Проблемы и ошибки        29.04.2019   

«Мягкая» семантическая сегментация изображений. Функция label2rgb преобразовывает исходное изображение в полутоновое

Cегментация означает выделение областей однородных по какому-либо критерию, например по яркости. Математическая формулировка задачи сегментации может иметь следующий вид .

Пусть -функция яркости анализируемого изображения; X – конечное подмножество плоскости на котором определена
;
- разбиение X на K непустых связных подмножеств
LP – предикат, определенный на множестве S и принимающий истинные значения тогда и только тогда, когда любая пара точек из каждого подмножества удовлетворяет критерию однородности.

Сегментацией изображения
по предикату LP называется разбиение
, удовлетворяющее условиям:

а)
;

б)
;

в)
;

г) смежные области.

Условия а) и б) означают, что каждая точка изображения должна быть единственным образом отнесена к некоторой области, в) определяет тип однородности получаемых областей и, наконец, г) выражает свойство “максимальности” областей разбиения.

Предикат LP называется предикатом однородности и может быть записан в виде:

(1)

где
-отношение эквивалентности;
- произвольные точки из .Таким образом, сегментацию можно рассматривать как оператор вида:

где
-функции, определяющие исходное и сегментированное изображение соответственно; -метка i- й области.

Существуют два общих подхода к решению задачи сегментации , которые базируются на альтернативных методологических концепциях. Первый подход основан на идее “разрывности” свойств точек изображения при переходе от одной области к другой. Этот подход сводит задачу сегментации к задаче выделения границ областей. Успешное решение последней позволяет, вообще говоря, идентифицировать и сами области, и их границы. Второй подход реализует стремление выделить точки изображения, однородные по своим локальным свойствам, и объединить их в область, которой позже будет присвоено имя или смысловая метка. В литературе первый подход называют сегментацией путем выделения границ областей , а второй – сегментацией путем разметки точек области . Данное выше математическое определение задачи позволяет характеризовать эти подходы в терминах предиката однородности LP . В первом случае в качестве LP должен выступать предикат, принимающий истинные значение на граничных точках областей и ложные значения на внутренних точках. Однако можно отметить существенное ограничение этого подхода, состоящее в том, что разбиение является здесь двухэлементным множеством. В практическом плане это означает, что алгоритмы выделения границ не позволяют идентифицировать разными метками разные области.

Для второго подхода предикат LP может иметь вид, определяемый соотношением (5.1). Указанные выше подходы порождают конкретные методы и алгоритмы решения задачи сегментации.

Метод сегментации на основе пороговой обработки

Пороговая обработка изображения означает преобразование его функции яркости оператором вида

где s(x,y) – сегментированное изображение; K – число областей сегментации;
- метки сегментированных областей;
- величины порогов, упорядоченные так, что
.

В частном случае при K= 2 пороговая обработка предусматривает использование единственного порога T . При назначении порогов применяют, как правило, гистограмму значений фунции яркости изображения.

Алгоритм сегментации на основе пороговой обработки на псевдокоде

Вход: mtrIntens – исходная матрица полутонового изображения;

l, r – пороги по гистограмме

Выход: mtrIntensNew – матрица сегментированного изображения

for i:=0 to l-1 do

for i:=l to r do

for i:=r+1 to 255 do

LUT[i]=255;

for i:=1 to 100 do

for j:=1 to 210 do

mtrIntensNew:=LUT]

Редактирование изображений и создание коллажей было бы весьма захватывающим процессом, если бы не приходилось тратить бо́льшую часть времени на кропотливую разметку объектов. Задача еще усложняется, когда границы объектов размыты или присутствует прозрачность. Инструменты “Photoshop”, такие как «магнитное лассо» и «волшебная палочка», не очень интеллектуальны, поскольку ориентируются лишь на низкоуровневые признаки изображения. Они возвращают жёсткие (Hard) границы, которые затем нужно исправлять вручную. Подход Semantic Soft Segmentation от исследователей Adobe помогают решить эту непростую задачу, разделяя изображение на слои, соответствующие семантически значимым областям, и добавляя плавные переходы на краях.

«Мягкая» сегментация

Группа исследователей из лаборатории CSAIL в MIT и швейцарского университета ETH Zürich, работающая под руководством Ягыза Аксоя, предложила подойти к этой проблеме, основываясь на спектральной сегментацией, добавив к ней современные достижения глубокого обучения. С помощью текстурной и цветовой информации, а также высокоуровневых семантических признаков, извлечённых , по изображению строится граф специального вида. Затем по этому графу строится матрица Кирхгофа (Laplacian matrix). Используя спектральное разложение этой матрицы, алгоритм генерирует мягкие контуры объектов. Полученное с помощью собственных векторов разбиение изображения на слои можно затем использовать для редактирования.

Обзор предложенного подхода

Описание модели

Рассмотрим метод создания семантически значимых слоёв пошагово:

1. Спектральная маска. Предложенный подход продолжает работу Левина и его коллег, которые впервые использовали матрицу Кирхгофа в задаче автоматического построения маски. Они строили матрицу L, которая задаёт попарное сходство между пикселями в некоторой локальной области. С помощью этой матрицы они минимизируют квадратичный функционал αᵀLα с заданными пользователем ограничениями, где α задаёт вектор значений прозрачности для всех пикселей данного слоя. Каждый мягкий контур является линейной комбинацией K собственных векторов, соответствующих наименьшим собственным значениям L, которая максимизирует так называемую разреженность маски.

2. Цветовая близость. Для вычисления признаков нелокальной цветовой близости исследователи генерируют 2500 суперпикселей и оценивают близость между каждым суперпикселем и всеми суперпикселями в окрестности радиусом 20% размера изображения. Использование нелокальной близости гарантирует, что области с очень похожими цветами останутся связными в сложных сценах, подобных изображённой ниже.

