1. Преобразование излучения голубо­го светодиода желтым люминофо­ром (рисунок 1а).

2. Преобразование излучения УФ-све-тодиода тремя люминофорами (ана­логично люминесцентным лампам с так называемым трехполосным спектром) (рисунок 1б).

3.Аддитивное смешение излучений красного, зеленого и голубого светодиодов (RGB-принцип, аналогичный технологии цветного TV). Цветовой оттенок излучения белых светодиодов может быть охарактеризо­ван значением коррелированной цвето­вой температуры.

Большинство типов современных белых светодиодов выпускается на базе голубых в комбинации с конвер­сионными люминофорами, которые позволяют получить белое излучение с широким диапазоном цветовой температуры - от 3000 К (тепло-белый свет) до 6000 К (холодный дневной свет).

Работа светодиодов в схемах питания

Кристалл светодиода начинает излучать, когда в нем протекает ток в прямом направлении. Светодиоды имеют экспоненциально возрастающую вольтамперную характеристику. Обычно они питаются постоянным стабилизированным током или постоянным напряжением с предвключенным ограничивающим сопротивлением. Это предотвращает нежелательные измене­ния номинального тока, которые влияют на стабильность светового потока, а в худшем случае могут даже привести к повреждению светодиода.
При небольших мощностях используются аналоговые линейные регуляторы, для питания мощных диодов - сетевые блоки со стабилизированным током или напряжением на выходе. Обычно светодиоды включаются последовательно, параллельно или в последовательно-параллельные цепочки (см. рисунок 2).

Плавное снижение яркости (диммирование) светодиодов осуществляется регуляторами с широтно-импульсной модуляцией (ШИМ) или уменьшени­ем прямого тока. Посредством сто­хастической ШИМ можно добиться минимизации спектра помех (проблема электромагнитной совместимости). Но в данном случае при ШИМ может наблюдаться мешающая пульсация излучения светодиода.
Величина прямого тока варьируется в зависимости от модели: например, 2 мА - у миниатюризированных светодиодов плоскостного монтажа (SMD-LED), 20 мА - у светодиодов диаметром 5 мм с двумя внешними токовводами, 1 А.- у мощных светодиодов для целей освещения. Прямое напряжение UF обычно лежит в пределах от 1,3 В (ИК-диоды) до 4 В (светодио-ды на базе нитрида индия-галлия - белые, голубые, зеленые, УФ).
Между тем уже созданы схемы питания, позволяющие подсоединять светодиоды непосредственно к сети переменного тока 230 В. Для этого две ветви светодиодов включаются антипарал-лельно и подсоединяются к стандартной сети через омическое сопротивление. В 2008 году профессор П. Маркс получил патент на схему регулирования яркости светодиодов, питаемых стабилизированным переменным током (см. рисунок 3).
Южнокорейская фирма Seoul Semiconductors интегрировала схему (рисунок 3) с двумя антипараллельными цепочками, (в каждой из которых большое количество светодиодов) непосредственно в одном чипе (Acriche-LED). Прямой ток светодиодов (20 мА) ограничивается омическим сопротивлением, подключенным последовательно к антипараллельной схеме. Прямое напряжение на каждом из светодиодов составляет 3,5 В.

Энергетический КПД

Энергетическая эффективность светодиодов (КПД) - отношение мощности излучения (в Ваттах) к электрической потребляемой мощности (в светотехнической терминологии это энергетическая отдача излучения - т|е).
В тепловых излучателях, к которым относятся классические лампы накаливания, для генерации видимого излучения (света) необходим нагрев спирали до определенной температуры. Причем основная доля подводимой энергии преобразуется в тепловую (инфракрасное излучение), а в видимое излучение трансформируется только?е = 3% у обычных, и че - 7% - у галогенных ламп накаливания.


