Проблемы и ошибки        01.08.2019   

SAS-диски: назначение, описание, технические характеристики устройства.

Добрый день хабралюди!

Блог компании HGST после некоторого перерыва снова с вами. И сегодня мы хотели бы поговорить о преимуществах твердотельных накопителей SAS перед накопителями с интерфейсом SATA.

Интерфейс SAS, поддерживающий связь между устройствами, предназначен для использования на корпоративном уровне и обеспечивает масштабируемость, надежность работы и высокую доступность данных, в то время, как устройства с интерфейсом SATA оптимизированы для более дешевых пользовательских приложений.

Поскольку изготовители дисков используют интерфейс SAS для высокопроизводительных накопителей, а интерфейс SATA для клиентских дисков и запоминающих устройств большой емкости, производители твердотельных накопителей (SSD), в основном, продолжают использовать такое же разделение. В настоящее время на рынке также имеются SSD-накопители корпоративного класса с интерфейсом SATA, обеспечивающие высокую производительность. Однако, используя интерфейс SAS с более устойчивыми к ошибкам флеш-устройствами, контроллерами и программно-аппаратными средствами, мы получаем превосходное решение для рабочих нагрузок корпоративного уровня, таких, как оперативная обработка транзакций (OLTP), высокопроизводительные вычисления (HPC), ускорение работы базы данных, организация хранилищ данных/ регистрация данных, виртуализация и инфраструктура виртуальных ПК, работа с большими объемами данных и гипермасштабируемыми данными, передача сообщений и совместная работа, интерфейс с веб-серверами, передача мультимедийных потоков и предоставление видеопрограмм по требованию (VOD), облачные вычисления и хранение данных на устройстве Tier-0 для сетей SAN и NAS.

Благодаря характеристикам интерфейса SAS и ведущим в отрасли технологиям компании HGST, таким как CellCare, PowerSafe и Data Path Protection, вы получаете следующие преимущества:

Стабильная, высокопроизводительная работа SSD в течение всего срока службы
Долговечность
Масштабируемость
Надежность в эксплуатации
Высокая доступность данных
Управляемость данными на устройстве
Взаимодействие с модернизируемой архитектурой системы

Рабочие нагрузки, которые должны поддерживать твердотельные SAS-накопители корпоративного класса, включают в себя:
Оперативная обработка транзакций (OLTP)
Высокопроизводительные вычисления (HPC)
Ускорение работы базы данных
Организация хранилищ данных и хранение пользовательских данных
Виртуализация и инфраструктура виртуальных ПК
Анализ больших объемов данных и гипермасштабируемых данных
Программы для обмена сообщениями и совместной работы
Интерфейс с веб-серверами
Потоковое мультимедиа и предоставление видеопрограмм по требованию (VOD)
Облачные вычисления
Устройства хранения данных Tier-0 для систем SAN и NAS

SAS (последовательный SCSI) и SATA (последовательный ATA) - стандартные протоколы передачи данных между подключенными устройствами. Они предназначены для обеспечения взаимодействия компьютеров с периферийными устройствами, такими, как контроллеры внешней памяти и жесткие диски. Оба интерфейса (SAS и SATA) имеют долгую историю развития: они впервые появились в 1980-е годы как параллельные интерфейсы, а примерно 10 лет назад были преобразованы в последовательные протоколы в целях дальнейшего повышения производительности. При использовании с контроллером внешней памяти интерфейс SAS или SATA может использоваться как внешний интерфейс серверов, а также как внутренний интерфейс для подключения жестких дисков и SSD. Контроллер может поддерживать множество типов интерфейсов, однако диски имеют только один тип интерфейса - SAS или SATA. Интерфейс не зависит от накопителя информации (например, флеш-память, жесткий диск) или качества компонентов или программно-аппаратных средств внутри диска. С этой точки зрения интерфейсы SAS и SATA ведут себя одинаково.

Давайте рассмотрим теперь основные параметры накопителей

Производительность
Протокол SCSI. Протокол SCSI, используемый интерфейсом SAS, работает быстрее и производит множественные, одновременные операции ввода/вывода данных более эффективно по сравнению с набором команд параллельного интерфейса ATA (SATA).
Увеличение скорости передачи данных - от 6 Гб/с до 12 Гб/с, а затем до 24 Гб/с. Интерфейс SAS позволяет увеличить скорость передачи данных с 6 Гб/с до 12 Гб/с; кроме того, имеется четкий roadmap для дальнейшего увеличения скорости до 24 Гб/с. В настоящее время интерфейс SATA поддерживает скорость передачи данных до 6 Гб/с, при этом, отсутствуют конкретные планы по увеличению скорости в будущем.
Очереди помеченных команд. Большинство накопителей SAS поддерживают очередь команд глубиной 128 (предел протокола – 65 536), что позволяет уменьшить латентность и повысить производительность при высоких рабочих нагрузках. Аппаратная установка очередности команд интерфейса SATA поддерживает только 32 команды.
Сдвоенные порты и многоканальный ввод-вывод. Диски с интерфейсом SAS оснащены сдвоенными портами и поддерживают множество инициаторов в системе хранения данных; таким образом, многоканальный ввод-вывод и балансирование нагрузки позволяют увеличивать производительность. В интерфейсе SATA отсутствует поддержка нескольких инициаторов, и большинство дисков SATA не имеют сдвоенных портов.
Полнодуплексная передача данных. Диски SAS поддерживают полнодуплексный режим (одновременная передача данных в двух направлениях), в то время, как накопители SATA работают в полудуплексном режиме (передача данных в одном направлении).