Нелокальная цветовая близость

3. Семантическая близость. Эта стадия позволяет выделять семантически связные области изображения. Семантическая близость поощряет объединение пикселей, которые принадлежат одному объекту сцены, и штрафует за объединение пикселей разных объектов. Здесь исследователи используют предыдущие достижения в области распознавания образов и вычисляют для каждого пикселя вектор признаков, коррелирующий с объектом, в который входит данный пиксель. Векторы признаков вычисляются с помощью нейросети, о чём мы поговорим далее более подробно. Семантическая близость, как и цветовая, определяется на суперпикселях. Однако, в отличие от цветовой близости, семантическая близость связывает только ближайшие суперпиксели, поощряя создание связных объектов. Сочетание нелокальной цветовой близости и локальной семантической близости позволяет создать слои, которые покрывают разъединённые в пространстве изображения фрагмента одного семантически связанного объекта (например, растительность, небо, другие типы фона).

Семантическая близость

4. Создание слоёв. На этом шаге с помощью вычисленных ранее близостей строится матрица L. Из этой матрицы извлекаются собственные векторы, соответствующие 100 наименьшим собственным значениям, а затем применяется алгоритм разреживания, который извлекает из них 40 векторов, по которым строятся слои. Затем количество слоёв ещё раз уменьшается с помощью алгоритма кластеризации k-means при k = 5. Это работает лучше, чем простое разреживание 100 собственных векторов до пяти, поскольку такое сильное сокращение размерности делает задачу переопределённой. Исследователи выбрали итоговое число контуров равным 5 и утверждают, что это разумное число для большинства изображений. Тем не менее, это число можно изменить вручную в зависимости от обрабатываемого изображения.


Мягкие контуры до и после группировки

5. Семантические векторы признаков. Для вычисления семантической близости использовались векторы признаков, посчитанные с помощью нейросети. Основой нейросети стала DeepLab-ResNet-101, обученная на задаче предсказания метрики. При обучении поощрялась максимизация L2-расстояния между признаками разных объектов. Таким образом, нейросеть минимизирует расстояние между признаками, соответствующими одному классу, и максимизирует расстояние в другом случае.

Качественное сравнение со схожими методами

Изображения, приведённые ниже, показывают результаты работы предложенного подхода (подписанные как «Our result») в сравнении с результатами наиболее близкого подхода мягкой сегментации - спектрального метода построения маски - и двумя state-of-the-art методами семантической сегментации: методом обработки сцен PSPNet и методом сегментации объектов Mask R-CNN.


Качественные сравнения мягкой семантической сегментации с другими подходами

Можно заменить, что PSPNet и Mask R-CNN склонны ошибаться на границах объектов, а мягкие контуры, построенные спектральным методом, часто заходят за границы объектов. При этом описанный метод полностью охватывает объект, не объединяя его с другими, и достигает высокой точности на краях, добавляя мягкие переходы, где это требуется. Однако стоит заметить, что семантические признаки, использованные в данном методе, не различают два разных объекта, принадлежащих к одному классу. В результате множественные объекты представлены на одном слое, что видно на примере изображений жирафов и коров.

Редактирование изображений с помощью мягких семантических контуров

Ниже приведено несколько примеров применения мягких контуров для редактирования изображений и создания коллажей. Мягкие контуры можно использовать для применения конкретных изменений к разным слоям: добавления размытия, изображающего движение поезда (2), раздельной цветовой коррекции для людей и для фона (5, 6), отдельной стилизации для воздушного шара, неба, ландшафта и человека (8). Конечно, то же самое можно сделать с помощью созданных вручную масок или классических алгоритмов выделения контура, но с автоматическим выделением семантически значимых объектов такое редактирование становится значительно проще.

Использование мягкой семантической сегментации для редактирования изображений

Заключение

Данный метод автоматически создаёт мягкие контуры, соответствующие семантически значимым областям изображения, используя смесь высокоуровневой информации от нейронной сети и низкоуровневых признаков. Однако у этого метода есть несколько ограничений. Во-первых, он относительно медленный: время обработки изображения с размерами 640 x 480–3–4 минуты. Во-вторых, этот метод не создаёт отдельные слои для разных объектов одного класса. И в-третьих, как показано ниже, этот метод может ошибиться на начальных этапах обработки в случаях, когда цвета объектов очень похожи (верхний пример), или во время объединения мягких контуров возле больших переходных областей (нижний пример).

Случаи ошибок алгоритма

Тем не менее, мягкие контуры, созданные с помощью описанного метода, дают удобное промежуточное представление изображения, позволяющее тратить меньше времени и сил при редактировании изображений.

Одной из главных целей компьютерного зрения при обработке изображений является интерпретация содержимого на изображении. Для этого необходимо качественно отделить фон от объектов. Сегментация разделяет изображение на составляющие части или объекты. Она отделяет объект от фона, чтобы можно было легко обрабатывать изображения и идентифицировать его содержимое. В данном случае выделение контуров на изображении является фундаментальным средством для качественной сегментации изображения. В данной статье предпринята попытка изучить производительность часто используемых алгоритмов выделения контуров для дальнейшей сегментации изображения, а также их сравнение при помощи программного средства MATLAB.

Введение

Сегментация изображений — огромный шаг для анализа изображений. Она разделяет изображение на составляющие части или объекты. Уровень детализации разделяемых областей зависит от решаемой задачи. К примеру, когда интересуемые объекты перестают сохранять целостность, разбиваются на более мелкие, составные части, процесс сегментации стоит прекратить. Алгоритмы сегментации изображений чаще всего базируются на разрыве и подобии значений на изображении. Подход разрывов яркости базируется на основе резких изменений значений интенсивности, подобие же — на разделение изображения на области, подобные согласно ряду заранее определенных критериев. Таким образом, выбор алгоритма сегментации изображения напрямую зависит от проблемы, которую необходимо решить. Обнаружение границ является частью сегментации изображений. Следовательно, эффективность решения многих задач обработки изображений и компьютерного зрения зависит от качества выделенных границ. Выделение их на изображении можно причислить к алгоритмам сегментации, которые базируются на разрывах яркости.