Светодиоды для применения в прикладной светотехнике преобразуют подводимую электроэнергию в видимое излучение в очень узкой спектральной области, причем в кристалле возникают тепловые потери. Это тепло должно отводиться от светодиода специальными конструктивными методами с тем, чтобы обеспечить необходимые световые, цветовые параметры и максимальный срок службы.
У светодиодов для целей освещения и сигнализации ИК- и УФ-составляющие в спектре излучения практически отсутствуют, и такие светодиоды имеют значительно более высокую энергетическую эффективность, чем тепловые излучатели. При благоприятном тепловом режиме у светодиодов в свет преобразуется 25% подводимой энергии. Поэтому, например, у белого светодиода мощностью 1 Вт примерно 0,75 Вт приходится на тепловые потери, что требует в конструкции светильника наличия теплоотводящих элементов или даже принудительного охлаждения. Такое управление тепловым режимом светодиодов приобретает особую значимость. Желательно, чтобы производители светодиодов и светодиодных модулей приводили в перечне характеристик своих изделий значения энергетического КПД


Управление телпловым режимом
Напомним, что почти 3/4 электроэнергии, потребляемой светодиодом, преобразуется в тепло и только 1/4 - в свет. Поэтому при конструировании светодиодных светильников решающую роль в обеспечении их максимальной эффективности играет оптимизация теплового режима светодиодов, проще говоря, интенсивное охлаждение.

Как известно, передача тепла от нагретого тела осуществляется за счет трех физических процессов:

1. Излучение


Ф = W? =5,669?10-8?(Вт/м2?К4)??А?(Тs4 – Та5)
где: W? – поток теплового излучения, Вт
? – коэффициент излучения
Тs – температура поверхности нагретого тела, К
Та – температура поверхностей, ограничивающих помещение, К
А – площадь излучающей тепло поверхности, м?

2. Конвекция


Ф = ?? А?(Тs-Та)
где: Ф – тепловой поток, Вт
А – площадь поверхности нагретого тела, м?
? – коэффициент теплопередачи,
Тs – температура граничной теплоотводящей среды, К
Та – температура поверхности нагретого тела, К
[для неполированных поверхностей? = 6…8 Вт /(м?К)].

3. Теплопроводность


Ф = ?T?(А/l) (Тs-Та) =(?T/Rth)
где: Rth= (l / ?T?A) – тепловое сопротивление, K/Вт,
Ф – тепловая мощность, Вт
A – поперечноесечение
l-длина - ?T – коэффициент теплопроводности, Вт/(м?К)
для керамических элементов охлаждения?T=180 Вт/(м?К),
для алюминия – 237 Вт/(м?К),
для меди – 380 Вт/(м?К),
для алмаза – 2300 Вт/(м?К),
для углеродных волокон – 6000 Вт/(м?К)]

4. Тепловое сопротивление


Суммарное тепловое сопротивление рассчитывается как:

Rth парал.общ.=1/[(1/ Rth,1)+ (1/ Rth, 2)+ (1/ Rth,3)+ (1/ Rth,n)]

Rth последобщ. = Rth,1 + Rth, 2 + Rth,3 +....+ Rth,n

Резюме
При дизайне светодиодных светильников необходимо принять все возможные меры для облегчения теплового режима светодиодов за счет теплопроводности, конвекции и излучения. Поэтому первоочередная задача при конструировании светодиодных светильников – обеспечить отвод тепла за счет теплопроводности специальных охлаждающих элементов или конструкции корпуса. Тогда уже эти элементы будут отводить тепло излучением и конвекцией.
Материалы теплоотводящих элементов по возможности должны иметь минимальное тепловое сопротивление.
Хорошие результаты были получены с теплоотводящими узлами типа “Heatpipes”, обладающими экстремально высокими теплопроводящими свойствами.
Один из лучших вариантов теплоотвода – керамические подложки с предварительно нанесенными токоведущими трассами, непосредственно к которым подпаиваются светодиоды. Охлаждающие конструкции на базе керамики отводят примерно в 2 раза больше тепла по сравнению с обычными вариантами металлических охлаждающих элементов.
Взаимосвязь электрических и тепловых параметров светодиода проиллюстрирована на рис. 4.
На рис. 5 показана типовая конструкция мощного светодиода с алюминиевым охлаждающим элементом и цепь тепловых сопротивлений, а на рис. 6-8 – различные методы охлаждения.

Излучение

Поверхность осветительного прибора, на которой монтируется светодиод или модуль с несколькими светодиодами не должна быть металлической, поскольку металлы обладают очень низким коэффициентом излучения. Поверхности светильников, контактирующие со светодиодами, должны, по возможности, иметь высокий спектральный коэффициент излучения?.