Масштабируемость
К одному порту можно подключить множество дисков. Интерфейс SAS поддерживает расширитель портов до 255 устройств (двухъярусная структура), таким образом, к одному порту инициатора можно подключить до 65 635 дисков. Интерфейс SATA использует только соединение «точка-точка».
Использование удлиненных кабелей. Использование SAS-устройств обеспечит более удобный процесс расширения ЦОД (центра обработки данных), поскольку они позволяют использовать пассивные медные кабели длиной до 10 м и оптические кабели длиной до 100 м. SATA не позволяет использовать кабели длиной свыше 2 метров.
Масштабируемая производительность. Производительность твердотельных SAS-накопителей в конфигурации RAID является более масштабируемой по сравнению с дисками SATA.
Совместимость с интерфейсом SATA. Контроллеры внешней памяти с интерфейсом SAS поддерживают диски SATA, что обеспечивает ярусное хранение данных с использованием как накопителей SAS, так и SATA в одном массиве. Однако, в свою очередь, SATA не поддерживает диски SAS.

Высокая доступность данных
Сдвоенные порты для обеспечения отказоустойчивости. SAS поддерживает сдвоенные порты, в то время как большинство дисков SATA их не имеет.
Несколько инициаторов. Интерфейс SAS позволяет подключение нескольких контроллеров к набору жестких дисков в системе хранения данных, что обеспечивает их быструю замену и переход на другой ресурс при сбое. Интерфейс SATA не обладает такими возможностями.
Подключение в «горячем» режиме. Диски с интерфейсом SAS и SATA могут подключаться в режиме «горячей» замены.

Взаимодействие с модернизируемой архитектурой системы
Roadmap для расширения функциональных возможностей в будущем. В планах производителей устройств с интерфейсом SAS - увеличение скорости передачи данных до 24 Гб/с и, вероятно, даже выше, в то время как для SATA такой roadmap отсутствует и скорость передачи данных ограничивается текущим значением - 6 Гб/с. Благодаря использованию SAS предприятия могут модернизировать свой парк устройств и переходить на более быстрые диски в будущем, сохраняя при этом совместимость с предыдущими версиями, используемыми в существующей инфраструктуре.
SCSI. Поскольку большинство накопителей, установленных на предприятии, используют набор команд SCSI, интерфейс SAS сохраняет совместимость с системами хранения данных различных поколений.

SSD накопители HGST отличает высокая производительность в течение всего срока службы диска. В них используются инновационные технологии Advanced Flash Management и CellCare, обеспечивающие исключительно высокую скорость в режиме последовательного и произвольного чтения/записи. Твердотельные накопители работают гораздо быстрее по сравнению с жесткими дисками, хотя со временем ячейки флеш-памяти изнашиваются и скорость их работы снижается, особенно с нарастанием количества циклов установки программ/удаления файлов с диска. Технология Advanced Flash Management компании HGST использует традиционный алгоритм нивелирования износа, а также схемы обнаружения и коррекции ошибок, восстановления поврежденных блоков и устранения избыточности данных для увеличения срока службы, надежности и производительности SSD.

HGST CellCare - запатентованная технология производства контроллеров флеш-памяти, позволяющая обеспечить долговечность, производительность и надежность устройств корпоративного класса при помощи экономичных, логических микросхем с высокой плотностью элементов для устройств с флеш-памятью. Технология CellCare заключается в динамическом отслеживании параметров ячеек памяти по мере их износа и использовании технологий прогнозирования для сведения к минимуму износа NAND чипов флеш-памяти путем создания адаптивной обратной связи между флеш-памятью и контроллером. Не менее важным аспектом технологии Cellcare является возможность контролировать эффект старения флеш-памяти и не допускать снижения скорости работы SSD-накопителей по мере увеличения их срока службы. Эта особенность уникальной технологии Cellcare обеспечивает безотказность в работе и высокую производительность в течение всего срока службы именно SSD компании HGST.

Сейчас, когда стоимость хранения данных значительно выросла в связи с изменениями валютных курсов, при выборе компонентов IT-инфраструктуры приходится проявлять изобретательность и идти на компромиссы. На наш взгляд, неоднократно доказанная надежность и высокая производительность в течение всего рока службы, однозначно должны учитываться наряду с другими факторами. Ведь в среднесрочной и долгосрочной перспективе, такое решение окупит себя сполна.

В следующем посте мы продолжим разговор о SSD накопителях и рассмотрим другие преимущества HGST в этой области.

В прошлый раз мы с вами рассмотрели все, что касается технологии SCSI в историческом контексте : кем она была изобретена, как развивалась, какие у нее есть разновидности и так далее. Закончили мы на том, что наиболее современным и актуальным стандартом является Serial Attached SCSI, он появился относительно недавно, но получил быстрое развитие. Первую реализацию «в кремнии» показала компания LSI в январе 2004 года, а в ноябре того же года SAS вошел в топ самых популярных запросов сайта storagesearch.com .

Начнем с основ. Как же работают устройства на технологи SCSI? В стандарте SCSI все построено на концепции клиент/сервер.

Клиент, называемый инициатором (англ. initiator), отправляет разные команды и дожидается их результатов. Чаще всего, разумеется, в роли клиента выступает SAS контроллер. Сегодня SAS контроллеры - это HBA и RAID-контроллеры, а также контроллеры СХД, стоящие внутри внешних систем хранения данных.