Процесс обнаружения точных разрывов яркости на изображении называется процессом выделение границ. Разрывы — это резкие изменения в группе пикселей, которые являются границами объектов. Классический алгоритм обнаружения границ задействует свертку изображения с помощью оператора, который основывается на чувствительности к большим перепадам яркости на изображении, а при проходе однородных участков возвращает нуль. Сейчас доступно огромное количество алгоритмов выделения контуров, но ни один из них не является универсальным. Каждый из существующих алгоритмов решает свой класс задач (т.е. качественно выделяет границы определенного типа). Для определения подходящего алгоритма выделения контуров необходимо учитывать такие параметры, как ориентация и структура контура, а также наличие и тип шума на изображении. Геометрия оператора устанавливает характерное направление, в котором он наиболее чувствителен к границам. Существующие операторы предназначены для поиска вертикальных, горизонтальных или диагональных границ. Выделение границ объектов — сложная задача в случае сильно зашумленного изображения, так как оператор чувствителен к перепадам яркости, и, следовательно, шум также будет считать некоторым объектом на изображении. Есть алгоритмы, позволяющие в значительной мере избавиться от шума, но в свою очередь, они в значительной мере повреждают границы изображения, искажая их. А так как большинство обрабатываемых изображений содержат в себе шум, шумоподавляющие алгоритмы пользуются большой популярностью, но это сказывается на качестве выделенных контуров.

Также при обнаружении контуров объектов существуют такие проблемы, как нахождение ложных контуров, расположение контуров, пропуск истинных контуров, помехи в виде шума, высокие затраты времени на вычисление и др. Следовательно, цель заключается в том, чтобы исследовать и сравнить множество обработанных изображений и проанализировать качество работы алгоритмов в различных условиях.

В данной статье предпринята попытка сделать обзор наиболее популярных алгоритмов выделения контуров для сегментации, а также реализация их в программной среде MATLAB. Второй раздел вводит фундаментальные определения, которые используются в литературе. Третий — предоставляет теоретический и математический и объясняет различные компьютерные подходы к выделению контуров. Раздел четыре предоставляет сравнительный анализ различных алгоритмов, сопровождая его изображениями. Пятый раздел содержит обзор полученных результатов и заключение.

Сегментация изображений

Сегментация изображения — это процесс разделения цифрового изображения на множество областей или наборов пикселей. Фактически, это разделение на различные объекты, которые имеют одинаковую текстуру или цвет. Результатом сегментации является набор областей, покрывающих вместе все изображение, и набор контуров, извлеченных из изображения. Все пиксели из одной области подобны по некоторым характеристикам, таким как цвет, текстура или интенсивность. Смежные области отличаются друг от друга этими же характеристиками. Различные подходы нахождения границ между областями базируются на неоднородностях уровней интенсивности яркости. Таки образом выбор метода сегментации изображения зависит от проблемы, которую необходимо решить.

Методы, основанные на областях, базируются на непрерывности. Данные алгоритмы делят все изображение на подобласти в зависимости от некоторых правил, к примеру, все пиксели данной группы должны иметь определенное значение серого цвета. Эти алгоритмы полагаются на общие шаблоны интенсивности значений в кластерах соседних пикселей.

Пороговая сегментация является простейшим видом сегментации. На ее основе области могут быть классифицированы по базовому диапазону значений, которые зависят от интенсивности пикселей изображения. Пороговая обработка преобразовывает входное изображение в бинарное.

Методы сегментации, основанные на обнаружении областей, находят непосредственно резкие изменения значений интенсивности. Такие методы называются граничными методами. Обнаружение границ — фундаментальная проблема при анализе изображений. Техники выделения границ обычно используются для нахождения неоднородностей на полутоновом изображении. Обнаружение разрывов на полутоном изображении — наиболее важный подход при выделении границ.

Алгоритмы выделение границ

Границы объектов на изображении в значительной степени уменьшают количество данных, которые необходимо обработать, и в то же время сохраняет важную информацию об объектах на изображении, их форму, размер, количество. Главной особенностью техники обнаружения границ является возможность извлечь точную линию с хорошей ориентацией. В литературе описано множество алгоритмов, которые позволяют обнаруживать границы объектов, но нигде нет описания того, как оценивать результаты обработки. Результаты оцениваются сугубо индивидуально и зависят от области их применения.

Обнаружение границ — фундаментальный инструмент для сегментации изображения. Такие алгоритмы преобразуют входное изображение в изображение с контурами объектов, преимущественно в серых тонах. В обработке изображений, особенно в системах компьютерного зрения, с помощью выделения контура рассматривают важные изменения уровня яркости на изображении, физические и геометрические параметры объекта на сцене. Это фундаментальный процесс, который обрисовывает в общих чертах объекты, получая тем самым некоторые знания об изображении. Обнаружение границ является самым популярным подходом для обнаружения значительных неоднородностей.

Граница является местным изменением яркости на изображении. Они, как правило, проходят по краю между двумя областями. С помощью границ можно получить базовые знания об изображении. Функции их получения используются передовыми алгоритмами компьютерного зрения и таких областях, как медицинская обработка изображений, биометрия и тому подобные. Обнаружение границ — активная область исследований, так как он облегчает высокоуровневый анализ изображений. На полутоновых изображениях существует три вида разрывов: точка, линия и граница. Для обнаружения всех трех видов неоднородностей могут быть использованы пространственные маски.