Конвекция

Желательно иметь достаточно большую площадь поверхности корпуса светильника для беспрепятственного контакт с потоками окружающего воздуха (специальные охлаждающие ребра, шероховатая структура и т.д.). Дополнительный отвод тепла могут обеспечить принудительные меры: минивентиляторы или вибрирующие мембраны.



Теплопроводность

Из-за очень небольшой площади поверхности и объема светодиодов необходимое охлаждение за счет излучения и конвенции не достигается.

Пример расчета теплового сопротивления для белого светодиода


UF= 3,8 В
IF = 350 мА
PLED = 3,8 В? 0,35 A = 1,33 Вт
Поскольку оптический КПД светодиода равен 25%, то только 0,33 Вт преобразуется в свет, а остальные 75% (Pv=1 Вт) – в тепло. (Зачастую в литературе при расчете теплового сопротивления RthJA допускают ошибку, принимая, что Pv = UF ? IF = 1,33 Вт – это неверно!)

Максимально допустимая температура активного слоя (p-n – перехода – Junction) TJ = 125°C (398 K).

Максимальная окружающая температура ТA = 50°С (323 К).

Максимальное тепловое сопротивление между запирающим слоем и окружением:

RthJA= (TJ – TA)/ Pv = (398 K – 323K)/1 Вт = 75 К/Вт

Согласно данным производителя, тепловое сопротивление светодиода

RthJS = 15 К/Вт


Необходимое тепловое сопротивление дополнительных теплоотводящих элементов (охлаждающие ребра, теплопроводящие пасты, клеющие компаунды, плата):

RthSA= RthJA – RthJS = 75-15 = 60 К/Вт

На рис. 9 пояснены тепловые сопротивления для диода на плате.
Взаимосвязь температуры активного слоя и теплового сопротивления между запирающим (активным) слоем и точкой припоя выводов кристалла определяет формула:

TJ= UF ? IF ? ?e? RthJS + ТS

где ТS – температура, измеренная в точке припоя выводов кристалла (в данном случае она равна 105°С)

Тогда, для рассматриваемого примера с белым светодиодом мощностью 1,33 Вт температура активного слоя определится как
TJ = 1,33 Вт? 0,75 ? 15 К/Вт + 105°С = 120°С.

Деградация излучательных характеристик из-за температурной нагрузки на активный (запирающий) слой.
Зная реальную температуру в точке припоя и располагая данными, предоставленными изготовителем, можно определить тепловую нагрузку на активный слой (TJ) и ее влияние на деградацию излучения. Под деградацией понимается снижение светового потока в течение времени эксплуатации светодиодного чипа.

Влияние температуры запирающего слоя
Принципиальное требование: максимально допустимая температура запирающего слоя превышаться не должна, так как это может привести к необратимым дефектам светодиодов или к спонтанным выходам их из строя.
В связи со спецификой физических процессов, протекающих во время функционирования светодиодов, изменение температуры запирающего слоя TJ в диапазоне допустимых значений оказывает влияние на многие параметры светодиодов, в том числе на прямое напряжение, световой поток, координаты цветности и срок службы.

Недавно на одном сайте увидел калькулятор окупаемости светодиодных светильников. Мне сразу стало интересно, а через сколько лет окупит себя светодиодный светильник, поскольку на данный момент не каждый заказчик стремится установить у себя светодиодные светильники.

Если верить калькулятору, то офисный светодиодный светильник должен окупить себя уже через 3,68 года. Сейчас проверим на самом ли деле у нас получится такая цифра.

Для офиса НЕКИЙ производитель светодиодных светильников изготавливает встраиваемый светильник мощностью 42Вт, со световым потоком 3500лм, КПД=94%, индекс цветопередачи 80. Стоит такой светильник 175$. Данный светильник полностью заменяет светильник с люминесцентными лампами ЛВО 4×18, который стоит всего 25$. Как видим, светодиодный светильник для офисных помещений в 7 раз дороже светильника с люминесцентными лампами.

Для начала приведем сравнение двух светильников.