Сервер называется целевым устройством (англ. target), его задача - принять запрос инициатора, обработать его и вернуть данные или подтверждение выполнения команды обратно. В роли целевого устройства может выступать и отдельный диск, и целый дисковый массив. В этом случае SAS HBA внутри дискового массива (так называемая внешняя система хранения данных), предназначенный для подключения к нему серверов, работает в режиме Target. Каждому целевому устройству (“таргету”) присваивается отдельный идентификатор SCSI Target ID.

Для связи клиентов с сервером используется подсистема доставки данных (англ. Service Delivery Subsystem), в большинстве случаев, это хитрое название скрывает за собой просто кабели. Кабели бывают как для внешних подключений, так и для подключений внутри серверов. Кабели меняются от поколения к поколению SAS. На сегодня имеется три поколения SAS:

SAS-1 или 3Gbit SAS
- SAS-2 или 6Gbit SAS
- SAS-3 или 12 Gbit SAS – готовится к выходу в середине 2013 года




Внутренние и внешние кабели SAS

Иногда в состав этой подсистемы могут входить расширители или экспандеры SAS. Под экспандерами (англ. Expanders, расширители, но в русском языке прижилось слово «экспандер») понимают устройства, помогающие доставке информации от инициаторов к целям и обратно, но прозрачные для целевых устройств. Одним из самых типичных примеров является экспандер, позволяющий подключить несколько целевых устройств к одному порту инициатора, например, микросхема экспандера в дисковой полке или на бэкплейне сервера. Благодаря такой организации, серверы могут иметь более 8 дисков (контроллеры, которые сегодня используются ведущими производителями серверов, обычно 8-портовые), а дисковые полки – любое необходимое количество.

Инициатор, соединенный с целевым устройством системой доставки данных, называют доменом. Любое SCSI устройство содержит как минимум один порт, который может быть портом инициатора, целевого устройства или совмещать обе функции. Портам могут присваиваться идентификаторы (PID).

Целевые устройства состоят из как минимум одного логического номера устройства (Logical Unit Number или LUN). Именно LUN и идентифицирует с каким из дисков или разделов данного целевого устройства будет работать инициатор. Иногда говорят, что target предоставляет инициатору LUN. Таким образом, для полной адресации к нужному хранилищу используется пара SCSI Target ID + LUN.

Как в известном анекдоте («Я не даю в долг, а Первый Национальный Банк не торгует семечками») - целевое устройство обычно не выступает в роли «посылающего команды», а инициатор - не предоставляет LUN. Хотя стоит отметить, что стандарт допускает тот факт, что одно устройство может быть одновременно и инициатором и целью, но на практике это используют мало.

Для «общения» устройств в SAS существует протокол, по «доброй традиции» и по рекомендации OSI, разделенный на несколько слоев (сверху вниз): Application, Transport, Link, PHY, Architecture и Physical.

SAS включает в себя три транспортных протокола. Serial SCSI Protocol (SSP) - используется для работы со SCSI устройствами. Serial ATA Tunneling Protocol (STP) - для взаимодействия с дисками SATA. Serial Management Protocol (SMP) - для управления SAS-фабрикой. Благодаря STP мы можем подключать диски SATA к контроллерам SAS. Благодаря SMP мы можем строить большие (до 1000 дисковых/SSD-устройств в одном домене) системы, а также использовать зонирование SAS (подробнее об этом в статье про SAS-коммутатор).

Уровень связей служит для управления соединениями и передачи фреймов. Уровень PHY - используется для таких вещей как установка скорости соединения и кодировки. На архитектурном уровне находятся вопросы расширителей и топологии. Физический уровень определяет напряжение, форму сигналов соединения и т.д.

Все взаимодействие в SCSI строится на основании команд, которые инициатор посылает целевому устройству и ожидает их результата. Команды эти посылаются в виде блоков описания команды (Command Description Block или CDB). Блок состоит из одного байта кода команды и ее параметров. Первым параметром почти всегда выступает LUN. CDB может иметь длину от 6 до 32 байт, хотя последние версии SCSI допускают CDB переменной длины.

После получения команды целевое устройство возвращает код подтверждения. 00h означает что команда принята успешно, 02h обозначает ошибку, 08h - занятое устройство.

Команды делятся на 4 большие категории. N, от английского «non-data», предназначены для операций, не относящихся к непосредственно обмену данными. W, от «write» - запись данных, полученных целевым устройством от инициатора. R, как не сложно догадаться от слова «read» используется для чтения. Наконец В - для двустороннего обмена данными.

Команд SCSI существует достаточно много, поэтому перечислим только наиболее часто используемые.

Test unit ready (00h) - проверить, готово ли устройство, есть ли в нем диск (если это ленточный накопитель), раскрутился ли диск и так далее. Стоит отметить, что в данном случае устройство не производит полной самодиагностики, для этого существуют другие команды.
Inquiry (12h) - получить основные характеристики устройства и его параметры
Send diagnostic (1Dh) - произвести самодиагностику устройства - результаты этой команды возвращаются после диагностики командой Receive Diagnostic Results (1Ch)
Request sense (03h) - команда позволяет получить статус выполнения предыдущей команды - результатом этой команды может стать как сообщение типа «нет ошибки», так и разные сбои, начиная с отсутствия диска в накопителе и заканчивая серьезными проблемами.
Read capacity (25h) - позволяет узнать объем целевого устройства
Format Unit (04h) - служит для деструктивного форматирования целевого устройства и подготовки его к хранению данных.
Read (4 варианта) - чтение данных; существует в виде 4 разных команд, отличающихся длиной CDB
Write (4 варианта) - запись. Так же как и для чтения в 4 вариантах
Write and verify (3 варианта) - запись данных и проверка
Mode select (2 варианта) - установка различных параметров устройства
Mode sense (2 варианта) - возвращает текущие параметры устройства

А теперь рассмотрим несколько типичных примеров организации хранения данных на SAS.