В технической литературе приведено и описано большое количество алгоритмов выделения контуров и границ. В данной работе рассмотрены наиболее популярные методы. К ним относятся: оператор Робертса, Собеля, Превитта, Кирша, Робинсона, алгоритм Канни и LoG-алгоритм.

Оператор Робертса

Оператор выделения границ Робертса введен Лоуренсом Робертсом в 1964 году. Он выполняет простые и быстрые вычисления двумерного пространственного измерения на изображении. Этот метод подчеркивает области высокой пространственной частоты, которые зачастую соответствуют краям. На вход оператора подается полутоновое изображение. Значение пикселей выходного изображения в каждой точке предполагает некую величину пространственного градиента входного изображения в этой же точке.

Оператор Собеля

Оператор Собеля введен Собелем в 1970 году. Данный метод обнаружения границ использует приближение к производной. Это позволяет обнаруживать край в тех местах, где градиент самый высокий. Данный способ обнаруживает количество градиентов на изображении, тем самым выделяя области с высокой пространственной частотой, которые соответствуют границам. В целом это привело к нахождению предполагаемой абсолютной величине градиента в каждой точке входного изображения. Данный оператор состоит из двух матриц, размером 3×3. Вторая матрица отличается от первой только тем, что повернута на 90 градусов. Это очень похоже на оператор Робертса.

Обнаружение границ данным методом вычислительно гораздо проще, чем методом Собеля, но приводит к большей зашумленности результирующего изображения.

Оператор Превитта

Обнаружение границ данным оператором предложено Превиттом в 1970 году. Правильным направлением в данном алгоритме была оценка величины и ориентация границы. Даже при том, что выделение границ является весьма трудоемкой задачей, такой подход дает весьма неплохие результаты. Данный алгоритм базируется на использовании масок размером 3 на 3, которые учитывают 8 возможных направлений, но прямые направления дают наилучшие результаты. Все маски свертки рассчитаны.

Оператор Кирша

Обнаружение границ этим методом было введено Киршем в 1971 году. Алгоритм основан на использовании всего одной маски, которую вращают по восьми главным направлениям: север, северо-запад, запад, юго-запад, юг, юго-восток, восток и северо-восток. Маски имеют следующий вид:

Величина границы определена как максимальное значение, найденное с помощью маски. Определенное маской направление выдает максимальную величину. Например, маска k 0 соответствует вертикальной границе, а маска k 5 — диагональной. Можно также заметить, что последние четыре маски фактически такие же, как и первые, они являются зеркальным отражением относительно центральной оси матрицы.

Оператор Робинсона

Метод Робинсона, введенное в 1977, подобен методу Кирша, но является более простым в реализации в силу использования коэффициентов 0, 1 и 2. Маски данного оператора симметричны относительно центральной оси, заполненной нулями. Достаточно получить результат от обработки первых четырех масок, остальные же можно получить, инвертируя первые.

Максимальное значение, полученное после применения всех четырех масок к пикселю и его окружению считается величиной градиента, а угол градиента можно аппроксимировать как угол линий нулей в маске, которые дают максимальный отклик.

Выделение контура методом Marr-Hildreth

Marr-Hildreth (1980) метод — метод обнаружения границ в цифровых изображениях, который обнаруживает непрерывные кривые везде, где заметны быстрые и резкие изменения яркости группы пикселей. Это довольно простой метод, работает он с помощью свертки изображения с LoG-функцией или как быстрая аппроксимация с DoG. Нули в обработанном результате соответствуют контурам. Алгоритм граничного детектора состоит из следующих шагов:

  • размытие изображение методом Гаусса;
  • применение оператора Лапласса к размытому изображению (часто первые два шага объединены в один);
  • производим цикл вычислений и в полученном результате смотрим на смену знака. Если знак изменился с отрицательного на положительный и значение изменения значения более, чем некоторый заданный порог, то определить эту точку, как границу;
  • Для получения лучших результатов шаг с использованием оператора Лапласса можно выполнить через гистерезис так, как это реализовано в алгоритме Канни.

Выделение контура методом LoG

Алгоритм выделения контуров Лаплассиан Гауссиана был предложен в 1982 году. Данный алгоритм является второй производной, определенной как:

Он осуществляется в два шага. На первом шаге он сглаживает изображение, а затем вычисляет функцию Лапласса, что приводит к образованию двойных контуров. Определение контуров сводится к нахождению нулей на пересечении двойных границ. Компьютерная реализация функции Лапласса обычно осуществляется через следующую маску:

Лаплассиан обычно использует нахождение пикселя на темной или светлой стороне границы.

Детектор границ Канни

Детектор границ Канни является одной из самых популярных алгоритмов обнаружения контуров. Впервые он был предложен Джоном Канни в магистерской диссертации в 1983 году, и до сих пор является лучше многих алгоритмов, разработанных позднее. Важным шагом в данном алгоритме является устранение шума на контурах, который в значительной мере может повлиять на результат, при этом необходимо максимально сохранить границы. Для этого необходим тщательный подбор порогового значения при обработке данным методом.

Алгоритм:

  • размытие исходного изображения f(r, c) с помощью функции Гаусса f^(r, c). f^(r, c)=f(r,c)*G(r,c,6);
  • выполнить поиск градиента. Границы намечаются там, где градиент принимает максимальное значение;
  • подавление не-максимумов. Только локальные максимумы отмечаются как границы;
  • итоговые границы определяются путем подавления всех краев, не связанных с определенными границами.

В отличии от операторов Робертса и Собеля, алгоритм Канни не очень восприимчив к шуму на изображении.

Экспериментальные результаты

В данном разделе представлены результаты работы описанных ранее алгоритмов обнаружения границ объектов на изображении.