Светодиодный светильник
Аналог ЛВО11-4×18-503 СдВБ-15-196-042-022
Тип лампы Т8 Светодиоды
Потребляемая мощность, Вт 72 42
Световой поток, лм 4×1300 (5200) 3500
КДП, % 68 94
Срок службы, ч 20000 70000
Цена, $ 25 175

Теперь на основе этих данных посчитаем годовой расход электроэнергии и через сколько лет оправдает себя светодиодный светильник. В году у нас 2000 рабочих часов (у офисного работника). Люминесцентные лампы будем менять через 10000 часов, т.к. световой поток начнет падать.

Светильник с люминесцентными лампами Светодиодный светильник
0,072*2000=144 0,042*2000=84
Стоимость электроэнергии в год (0,05$*кВт-РБ), $ 144*0,05=7,2 84*0,05=4,2
Стоимость электроэнергии в год (0,1$*кВт-РФ), $ 144*0,1=14,4 84*0,1=8,4
Экономия в год на электроэнергии РБ, $ 7,2-4,2=3,0
Экономия в год на электроэнергии РФ, $ 14,4-8,4=6,0
Покупка светильников, $ 25 175
Обслуживание светильника в течение 10000 часов (5лет), $
Экономия в год с учетом расходных материалов РБ, $ (3,0*5+8)/5=4,6
Экономия в год с учетом расходных материалов РФ, $ (6,0*5+8)/5=7,6
Время окупаемости РБ (175-25)/4,6=32,6 года
Время окупаемости РФ (175-25)/7,6=19,7 года

Получился совсем плачевный результат.

Почему же тогда так получилось?

Все очень просто. Время окупаемости светодиодного светильника зависит от цены на электроэнергию и времени эксплуатации. Чем выше стоимость кВт*ч и количество часов работы, тем меньше срок окупаемости.

Проведя некоторые обратные вычисления, я понял, что производители светодиодных светильников совсем не жалеют нас (проектировщиков в том числе, т.к. мы тоже офисные работники), заставляют работать нас без выходных и установили на нас максимальный расчетный тариф за электроэнергию В общем они брали все по максимуму, чтобы получить минимальный срок окупаемости.

В этом случае у нас будет следующий результат .

Светильник с люминесцентными лампами Светодиодный светильник
Расход электроэнергии в год, кВт 0,072*2920=210,24 0,042*2920=122,64
Стоимость электроэнергии в год (0,14$*кВт), $ 210,24*0,14=29,4 122,64*0,14=17,2
Экономия в год на электроэнергии, $ 29,4-17,2=12,2
Покупка светильников и ламп, $ 25 175
Обслуживание светильника в течение 10000 часов (3 года), $ 4 – стоимость ламп; 4 – утилизация, замена ламп.
Экономия в год с учетом расходных материалов, $ (12,2*3+8)/3=14,9
Время окупаемости (175-25)/14,9=10 год

Честно говоря, я немного расстроен. Ожидал срок окупаемости светодиодного светильника хотя бы 5 лет. Производитель обещает 3,68 года, а на самом деле около 10 лет. Причем 10 лет, при условии, что офис будет работать без выходных и по максимальному расчетному тарифу.

Заявленные 70000 часов для светодиодного светильника это лишь теория, а на практике кто его знает, как он поведет себя через 5-10 лет.

Я думаю, к тому времени как он себя окупит, а по моим расчетам это 10 лет, этот светильник уже морально устареет, хоть и будет находиться в работоспособном состоянии.

В нынешних условиях производители светодиодных светильников будут только ЗА повышение цен на электроэнергию, поскольку применение светодиодных светлиьников на пряму зависит от цены на электроэнергию.

Светодиодные светильники выгодно ставить там, где высокая стоимость электроэнергии. Думаю это более актуально для стран Европы.

Может я не все учел или у вас имеется более точная информация по данной теме?

P.S. Я совсем не против светодиодных светильников. Просто я люблю цифры. На мой взгляд нужно еще снижать стоимость светодиодного светильника, чтобы его можно было применять повсеместно. У светодиодного светильника много достоинств по сравнению с люминесцентным светильником, но и есть один большой недостаток – цена.