Пример первый, сервер хранения данных.

Что это такое и с чем его едят? Большие компании типа Amazon, Youtube, Facebook, Mail.ru и Yandex используют сервера этого типа для того, чтобы хранить контент. Под контентом понимается видео, аудио информация, картинки, результаты индексирования и обработки информации (например, так популярный в последнее время в США, Hadoop), почта, и.т.д. Для понимания задачи и грамотного выбора оборудования под нее нужно дополнительно знать несколько вводных, без которых никак нельзя. Первое и самое главное – чем больше дисков – тем лучше.

Дата-центр одной из российских Web 2.0-компаний

Процессоры и память в таких серверах задействуются не сильно. Второе – в мире Web 2.0, информация хранится географически распределено, несколько копий на различных серверах. Хранится 2-3 копии информации. Иногда, если она запрашивается часто, хранят больше копий для балансировки нагрузки. Ну и третье, исходя из первого и второго, чем дешевле – тем лучше. В большинстве случаев все вышесказанное приводит к тому, что используются Nearline SAS или SATA диски высокой емкости. Как правило, Enterprise-уровня. Это значит, что такие диски предназначены для работы 24x7 и стоят значительно дороже своих собратьев, использующихся в настольных PC. Корпус обычно выбирают такой, куда можно вставить побольше дисков. Если это 3.5’’, то 12 дисков в 2U.

Типичный 2U-сервер хранения данных

Или 24 x 2.5’’ в 2U. Или другие варианты в 3U, 4U и.т.д. Теперь, имея корпус, количество дисков и их тип, мы должны выбрать тип подключения. Вообще-то выбор не очень большой. А сводится он к использованию экспандерного или безэкспандерного бэкплейна. Если мы используем экспандерный бекплейн, то контроллер SAS может быть 8-портовым. Если безэкспандерный – то количество портов контроллера SAS должно равняться или превышать количество дисков. Ну и последнее, выбор контроллера. Мы знаем количество портов, 8, 16, 24, например и выбираем контроллер исходя из этих условий. Контроллеры бывают 2х типов, RAID- и HBA. Отличаются они тем, что RAID-контроллеры поддерживают уровни RAID 5,6,50,60 и имеют достаточно большой объем памяти (512MB-2ГБ сегодня) для кэширования. У HBA памяти или cовсем нет, или ее очень мало. Кроме этого, HBA либо не умеют делать RAID вообще, либо умеют олько простые, не требующие большого объема вычислений уровни. RAID 0/1/1E/10 – типичный набор для HBA. Здесь нам нужен HBA, они стоят значительно дешевле, так защита данных нам не нужна совсем и мы стремимся к минимизации стоимости сервера.

16-портовый SAS HBA

Пример второй, почтовый сервер Exchange. А также MDaemon, Notes и другие подобные сервера.

Здесь все не так очевидно, как в первом примере. В зависимости от того, сколько пользователей должен обслуживать сервер, рекомендации будут различными. В любом случае, мы знаем что базу данных Exchange (так называемую БД Jet) лучше всего хранить на RAID 5/6 и она неплохо кэшируется с использованием SSD. В зависимости от количества пользователей определяем необходимые объемы хранения «сегодня» и «на вырост». Помним, что сервер живет 3-5 лет. Поэтому «на вырост» можно ограничить 5-летней перспективой. Потом будет дешевле полностью поменять сервер. В зависимости от объема дисков выберем корпус. С бэкплейном проще, рекомендуется использовать экспандеры, так как требования по цене не такие жесткие, как в предыдущем случае, и в общем случае, удорожание сервера на $50-$100, а иногда и больше, мы вполне переживем в угоду надежности и функциональности. Диски выберем SAS или NL-SAS/Enterprise SATA в зависимости от объемов. Далее, защита данных и кэширование. Выберем современный 4/8-портовый контроллер, поддерживающий RAID 5/6/50/60 и кэширование на SSD. Для LSI, это любой MegaRAID кроме 9240 с функцией кэширования CacheCade 2.0, или Nytro MegaRAID с SSD «на борту». Для Adaptec, это контроллеры, поддерживающие MAX IQ. Для кэширования в обоих случаях (кроме Nytro MegaRAID) нужно будет взять пару SSD на e-MLC-технологии Enterprise-класса. Такие есть у Intel, Seagate, Toshiba, и.т.д. Цены и компании – на выбор. Если вы не порч доплатить за бренд, то в линейках серверов IBM, Dell, HP, найдите подобные продукты и вперед!

SSD- кэширующий RAID-контроллер Nytro MegaRAID

Пример третий, внешняя система хранения данных своими руками.