Все описанные алгоритмы были реализованы в программной среде MATLAB R2009a и протестированы на фотографии университета. Цель эксперимента заключается в получении обработанного изображения с идеально выделенными контурами. Оригинальное изображение и результаты его обработки представлены на рисунке 1.

Рисунок 1 — Оригинальное изображение и результат работы различных алгоритмов выдеоения контуров


При анализе полученных результатов были выявлены следующие закономерности: операторы Робертса, Собеля и Превитта дают очень различные результаты. Marr-Hildreth, LoG и Канни практически одинаково обнаружили контуры объекта, Кирш и Робинсон дали такой же результат. Но наблюдая полученные результаты можно сделать вывод, что алгоритм Канни справляется на порядок лучше других.

Выводы

Обработка изображений — быстро развивающаяся область в дисциплине компьютерного зрения. Ее рост основывается на высоких достижениях в цифровой обработке изображений, развитию компьютерных процессоров и устройств хранения информации.

В данной статье была предпринята попытка изучить на практике методы выделения контуров объектов, основанных на разрывах яркости полутонового изображения. Исследование относительной производительности каждого из приведенных в данной статье методов осуществлялся с помощью программного средства MATLAB. Анализ результатов обработки изображения показал, что такие методы, как Marr-Hildreth, LoG и Канни дают практически одинаковые результаты. Но все же при обработке данного тестового изображения наилучшие результаты можно наблюдать после работы алгоритма Канни, хотя при других условиях лучшим может оказаться другой метод.

Даже учитывая тот факт, что вопрос обнаружения границ на изображении достаточно хорошо осветлен в современной технической литературе, он все же до сих пор остается достаточно трудоемкой задачей, так как качественное выделение границ всегда зависит от множества влияющих на результат факторов.

Список использованной литературы

1. Canny J.F. (1983) Finding edges and lines in images, Master"s thesis, MIT. AI Lab. TR-720.
2. Canny J.F. (1986) A computational approach to edge detection , IEEE Transaction on Pattern Analysis and Machine Intelligence, 8. — P. 679-714.
3. Courtney P, Thacker N.A. (2001) Performance Characterization in Computer Vision: The Role of Statistics in Testing and Design , Chapter in: Imaging and Vision Systems: Theory, Assessment and Applications , Jacques Blanc-Talon and Dan Popescu (Eds.), NOVA Science Books.
4. Hanzi Wang (2004) Robust Statistics for Computer Vision: Model Fitting, Image Segmentation and Visual Motion Analysis, Ph.D thesis, Monash University, Australia.
5. Huber P.J. (1981) Robust Statistics, Wiley New York.
6. Kirsch R. (1971) Computer determination of the constituent structure of biological images , Computers and Biomedical Research, 4. — P. 315–328.
7. Lakshmi S, Sankaranarayanan V. (2010) A Study of edge detection techniques for segmentation computing approaches , Computer Aided Soft Computing Techniques for Imaging and Biomedical Applications. — P. 35-41.
8. Lee K., Meer P. (1998) Robust Adaptive Segmentation of Range Images , IEEE Trans. Pattern Analysis and Machine Intelligence, 20(2). — P. 200-205.
9. Marr D, Hildreth E. (1980) Theory of edge detection , Proc. Royal Society of London, B, 207. — P. 187–217.
10. Marr D. (1982) Vision, Freeman Publishers.
11. Marr P., Doron Mintz. (1991) Robust Regression for Computer Vision: A Review , International Journal of Computer Vision, 6(1). — P. 59-70.
12. Orlando J. Tobias, Rui Seara (2002) Image Segmentation by Histogram Thresholding Using Fuzzy Sets , IEEE Transactions on Image Processing, Vol.11, No.12. — P. 1457-1465.
13. Punam Thakare (2011) A Study of Image Segmentation and Edge Detection Techniques , International Journal on Computer Science and Engineering, Vol 3, No.2. — P. 899-904.
14. Rafael C., Gonzalez, Richard E. Woods, Steven L. Eddins (2004) Digital Image Processing Using MATLAB, Pearson Education Ptd. Ltd, Singapore.
15. Ramadevi Y. (2010) Segmentation and object recognition using edge detection techniques , International Journal of Computer Science and Information Technology, Vol 2, No.6. — P. 153-161.
16. Roberts L. (1965) Machine Perception of 3-D Solids , Optical and Electro-optical Information Processing, MIT Press.
17. Robinson G. (1977) Edge detection by compass gradient masks , Computer graphics and image processing, 6. — P. 492-501.
18. Rousseeuw P. J., Leroy A. (1987) Robust Regression and outlier detection, John Wiley & Sons, New York.
19. Senthilkumaran N., Rajesh R. (2009) Edge Detection Techniques for Image Segmentation — A Survey of Soft Computing Approaches , International Journal of Recent Trends in Engineering, Vol. 1, No. 2. — P. 250-254.
20. Sowmya B., Sheelarani B. (2009) Colour Image Segmentation Using Soft Computing Techniques , International Journal of Soft Computing Applications, Issue 4. — P. 69-80.
21. Umesh Sehgal (2011) Edge detection techniques in digital image processing using Fuzzy Logic , International Journal of Research in IT and Management, Vol.1, Issue 3. — P. 61-66.
22. Yu, X, Bui, T.D. & et al. (1994) Robust Estimation for Range Image Segmentation and Reconstruction , IEEE trans. Pattern Analysis and Machine Intelligence, 16 (5). — P. 530-538.

Сегментация изображений

Сегментация устанавливает характерные подмножества пикселов или разбиение изображения на связные области, каждая из которых в некотором смысле “однородна”. Процессы сегментации и выделения признаков можно рассматривать как присваивание пикселам меток, определяющих специальные классы, к которым эти пикселы принадлежат. Таким образом, на выходе процесса сегментации находится символьное изображение, в котором значениями пиксела являются метки, а не уровни яркости.