Технико-экономические показатели светильников

На ТЭП светильника существенным образом влияет тип и качество исполнение оптических систем светильника. Уровень КПД зависит от коэффициента мощности ПРА и оптического эффективности устройства, а так же состояния оптики. Ряд отечественного оборудования и большинство зарубежных образцов имеют высокие показатели коэффициентов. Однако какими бы хорошими эти показатели не были, оптика (свето-прозрачная крышка, рассеивающая или собирающая линза и отражающие рефлекторы) в процессе эксплуатации загрязняется, претерпевает значительные изменения структур поверхностей, что приводит к ухудшению параметров. Это утверждение касается любых типов светильников, независимо от того, используется ПРА или нет.

В новых светильниках оптический КПД колеблется в пределах от 60 до 95%. В результате практических наблюдений и специальных лабораторных обследований выяснилось, что в период 1 года эксплуатации оптический КПД снижается до 35% от своей первоначальной величины (причем основной уровень потерь приходится на самые первые дни эксплуатации). В течение 2-х лет оптика теряет от 50 до 65% от своего первоначального уровня КПД.

Наблюдаемые приборы эксплуатировались на улице (уличное освещение) на территории Республики Татарстан, в обычных не экстремальных условиях. Понятно, что если условия эксплуатация предполагают работу осветительного оборудования в условиях повышенной запыленности или загазованности, то оптический КПД снижается более быстрыми темпами.

*Замеры оптических и электрических свойства производились силами специалистов ГК «ТАТЛЕД» на собственной базе.

(Световой поток, Ф ; Распределение общего светового потока по 2-м любым уровням силы света или углам излучения в пределах диаграммы направленности, Ф(Ω) ,

Данные об измерительном оборудовании в Приложении 1.

Как правило, задача защиты светильников (особенно их внутреннего объема) от неблагоприятных факторов воздействия внешней среды решается производителями осветительного оборудования путем уплотнения между корпусами закрытых световых приборов и защитными стеклами, а также уплотнения узлов ввода проводов.

Однако, при более детальном изучении проблемы выяснилось что этого недостаточно для обеспечения должной изоляции внутреннего объема светильника. Согласно законам термодинамики, в закрытых световых приборах наблюдается эффект «дыхания», связанный с изменением давления воздуха, заключенного во внутреннем изолированном объеме светового прибора. При включении источника света прибора и нагревании заключенного внутри прибора воздуха, возрастает давление, а при выключении давление падает. В результате даже незаметного дефекта уплотнения, происходит всасывание загрязненного воздуха во внутреннюю полость светильника. Это явление представляет возможность оседания пыли, волокон и коррозионных частиц на колбе лампы, отражателе, внутренней поверхности, защитном стекле, рассеивателе и контактных узлах патронов. В результате осветительная способность приборов падает и они сами выходят из строя в течение короткого периода эксплуатации (например, в некоторых зонах металлургического производства осветительные приборы заменяются ежегодно, существенно увеличивая затраты на эксплуатацию системы освещения).

Светодиодные светильники лишены вышеуказанного недостатка. Дело в том, что используемые в таких светильниках светодиоды не требуют отражающих рефлекторов.

В световых приборах, использующих обычные источники света, встраивается отражающий рефлектор, форму которого не всегда удается выстроить в соответствии с требованиями светового распределения. В отличии от обычных светильников светодиодные приборы используют источники света, излучающие световую энергию не во всех направлениях, а в одном. Направленность и интенсивность светового потока регулируется расположением осей светового излучателя в заданном направлении и их количеством. Угол раскрытия испускаемого излучения регулируется с помощью вторичной оптики (микролинзы).

Таким образом, светодиодный светильник лишен недостатков, вызываемых потерями в оптических системах, используемых всенаправленные источники света. То-есть показатель отношение Люмен/Ватт у светильников на СИД более привлекательное.

В люменах измеряется поток во всех направлениях, т.е. в телесном угле 4пи. Один люмен равен световому потоку, испускаемому точечным изотропным источником, c силой света, равной одной канделе, в телесный угол величиной в один стерадиан (1 лм = 1 кд × ср)

Стерадиан равен телесному углу с вершиной в центре сферы радиусом R, вырезающему на поверхности сферы площадь, равную площади квадрата со стороной R (то есть R²). Если такой телесный угол имеет вид кругового конуса, то угол его раскрытия составит приблизительно 65,541° или 65°32′28″).