Итак, самое серьезное знание SAS, конечно же, требуется тем, кто производит системы хранения данных или хочет их сделать своими руками. Мы остановимся на достаточно простой СХД, программное обеспечение для которой производится компанией Open-E. Конечно же, можно делать СХД и на Windows Storage Server, и на Nexenta, и на AVRORAID, и на Open NAS, и на любом другом подходящем для этих целей софте. Я просто обозначил основные направления, а дальше вам помогут сайты производителей. Итак, если это внешняя система, то мы почти никогда не знаем, сколько же дисков потребуется конечному пользователю. Мы должны быть гибкими. Для этого есть так называемые JBOD – внешние полки для дисков. В их состав входит один или два экспандера, каждый из которых имеет вход (4-х портовый разъем SAS), выход на следующий экспандер, остальные порты разведены на разъемы, предназначенные для подключения дисков. Причем, в двухэкспандерных системах первый порт диска разведен на первый экспандер, второй порт – на второй экспандер. Это позволяет строить отказоустойчивые цепочки JBOD-ов. Головной сервер может иметь внутренние диски в своем составе, либо не иметь их совсем. В этом случае используются «внешние» контроллеры SAS. То есть контроллеры с портами «наружу». Выбор между SAS RAID-контроллером или SAS HBA зависит от управляющего ПО, которое вы выбираете. В случае Open-E, это RAID-контроллер. Можно позаботиться и об опции кэширования на SSD. Если ваша СХД будет иметь очень много дисков, то решение Daisy Chain (когда каждый последующий JBOD подключается к предыдущему, либо к головному серверу) в силу многих причин не подходит. В этом случае головной сервер либо оснащается несколькими контроллерами, либо используется устройство, которое называется SAS-коммутатор. Он позволяет подключать один или несколько серверов к одному или нескольким JBOD. Подробнее SAS-коммутаторы мы разберем в следующих статьях. Для внешних систем хранения данных настоятельно рекомендуется использовать диски только SAS (в том числе NearLine) в силу повышенных требований к отказоустойчивости. Дело в том, что протокол SAS имеет в своем составе гораздо больше функций, чем SATA. Например, контроль записываемых-считываемых данных на всем пути с помощью проверочных сумм (T.10 End-to-End protection). А путь, как мы уже знаем, бывает очень длинным.

Многодисковый JBOD

На этом наш экскурс в мир истории и теории SCSI вообще и SAS в частности подошел к концу, и в следующий раз я расскажу вам более подробно о применении SAS в реальной жизни.

Данная статья призвана объяснить разницу между типами жестких дисков и помочь вам определиться с выбором при покупке выделенного сервера.

SATA - Serial ATA

В настоящее время SATA диски используются на большинстве персональных компьютеров в мире и на бюджетных конфигурациях серверного оборудования. По сравнению с SAS и SSD дисками скорость чтения и записи SATA дисков заметно ниже, но их выбирают из-за больших объемов хранимой информации.

Диски SATA хорошо подойдут для игровых серверов, работа которых не требует частой записи и чтения информации. Также SATA диски целесообразно использовать для следующих целей:

  • потоковые операции, например, кодирование видео;
  • хранилища данных;
  • системы резервного копирования;
  • объемные, но не нагруженные файл-серверы.

SAS - Serial Attached SCSI

Диски SAS изначально разработаны с учетом корпоративных и промышленных нагрузок, что положительно сказывается на их производительности. Скорость вращения SAS дисков вдвое выше, чем у SATA, поэтому их стоит выбирать для задач, которые чувствительны к скорости и требуют многопоточного доступа. Также диски SAS (в отличие от SSD) могут обеспечить надежную и многократную перезапись данных.

Для организации хостинга диски SAS будут оптимальны, так как они могут обеспечить высокую надежность хранения данных. Помимо этого жесткие диски SAS хорошо подойдут для реализации следующих задач:

  • cистемы управления базами данных (СУБД);
  • WEB-серверы с высокой нагрузкой;
  • распределенные системы;
  • системы, обрабатывающие большое количество запросов - терминальные серверы, 1С серверы.

Единственным недостатком SAS дисков (как и у SSD) является их небольшой объем и высокая цена.

SSD - Solid-state Drive

В последнее время SSD становятся все более и более популярными. SSD не использует для записи магнитные диски, а содержит только микросхемы энергонезависимой памяти, аналогичные тем, что используются в USB-флешках.

В SSD дисках нет движущихся частей, что обеспечивает высокую механическую стойкость, сниженное энергопотребление и высокую скорость работы. В данный момент SSD диски обеспечивают максимально возможную скорость чтения и записи, что позволяет использовать их для любых высоконагруженных проектов.

Главным минусом SSD дисков является то, что они ограничены по объему информации, которую можно перезаписать на диск. Соответственно, если в день ваша система перезаписывает более 20 Гб данных, будьте готовы через некоторое время сменить SSD диск. Кстати цена таких дисков выше, чем у обоих вышеперечисленных типов.

Многие современные CMS при генерации страницы зачастую требуют одновременного обращения к нескольким файлам на диске. Именно для работы с подобными системами SSD диски - идеальный выбор. Использование SSD дисков для нагруженных сайтов является гарантией того, что вы получите максимум скорости чтения данных.

Второй интерфейс внешней памяти – SCSI (Small Computer System Interface – системный интерфейс малых компьютеров) был разработан и принят ANSI в 1986 г. (он получил позднее название SCSI-1). Скорость передачи данных при использовании этого 8-разрядного параллельного интерфейса составляла (при тактовой частоте шины 5 МГц) 4 Мбайта/с в асинхронном режиме и 5 Мбайт/с в синхронном режиме. В отличие от интерфейса IDE/ATA, к интерфейсу SCSI можно подключать не только внутренние, но и внешние устройства: принтеры, сканеры и т.д. Максимальное количество подключаемых к шине SCSI устройств было равно 8, а максимальная длина кабеля – 6 м.

Разработкой стандартов и поддержкой интерфейса SCSI занимается комитет T10 INCITS, т.е. той же организации, которая разрабатывает стандарты IDE (ATA). В 1996 г. для продвижения стандарта SCSI была создана Торговая ассоциация SCSI – STA (SCSI Trade Association). В эту ассоциацию входят около тридцати фирм-производителей компьютерной техники.