Классификация моделей изображений

Для сегментации изображений используют ту или иную модель, обеспечивающую более или менее адекватное описание реальных изображений. Выделяют два основных класса моделей изображений: статистические и пространственные. Статистические модели описывают совокупность точечных элементов изображения или его области. Пространственные модели описывают декомпозицию изображения на составные части или области.

Статистические модели первого порядка описывают совокупность точечных элементов изображения без учета их расположения в пространстве. Простейшее описание такого типа - плотность вероятности распределения значений яркости, которая рассчитывается с помощью гистограммы значений яркости. Часто считают, что плотность вероятности распределения значений реального изображения аппроксимируется некоторой стандартной, например, гауссовой функцией плотности вероятности или смесью таких функций.

В моделях первого порядка не учитывается, что изображение состоит из каких-либо согласованных частей (элементов текстуры, объектов и т. д.). Взаимное расположение элементов в пространстве учитывают модели совокупностей точечных элементов изображения более высокого порядка. Одной из моделей является матрица смежности значений яркости, элементы которой представляют собой частоты пар значений яркости при выбранном смещении. Величина смещения на практике выбирается достаточно малой, т. к. при большом смещении значения яркости становятся независимыми друг от друга.

Другой метод описания пространственных отношений между точечными элементами изображения состоит в рассмотрении плотности вероятности распределения значений локального признака, что зачастую более эффективно, чем использование плотности вероятности распределения значений яркости высших порядков. При сегментации изображения особенно полезны локальные признаки, обусловленные наличием краев, например, значения различных дифференциальных операторов измерения градиента яркости.

К статистическим моделям изображения относятся также модели случайных полей и временных рядов , использующиеся, в основном, при моделировании текстур.

Пространственные модели описывают изображение в терминах областей. Изображение может быть представлено как совокупность объектов на фоне, как расчлененное на области некоторым регулярным или случайным способом, как модель формы областей. Пространственные модели позволяют в общем случае извлечь больше информации из изображения, чем модели статистик распределения яркости. Однако пока используются только достаточно простые модели, а их математический аппарат требует дальнейшей разработки.

Сегментация изображений методами пороговой обработки

Наиболее простым и широко распространенным методом сегментации изображений является пороговая обработка. В ряде стандартных методов выделения частей изображения по порогу величины порогов определяются непосредственно по гистограммам изображения (статистическая модель изображения первого порядка). Исторически первым методом этой группы методов является метод мод. Метод вытекает из предположения, что изображение содержит известное число однородных по яркости классов точек. Кроме того, считается, что граничные участки между замкнутыми областями занимают сравнительно небольшую площадь изображения. Поэтому на гистограмме им должны соответствовать межмодовые впадины, в пределах которых устанавливаются пороги сегментации.

Однако реальные изображения плохо удовлетворяют выдвинутым предположениям. Как правило, границы между областями размыты и модальная структура гистограммы выражена недостаточно. Кроме того, даже когда гистограмма имеет различимые моды, ее впадины могут быть настолько широкими и плоскими, что оказывается трудно локализовать дно впадины.

Если реальное изображение не удовлетворяет условиям метода мод, применяются следующие четыре подхода. Во-первых, улучшение гистограммы, в том числе, на основе локальных свойств изображения с использованием градиентной информации, статистик второго порядка, анализа кривизны интегральной функции распределения. Во-вторых, аппроксимация гистограммы смесью нормальных распределений и применение статистических методов для оптимального разделения этой смеси. Недостатком этого подхода является большая вычислительная сложность, кроме того, зачастую гауссоиды плохо аппроксимируют реальные моды. В-третьих, введение эмпирической меры качества сегментированного изображения и максимизация соответствующей критериальной функции - дискриминантный подход, энтропийный подход, моментный подход и др. В-четвертых, переход к использованию иных статистик для выбора порога, в частности, выбор порога непосредственно по локальным признакам. Использование локальных признаков позволяет сегментировать сложные реальные изображения более качественно.

Гистограммный анализ обеспечивает удовлетворительное качество сегментации тех изображений, которые состоят из однородных по яркости областей. Однако, при выделении малоразмерных объектов на сложном фоне, точки объектов не дают заметных пиков на гистограмме яркости. Поэтому применяется обработка с переменным порогом: для небольших фрагментов изображения осуществляется построение гистограмм, которые проверяются на бимодальность, а найденные локальные пороги интерполируются на оставшуюся часть изображения.

Ряд алгоритмов, основанных на дискриминантом анализе, предложен в работах Осту. Пусть G ={0,1,...,L }- возможные значения яркости изображения. Порог разделяет распределение значений яркости изображения на два класса C 0={0,1,...,t } и C 1={t +1,t +2,...,L }, t ÎG . Оптимальный порог t * определяется как

где - дисперсия распределения значений яркости изображения в целом, w0 - вероятность принадлежности наугад взятой точки к фону, https://pandia.ru/text/80/299/images/image004_46.gif" width="21" height="24">- средний уровень яркости фона (класса C 0).

Если площади объекта и фона резко отличаются друг от друга, гистограмма критериальной функции может быть мультимодальной. Поэтому необходимо определять все локальные пики, что серьезно снижает конкурентоспособность метода.

Энтропийный критерий для выбора оптимального порога. Пользуясь введенными ранее определениями, гистограмму значений яркости можно рассматривать как L -символьный источник информации с энтропией

,

где pi – вероятность яркости со значением i .

Энтропия источника складывается из энтропии объекта H 0 и энтропии фона H 1, а оптимальный порог должен давать максимальное значение этой суммы:

, (2)

при этом .