Если предположить, что расчетный конус направлен непосредственно на освещаемый объект, то остальная часть световой энергии попадает на освещаемую поверхность посредством рефлектора или оптических линз.
Кандела (от лат. candela — свеча), единица силы света Международной системы единиц. Обозначение: русское кд, международное cd. Кандела (единица силы света) — сила света, испускаемого с площади 1/600000 м2 сечения полного излучателя в перпендикулярном этому сечению направлении при температуре излучателя, равной температуре затвердевания платины (2042 К) при давлении 101325 н/м2.

Исходя из вышеизложенного для сравнения ТЭП светильников с обычным источником света и светодиодным светильником, необходимо вводить поправку на различие КПД оптических систем.

Рассмотрим в качестве конкретного примера получивший широкое распространение осветительный прибор РКУ15-250 с использованием лампы ДРЛ и светильник на СИД.

Для определения реальных светотехнических показателей производим следующие вычисления:

По данным завода-производителя КПД светильника РКУ15 равен 65%. Источник света (лампа ДРЛ-250 (В)) имеет уровень светового потока 13 200 Люмен. Получаем уровень реально излучаемого прибором светового потока: 65% от 13 200 lm = 8 580 Люмен.

Так же необходимо учесть ускоренную потерю уровня светового потока ДРЛ в первые 1000 часов наработки. Из приведенного ниже графика (по данным ВНИСИ) видно, что в течение первых 1000 часов эксплуатации уровень излучаемого светового потока снижается на 15-20% от начальной величины. Отсюда получаем Фv = 6 864 Люмен. В течение дальнейшего срока эксплуатации деградация происходит менее интенсивно.

Кривая уровня светового потока СИД, используемых в светодиодных светильниках, также имеет неравномерную характеристику. Однако, как видно из приведенного ниже графика (предоставлено OSRAM Opto Semiconductors), после кратковременного спада уровень постепенно повышается (диоды Golden Dragon plus).

(«Светотехника», Лихославль)

с лампой ДРЛ-250 (В)

(«Лисма», Саранск)

SVETECO 48/6624/80/Ш

(«Ledel», Казань)

Светодиоды OSRAM

(«Osram», Германия)

Параметры лампы,

(без учета оптических потерь в светильнике)

номинальное напр. В - 130

номинальная мощность, Вт - 250

световой поток, Люм - 13 200

продолжительность гор. ч - 12 000

Параметры СИД (48 шт)

(оптических потерь в светильнике нет)

номинальное напр. В - 220 ± 22

номинальная мощность, Вт - 80

световой поток, Люм - 6 624

продолжительность гор. ч - 100 000

Общая стоимость 4 500 руб.

Общая стоимость 15 000 руб.

Длительность эксплуатации в год, ч - 2 920 (при 8 часов в сутки)

730

Количество потребленной энергии в год, кВт/час - 233

потребление в год - 2 190 руб.

потребление в год - 699 руб.

при стоимости 3 руб. - кВт/час

Расходы на обслуживание светильника, ПРА, замену и утилизацию ламп, руб. в год - 600 руб.

Расходы на обслуживание, руб. в год - 0 руб.

Итого расходов на приобретение и эксплуатацию в течение 1 года - 7 290 руб.

Итого расходов на приобретение и эксплуатацию в течение 1 года - 15 699 руб.

Дальнейшая эксплуатация,

руб. в год - 2 790 руб.

Дальнейшая эксплуатация,

руб. в год - 699 руб.

Всего затрат за 5 лет - 18 450 руб.

в том числе за электроэнергию - 10 950 руб.

при стоимости 3 руб. - кВт/час

Всего затрат за 5 лет - 18 495 руб.

в том числе за электроэнергию - 3 495 руб.

при стоимости 3 руб. - кВт/час

минимальная

Возможность дальнейшей эксплуатации:

выработано 40% ресурса

График стоимостей владения приборов в течение 5 лет

Данные приведены с учетом неизменной стоимости электроэнергии. Учитывая прогнозируемый Минэкономразвития рост тарифов точка пересечения кривых уровня затрат наступит ранее срока, полученного расчетами (предположительно 4 года).