В следующих стандартах SCSI – SCSI-2 (1994 г.) и SCSI-3 (1995 г.) введен общий набор команд CCS (Common Command Set) – 18 базовых команд, необходимых для поддержки любого устройства SCSI, добавлена возможность хранения в устройстве очередей команд, полученных с компьютера и их обработка в соответствии с заданными приоритетами. Кроме этого, в этих стандартах, наряду с 8-разрядной, определена и 16-разрядная шина, тактовая частота увеличена до 20 МГц и скорость передачи данных – до 20 Мбайт/с.

Развитием стандарта SCSI-3 являются используемые в настоящее время стандарты Ultra3 SCSI (1999 г.), для которого определена частота шины 40 МГц и скорость передачи 160 Мбайт/с и Ultra320 SCSI (2002 г.) – частота шины 80 МГц и скорость передачи 320 Мбайт/с.

Обмен данными по этим стандартам реализуется с помощью метода LDVS (так же, как в шине PCI Express). Максимальное количество подключаемых устройств для Ultra3 SCSI и Ultra320 SCSI равно 16, а максимальная длина кабеля – 12 м.

Разработан также стандарт Ultra640 SCSI (2003 г.) с частотой шины 160 МГц и со скоростью 640 Мбайт/с, но этот стандарт не получил широкого распространения, в связи с тем, что из-за малой длины кабеля к нему нельзя подключить более двух устройств.

Связь между устройством SCSI и шиной ввода/вывода выполняется с помощью специального адаптера (контроллера) SCSI, вставляемого в разъем PCI, или встроенного в материнскую плату. Кроме адаптера SCSI (рис. 1.3.8а), называемого хост-адаптером (host adapter) каждое устройство имеет свой встроенный адаптер, который позволяет ему взаимодействовать с шиной SCSI. Если устройство – последнее в цепочке устройств шины SCSI, после него подключается специальное устройство – терминатор (terminator) для того чтобы исключить отражение сигналов, передающихся по шине (рис. 1.3.8б).


В Ultra3 SCSI и Ultra320 SCSI используются два типа разъемов: 68-контактный (рис. 1.3.8в) и 80-контактный (рис. 1.3.8г). Второй тип разъема, помимо линий передачи данных и команд, содержит также линии электропитания устройств и обеспечивает возможность «горячего» подключения устройства к компьютеру.

Рис. 1.3.8. Устройства SCSI: а) адаптер SCSI: 1 – разъемы для подключения внешних устройств; 2 – разъем для подключения внутреннего устройства; 3 – контроллер SCSI;

б) шина SCSI: 1 – разъем для подключения адаптера; 2 – разъемы для подключения устройств; 3 – терминатор; в) 68-контактный разъем SCSI; г) 80-контактный разъем SCSI

Данные при использовании SCSI передаются параллельно, так же, как и в IDE (ATA). По тем же причинам, что и в IDE (ATA), была начата разработка последовательно подключаемого SCSI – SAS (Serial Attached SCSI). Интерфейс SAS является совместимым с интерфейсом SATA и в тоже время использует команды SCSI, возможность «горячего» подключения внешних устройств, а также возможность подключения, помимо жестких и оптических дисководов, других периферийных устройств, например, принтера или сканера. В настоящее время интерфейс SAS постепенно заменяет интерфейс SCSI в компьютерах и периферийных устройствах.

Первая спецификация SAS – SAS 1.0 была выпущена Комитетом T10 в 2003 году. В ней была определена скорости передачи данных 1,5 и 3 Гбита/с для подключения устройств внутри системного блока компьютера с максимальной длиной кабеля 1 м и внешнего подключения устройств с максимальной длиной кабеля 8 м.

В 2005 году была выпущена спецификация SAS 1.1, в которой были исправлены ошибки спецификации SAS 1.0.

В спецификации SAS 2.0 (2009 г.) добавлена скорость 6 Гбит/с и максимальная длина кабеля увеличена до 10 м.

Обмен данными в SAS, так же, как и в SCSI, реализуется с помощью метода LDVS.

Две дифференциальные сигнальные пары (приемная и передающая) образуют в SAS физический канал. Один или несколько физических каналов, в свою очередь, образуют порт. Количество физических каналов в порту обозначается с помощью цифры, за которой следует символ «x». Так, обозначение 4x означает, что порт содержит 4 канала (8 сигнальных пар). Каждый порт имеет уникальный 64-битовый адрес, присваиваемый производителем оборудования SAS. Устройство с интерфейсом SAS может иметь один или несколько портов. Порт, имеющий только один канал, называется узким портом (narrow port), а порт, имеющий два и более каналов, называется широким портом (wide port).

Так два порта со скоростью по 3 Гбит/с можно использовать либо как два отдельных каналов связи с разными устройствами, либо как единый канал связи со скоростью 6 Гбит/с. Кроме того, в спецификации SAS 2.0 добавлена возможность разбиения порта со скоростью 6 Гбит/с на два канала со скоростью по 3 Гбит/с.

При подключении устройств в SAS используются разъемы, стандартизированные Комитетом по малым форм-факторам – Small Form Factor (SFF) Committee. Этот комитет разрабатывает и готовит спецификации по разъемам, используемым в различных устройствах. Каждый разъем идентифицируется префиксом «SFF-», за которым следует четырехзначный номер разъема, начинающийся с цифры 8.