Поскольку каждое из слагаемых H 0 и H 1 характеризует равномерность распределения яркостей на соответствующих интервалах и резко уменьшается при попадании в данный интервал "чужого" фрагмента гистограммы максимум энтропийного критерия будет соответствовать наилучшему варианту сегментации. Недостатком этого метода является то, что критериальная функция может иметь несколько близких по значению максимумов.

В отличие от дискриминантного подхода в методе сохранения моментов вводятся все моменты изображения до (2k +1) порядка включительно:

.

Оптимальным считается порог, обеспечивающий равенство соответствующих моментов сегментированного и исходного изображений. Однако если k >3, то возникают трудности, связанные с отсутствием аналитического решения задачи.

Переход от выбора порога по гистограмме яркости к использованию иных статистик, несомненно, усложняет алгоритмы сегментации, но обеспечивает более качественную сегментацию сложных изображений. Для выделения малоразмерных объектов перспективным представляется выбор порога непосредственно по локальным свойствам точек изображения.

Метод максимума среднего контраста. В основу метода положено простое эвристическое определение оптимального порога: оптимальным для сегментации изображений считается порог, выделяющий больше высококонтрастных и меньше низкоконтрастных перепадов яркости, чем любой другой порог. Количественным выражением критерия является средний контраст всех перепадов яркости, выделяемых данным порогом. Порог, соответствующий максимальному среднему контрасту, является оптимальным. Если две смежные точки Х 1=(х 1,y 1) и X 2=(x 2,y 2) имеют значения яркости f (Х 1) и f (X 2) (без потери общности f (X 1)£f (X 2)), то количество перепадов, выделяемых порогом t , равно:

где

Полный контраст, соответствующий порогу t , равен:

где DIV_ADBLOCK169">

. (3)

На основе предложенных Хараликом матриц смежности значений яркости рассмотрен следующий метод сегментации. Для изображения строятся матрицы совместного появления уровней яркостей пар смежных точек в горизонтальном P 1,0 и вертикальном P 1,90 направлениях, а также суммарная матрица переходов, размером (L +1)´(L +1):

P vh = P 1,0 + P 1,90.

Произвольный порог t разбивает точки изображения на два класса С 0 и С 1, а матрицу переходов - на 4 блока.

Пороговая обработка, вероятно, самый простой метод сегментации, что привлекает к нему большое внимание специалистов. Метод ориентирован на обработку изображений, отдельные однородные участки которых различаются средней яркостью. Простейшим и вместе с тем часто применяемым видом сегментации является бинарная сегментация, когда имеется только два типа однородных участков. При этом преобразование каждой точки исходного изображения в выходное выполняется по правилу:

(7.1)

где - единственный параметр обработки, называемый порогом. Уровни выходной яркости и , могут быть произвольными, они лишь выполняют функции меток, при помощи которых осуществляется разметка получаемой карты - отнесение ее точек к классам или соответственно. Если образуемый препарат подготавливается для визуального восприятия, то часто их значения соответствуют уровням черного и белого. Если существует более двух классов, то при пороговой обработке должно быть задано семейство порогов, отделяющих яркости различных классов друг от друга.

Центральным вопросом пороговой сегментации является определение порогов, которое должно выполняться автоматически. Применяемые в настоящее время методы автоматического определения порогов подробно описаны в обзоре . Разнообразие методов очень велико, однако в основном они базируются на анализе гистограммы исходного изображения.

Пусть , - гистограмма исходного цифрового изображения. Примем, что его диапазон яркостей заключен в пределах от 0 (уровень черного) до 255 (уровень белого). Первоначальная идея гистограммного метода определения порога основывалась на предположении о том, что распределения вероятностей для каждого класса унимодальны (содержат по одному пику), а точки границ, разделяющих участки разных классов на изображении, малочисленны. Этим предположениям должна отвечать гистограмма, которая имеет многомодальный характер. Отдельные моды соответствуют различным классам, а разделяющие их впадины - малочисленным по количеству входящих в них точек граничным областям. Пороги сегментации находятся при этом по положению впадин. Рис. 7.1 иллюстрирует сказанное выше применительно к случаю двух классов. В действительности воспользоваться такими простыми соображениями для выбора порога удается крайне редко. Дело в том, что реальные гистограммы обычно сильно изрезаны, что иллюстрирует приводимый па рис.7.2, в результат эксперимента. Это служит первым препятствием для определения точек минимума. Вторым препятствием является то, что границы между однородными участками на изображении бывают размыты, вследствие чего уровень гистограммы в тех ее частях, которые отображают точки границы, возрастает. Очевидно, это приводит к уменьшению провалов в гистограмме или даже их исчезновению.

Рис.7.1.К выбору порога бинарной сегментации

Один из эффективных путей преодоления этих трудностей состоит и определении порога на основе так называемого дискриминантного критерия. Рассмотрим этот подход применительно к двум классам, поскольку обобщение на случай большего числа классов не составляет принципиальной проблемы. Итак, считаем, что распределение ,построено для изображения, содержащего два типа участков, причем существует оптимальная граница , разделяющая их наилучшим образом в некотором смысле. Для определения оптимального порога строим дискриминантную функцию , , аргумент которой имеет смысл пробного порога. Его значение, максимизирующее функцию , является оптимальным порогом . Рассмотрим построение дискриминантной функции.

Пусть - гипотетическое значение порога, разбивающее распределение , на два класса. При этом обычно не играет большой роли, к какому из классов будут отнесены точки изображения, имеющие яркость , в силу малочисленности граничных точек, разделяющие участки разных классов. Вероятность того, что наугад взятая точка кадра принадлежит классу , равна

(7.2)

Аналогично вероятность ее принадлежности к классу определяется формулой

(7.3)

причем в силу нормировки распределения вероятностей имеет место равенство

Далее считаем, что участок распределения , , ограниченный точкой , описывает часть изображения, принадлежащую , а участок , - принадлежащую . Это позволяет ввести в рассмотрение два распределения и , соответствующих и , конструируя их из распределения при помощи выражений:

Здесь делением на вероятности и обеспечивается нормировка вводимых условных распределений.