Пример использования светильников ДРЛ и светодиодных светильников для освещения автодороги. Благодаря более рационально распределенной световой энергии полотно дороги, освещенное светодиодными светильниками (рисунок слева) залито более равномерно.

Вывод: оптические свойства светильников, использующих СИД, заметно превосходят по светотехническим параметрам светильники с обычными источниками света.

ПУСКОРЕГУЛИРУЮЩАЯ АППАРАТУРА (ПРА).

Пускорегулирующая аппаратура (ПРА) — это специальное изделие, с помощью которого осуществляется запуск и поддержание работы источника света.

Конструктивно ПРА может быть выполнено в виде единого блока или нескольких отдельных.

По типу источника света ПРА делятся:

  • ПРА для газоразрядных ламп
  • ПРА для галогенных ламп (трансформаторы)
  • ПРА для светодиодов (LED драйверы)

По типу устройства и функционирования ПРА бывают:

  • электромагнитные (ЭмПРА)
  • электронные (ЭПРА)

На эффективность осветительного приборы, помимо параметров оптики существенно оказывает параметр коэффициента мощности ПРА.

Для ПРА разрядных ламп этот параметр (по данным заводов-изготовителей) составляет от 0,6 до 0,9. Наиболее эффективными сегодня являются электронные ПРА, так как с помощью электроники возможность осуществлять зажигание и контролировать свечение можно осуществлять гораздо эффективнее, по сравнению с индуктивными дросселями. ПРА для разрядных ламп выпускается давно и, не смотря на продолжающееся совершенствование, хорошо известен потребителям, поэтому не рассматривается подробно в данной работе.

В светодиодных светильниках ПРА (LED-драйвер) выполняет функцию стабилизатора постоянного тока, стабилизаторов напряжения и диммирование (специализированные).

Драйверы можно подразделить на две основные группы:

1. Блоки питания светодиодов с постоянным стабилизированным выходным током (LED драйверы) - предназначены для питания светодиодов (или светодиодных светильников) соединенных последовательно.

2. Блоки питания со стабилизированным постоянным напряжением (светодиодные трансформаторы) - предназначены для питания групп светодиодов, которые уже снабжены ограничивающим ток резистором, обычно это светодиодные ленты, линейки или панели.

Помимо этого, поскольку промышленностью выпускаются светодиоды, рассчитанные на разные значения номинального тока, драйверы светодиодов подразделяются ещё и по этому параметру.

Наиболее распространенные значения тока - это 350 и 700 миллиампер.

Коэффициента мощности LED-драйверов у большинства производителей составляет значение 0,95. Отдельный светодиод требует постоянного напряжения 2-4В и несколько десятков mA тока. Последовательный массив светодиодов требует более высокого напряжения. LED-драйвер является источником этого напряжения. Он трансформирует питание бытовой электросети 110-240В переменного напряжения в низковольтное постоянное для питания LED систем.

К качеству ПРА для СИД предъявляются повышенные требования, так как СИД, являясь полупроводниковым устройством, чрезвычайно требователен к качеству электропитания. Отклонения от заданных параметров в пределах 2-5% резко сказывается на светотехнических и электрических свойствах СИД, и может привести к значительному сокращению срока жизни кристалла или люминофора.

Исходя из вышесказанного понятно, что качество ПРА для СИД изначально высокое, и соответственно является изделием, имеющим высокий КПД.

Подавляющим большинством производителей заявленными величинами являются значения от 0,90 до 0,95. Простые замеры подтверждают данные значения.

Для диммирования (изменение яркости свечения светодиодов) как правило, используются принцип широтно-импульсной модуляции (ШИМ).

По КПД и по степени надежности ПРА для разрядных ламп и ПРА для светодиодных светильников отличается только качеством схемотехники и используемой элементной базы, что в конечном итоге подразумевает разницу в стоимости изделия. Качественные и дорогие ПРА различных типов светильников приближаются к единому показателю (близко к 1).

В Приложении 2 и Приложении 3 отзывы организаций, внедрившие в качестве опытных образцов светодиодные светильники.

Вывод: влияние КПД ПРА на общий коэффициент полезного действия осветительного прибора для разрядных ламп и для светодиодных светильников не имеет заметной разницы, и обусловлены только ценой изделия.