Основными разъемами, используемыми в SATA являются:

· разъем SFF-8482 для подключения внутреннего устройства (рис. 1.3.9а);

· разъем SFF-8484 – разъем 4x для подключения внутренних устройств (рис. 1.3.9б);

· разъем SFF-8087 – разъем 4x (miniSAS) для подключения внутренних устройств (рис. 1.3.9в);

· разъем SFF-8470 – разъем 4x для подключения внешних устройств (рис. 1.3.9г);

· разъем SFF-8088 – разъем 4x (miniSAS) для подключения внешних устройств (рис. 1.3.9д).

Интерфейс SAS поддерживает набор команд, совместимый с набором команд SATA, поэтому к расширителю SAS можно подключать устройства SATA (для этого обычно используется разъем SFF-8482).

Наиболее распространенный кабель для подключения внешних устройств SAS с разъемами SFF-8088 на концах кабеля приведен на рис. 1.3.9е. Для подключения внешних устройств по интерфейсу eSATA можно использовать кабель, на одном конце которого разъем SFF-8088, а на другом – 4 разъема eSATA (рис. 1.3.9ж).

Рис. 1.3.9. Разъемы SAS: а) 29-контактный штекер разъема SAS для внутреннего устройства (SFF-8482) б) 32-контактный 4x штекер разъема SAS для подключения внутренних устройств (SFF-8484); в) 26-контактный 4x штекер разъема mini-SAS для внутренних устройств (SFF-8087); г) 26-контактный 4x штекер разъема SAS для внешнего устройства (SFF-8470); д) 26-контакный 4x штекер разъема mini-SAS для внешнего устройства (SFF-8088); е) кабель SFF-8088 – SFF-8088; ж) кабель SFF-8088 – 4 eSATA

Система с интерфейсом SAS состоит из следующих компонент:

· инициатор (Initiator) – порождает запросы на обслуживание для целевых устройств и получает подтверждения об исполнении запросов (реализуется в виде микросхемы на материнской плате или на карте, подключенной к шине материнской платы);

· целевое устройство (Target Device) – содержит логические блоки и целевые порты, которые осуществляют приём запросов на обслуживание, исполняет их; после того, как закончена обработка запроса, инициатору запроса отсылается подтверждение выполнения запроса (может быть как отдельным жёстким диском, так и целым набором дисков).

· подсистема доставки данных (Service Delivery Subsystem) – осуществляет передачу данных между инициаторами и целевыми устройствами (состоит из кабелей и расширителей SAS).

· расширитель SAS (SAS Expander) – подключает несколько устройств SAS к одному порту инициатора.

В настольных компьютерах расширитель SAS выполняется в виде карты, которая подключается к шине PCI Express, и содержит контроллер SAS, выполняющий функции инициатора, а также один или несколько внутренних и/или внешних гнезд разъемов SAS, к которым подключаются устройства с интерфейсом SAS или SATA (eSATA) (рис. ?????а и рис. ?????б).

Дисководы SAS (eSATA) могут быть помещены в корпус (рис. ?????в). Такое устройство называется дисковым массивом. Помимо дисководов, дисковый массив содержит встроенную плату расширителя SAS (рис. ?????г), разъем электропитания, а также гнездо для подключения к управляющему компьютеру (входного гнезда) и 1 или 2 гнезда для подключения к другим компьютером (входные гнезда). Наличие этих гнезд позволяет нескольким компьютером совместно использовать данные на дисководах дискового массива.

Пример подключения дисководов eSATA к компьютеру с использованием кабеля, изображенного на рис. 1.3.9ж, и компьютеров к дисковому массиву с использованием кабеля, изображенного на рис. 1.3.9е, приведен на рис. рис. ?????д.

Рис. ??????. Средства SAS: а) карта для подключения двух внутренних устройств:

1 – контроллер (инициатор) SAS; 2 – гнезда SF-8087; б) карта для подключения двух внешних устройств: 2 – гнезда SF-8088; 1 – контроллер (инициатор) SAS; в) дисковый массив на 15 дисководов SAS (eSATA); г) расширитель SAS дискового массива;

д) пример использования SAS для подключения внешних дисководов: 1 – дисководы eSATA; 2 – дисковый массив, подключенный к двум компьютерам

Аппаратная реализация SAS, как и ранее SCSI, на компьютере обходится дороже, чем реализация ATA и SATA (eSATA). Это связано, во-первых, с тем, что контроллер ATA и SATA, как правило, встроен в материнскую плату, а материнские платы для настольных компьютеров с встроенным интерфейсом SCSI и SAS практически не выпускаются, поэтому необходимо приобретение карты контроллера SCSI или SAS. Во-вторых, устройства с интерфейсом SAS имеют большие возможности, чем устройства ATA и SATA (eSATA). Например, дисководы SAS могут быть двухпортовыми, т.е. их можно либо подключить к двум компьютерам, либо выполнять обмен данными с компьютером на вдвое болей скорости по сравнению с использованием одного порта. Однако это приводит к более высокой стоимости дисководов SAS.

Поэтому основной областью применения SAS, как и SCSI, являются мощные компьютеры (сервера) с повышенными требованиями к скорости обмена, надежности и безопасности данных.

За счет использования расширителей, подсистема доставки данных SAS предлагает больше возможностей, чем система SATA (eSATA). Кроме того, в этой подсистеме можно использовать и более дешевые устройства SATA (eSATA).

Отдельная система, состоящая из связанных между собой компьютеров, периферийных устройств, расширителей SAS и кабелей SAS, SATA и eSATA, называется доменом. Максимальное количество расширителей и устройств в домене равно 16256. Система SAS может состоять из нескольких доменов, причем отдельные инициаторы и устройства могут входить в два соседних домена.