Для образованных таким образом распределений вероятностей могут быть найдены моменты. Выражения для математических ожиданий и имеют вид

(7.4)

где - ненормированное математическое ожидание для , - математическое ожидание для всего кадра.

Аналогично, дисперсия дня всего кадра определяется выражением

(7.6)

Для построения дискриминантной функции дополнительно вводим еще один энергетический параметр , называемый межклассовой дисперсией:

Безразмерная дискриминантная функция определяется выражением

(7.8)

Оптимальным, как говорилось выше, считается порог, отвечающим требованию

(7.9)

Поясним смысл критерия (7.9). Знаменатель в выражении (7.8) является дисперсией всего кадра и, следовательно, от величины пробного порога , разбивающего изображение на классы, не зависит. Поэтому точка максимума выражения (7.8) совпадает с точкой максимума числителя, т.е. определяется характером зависимости межклассовой дисперсии (7.7) от порога . При его стремлении к нулю вероятность , как следует из (7.2), также стремится к нулю. Поскольку при этом все изображение относится к классу , имеет место тенденция . Следовательно, оба слагаемых в (7.7) становятся равными нулю. Это же наблюдается и при другом крайнем значении порога =255. В силу неотрицательности величин, входящих в (7.7) и (7.9), и равенства функции нулю на краях области определения, внутри этой области существует максимум, абсцисса которого и принимается за оптимальный порог. Следует отметить качественный характер этих соображений. Более детальные исследования показывают, например, что при обработке некоторых изображений дискриминантная функция имеет несколько максимумов даже при наличии на изображении только двух классов. Это, в частности, проявляется, когда суммарные площади участков, занятых классами и ,существенно различны. Поэтому задача в общем случае несколько усложняется необходимостью определить абсолютный максимум функции .

С вычислительной точки зрения для выполнения алгоритма необходимо найти для всего изображения математическое ожидание и дисперсию . Далее при каждом значении определяются вероятности и с использованием (7.2) и (7.3) (или условия нормировки), а также математические ожидания классов и при помощи соотношений (7.4), (7.5). Найденные таким образом величины дают возможность определить значение .

Объем вычислений можно сократить, если выполнить некоторые преобразования формулы (7.7) для межклассовой дисперсии. Используя формулы (7.2)...(7.5), нетрудно получить соотношение для математических ожиданий:

(7.11)

Выражая из (7.10) величину и подставляя ее в (7.11), окончательно находим:

(7.12)

В соотношение (7.12), используемое в качестве рабочего, входят лишь две величины - вероятность и ненормированное математическое ожидание , что существенно уменьшает объем вычислений при автоматическом отыскании оптимального порога.

На рис. 7.2 приведены результаты эксперимента, иллюстрирующие описанный метод автоматической бинарной сегментации. На рис.7.2, а показан аэрофотоснимок участка земной поверхности "Поле", а на рис.7.2, б – результат его бинарной сегментации, выполненной на основе автоматического определения порога при помощи дискриминантного метода. Гистограмма распределения исходного изображения показана на рис.7.2, в, а дискриминантная функция , вычисленная по полученной гистограмме - на рис. 7.2, г. Сильная изрезанность гистограммы, порождающая большое количество минимумов, исключает возможность непосредственного определения единственного информационного минимума, разделяющего классы друг от друга. Функция же является существенно более гладкой и к тому же в данном случае унимодальной, что делает определение порога весьма простой задачей. Оптимальный порог, при котором получено сегментированное изображение, =100. Результаты показывают, что описанный метод нахождения порога, являясьразвитием гистограммного подхода, обладает сильным сглаживающим действием по отношению к изрезанности самой гистограммы.

Коснемся вопроса о пороговой сегментации нестационарных изображений. Если средняя яркость изменяется внутри кадра, то пороги сегментации должны быть также изменяющимися. Часто в этих случаях прибегают к разбиению кадра на отдельные области, в пределах которых изменениями средней яркости можно пренебречь. Это позволяет применять внутри отдельных областей принципы определения порогов, пригодные для работы со стационарными изображениями. На обработанном изображении наблюдаются в этом случае области, на которые разбито исходное изображение, отчетливо видны границы между областями. Это – существенный недостаток метода.

Более трудоемка, но и более эффективна процедура, использующая скользящее окно, при которой каждое новое положение рабочей области отличается от предыдущего только на один шаг по строке или по столбцу. Находимый на каждом шаге оптимальный порог относят к центральной точке текущей области. Таким образом, при этом методе порог изменяется в каждой точке кадра, причем эти изменения имеют характер, сопоставимый с характером нестационарности самого изображения. Процедура обработки, конечно, существенно усложняется.

Компромиссной является процедура, при которой вместо скользящего окна с единичным шагом применяют "прыгающее" окно, перемещающееся на каждом этапе обработки на несколько шагов. В "пропущенных" точках кадра порог может определяться с помощью интерполяции (часто применяют простейшую линейную интерполяцию) по его найденным значениям в ближайших точках.

Рис.7.2.Пример бинарной сегментации с автоматическим определением порога

Оценивая результативность пороговой сегментации по рис. 7.2, б, следует отметить, что данный метод дает возможность получить определенное представление о характере однородных областей, образующих наблюдаемый кадр. Вместе с темочевидно его принципиальное несовершенство, вызванное одноточечным характером принимаемых решений. Поэтому в последующих разделах обратимся к статистическим методам, позволяющим учитывать при сегментации геометрические свойства областей – размеры, конфигурацию и т.п. Отметим сразу же, что соответствующие геометрические характеристики задаются при этом своими вероятностными моделями и чаще всего в неявном виде.