В домене могут использоваться два типа расширителей: расширитель-коммутатор и оконечный расширитель.

Расширитель-коммутатор (fanout expander) (рис. ?????а) выполняет в домене SAS маршрутизацию потоков данных от инициаторов к целевым устройствам домена. В домене должен быть только один расширитель-коммутатор.

Оконечный расширитель (edge expander) (рис. ?????б) подключается либо к расширителю-коммутатору, либо к другому оконечному расширителю и используется для маршрутизации потоков данных подключенных к нему устройств и расширителей. Максимальное количество обслуживаемых оконечным расширителем устройств равно 128.

Устройства могут подключаться как к расширителю-коммутатору, так и к оконечному расширителю. Если в домене не задействован расширитель-коммутатор, то количество оконечных расширителей должно быть не более 2.

При включении электропитания все устройства системы SAS обмениваются друг с другом своими адресами, и система переходит в активное состояние, при котором выполняется обмен командами, пакетами данных и управляющими сообщениями. Добавление в систему нового устройства («горячее» подключение) или отключение устройства приводит к генерации управляющего сообщения, при получении которого все расширители перестраивают свою схему маршрутизации и оповещают инициаторы об изменении конфигурации системы.

Пример конфигурации доменов SAS приведен на рис. рис. ?????в.

Рис. ?????. Использование SAS в серверах: а) 12-портовый расширитель-коммутатор с гнездами SFF-8470 (вид спереди и сзади); б) 12-портовый оконечный расширитель с гнездами SFF-8470 (вид спереди и сзади); в) пример доменов SAS:

1 – серверы-инициаторы с картами расширения SAS; 2 - оконечные расширители SAS;

3 – однопортовые дисководы с интерфейсом SAS; 4 – расширитель-коммутатор SAS;

5 – дисководы с интерфейсом eSATA; 6 – двухпортовые дисководы с интерфейсом SAS;

7 – дисковый массив с встроенным расширителем SAS

В IT-области существует множество мифов. «От спама можно отписаться», «Два антивируса лучше, чем один», «Серверные жёсткие диски должны быть только фирменными». При замене и расширении парка ЖД нужно учитывать немало нюансов и тонкостей, и без своих предубеждений здесь тоже не обошлось. Какие бывают ЖД для серверов, чем они отличаются, на что нужно обращать внимание, и должны ли они быть с логотипом производителя сервера - об этом читайте под катом.

Если диск установлен в сервер, то он должен удовлетворять жёстким требованиям по:

  • Надёжности . Невосстановимая потеря данных может обернуться многомиллионными убытками и репутационными потерями.
  • Производительности . Серверы априори предназначены для обработки многочисленных запросов.
  • Времени отклика . Пользователи не должны ждать, пока серверный диск «пробудится» и обработает их запросы.
Иными словами, жёсткий диск в сервере должны быть как пионер - всегда готов обрабатывать многочисленные запросы с минимальным уровнем задержки, обеспечивая высокий уровень сохранности данных. В высоконагруженных серверах жёсткие диски годами работают интенсивно и безостановочно.

Существует четыре основных категории (не берем в расчёт SSD, SAS SSD, PCI-e SSD) жёстких дисков:

  • SATA (обычные, «бытовые» SATA) - частота вращения шпинделя 5400 и 7200 об/мин.
  • SATA RAID Edition (SATA RE) - частота вращения шпинделя 7200 об/мин, поддержка команд RAID-контроллера.
  • SAS Near Line (SAS NL) - частота вращения шпинделя 7200 об/мин.
  • SAS Enterprise - частота вращения шпинделя 10 000 или 15 000 об/мин.
Прежде всего, необходимо определиться с интерфейсом подключения - SATA или SAS.

SATA или SAS?

Изначально интерфейс SAS имел более высокую пропускную способность, чем SATA. Но прогресс не стоит на месте, и третье поколение SATA III имеет максимальную пропускную способность на уровне 6 Гбит/сек, как и второе поколение SAS. Однако на рынке уже доступны серверы с SAS-контроллером третьего поколения, с пропускной способностью до 12 Гбит/сек.

Для подключения SAS-дисков сервер должен быть оснащён соответствующим контроллером. При этом обеспечивается обратная совместимость интерфейсов: к SAS-контроллеру можно подключить SATA-диски, а наоборот - нельзя.

Заключение

При выборе жёстких дисков необходимо в первую очередь отталкиваться от задач, которые будет выполнять сервер :
  • Если вам не нужна высокая скорость доступа и надёжность хранения данных, а количество дисков не будет превышать четырёх, то мы рекомендуем ставить диски SATA RAID Edition. Это вариант для недорогих серверов начального уровня, обслуживающих небольшое количество пользователей.
  • Если сервер будет обслуживать базы данных, или количество дисков в массиве будет 5 и более, то лучше выбрать SAS NL. Чаще всего такие диски ставятся в серверы, работающие в компаниях среднего размера: под бухгалтерские системы, CMS, корпоративные репозитории и т.д.
  • А если вам нужна максимальная производительность и/или надёжность хранения данных, например, при обработке финансовых транзакций, то ваш выбор - диски SAS Enterprise. Это носители для высоконагруженных серверов, обслуживающих большое количество пользователей, а также для систем, работающих с наиболее важными данными.
Но главное - не верьте мифам. Вовсе не обязательно покупать диски с таким же логотипом, как на вашем сервере. При грамотном подходе можно существенно сэкономить на апгрейде дисковой подсистемы, ничуть не потеряв в надёжности и скорости работы.

Теги: Добавить метки