Проблемы и ошибки        21.10.2019   

Интерфейсы дисковых подсистем их классификация. Отказоустойчивые дисковые подсистемы и их реализация

Когда мы говорим про ресурсы дисковой подсистемы, то назвать их можно три: объем места, скорость чтения и записи в Мб/сек и скорость чтения-записи в количестве операций ввода-вывода в секунду (Input/Output per second, IOPS, или просто I/O).

Поговорим сначала про объем. Я приведу соображения, на которые следует ориентироваться, и пример расчета.

Соображения следующие:

Q место на диске занимают сами файлы-диски виртуальных машин. Следовательно, нужно понять, сколько места нужно им;

Q если для всех или части ВМ мы планируем использовать тонкие (thin) диски, то следует спланировать их первоначальный объем и последующий рост (здесь и далее под thin-дисками понимается соответствующий тип vmdkфайлов, то есть функция thin provisioning в реализации ESX(i). Дело в том, что функционал thin provisioning может быть реализован на системе хранения независимо от ESX(i), и я имею в виду не функционал систем хранения);

Q по умолчанию для каждой ВМ гипервизор создает файл подкачки, по раз-

мерам равный объему ее оперативной памяти. Этот файл подкачки располагается в папке ВМ (по умолчанию) или на отдельном LUN;

Q если планируются к использованию снимки состояния, то под них тоже

следует запланировать место. За точку отсчета можно взять следующие соображения:

Если снимки состояния будут существовать короткий период после создания, например только на время резервного копирования, то под них запасаем процентов десять от размера диска ВМ;

Если снимки состояния будут использоваться со средней или непрогнозируемой интенсивностью, то для них имеет смысл заложить порядка 30% от размера диска ВМ;

Если снимки состояния для ВМ будут использоваться активно (что актуально в сценариях, когда ВМ используются для тестирования и разработки), то занимаемый ими объем может в разы превышать номинальный размер виртуальных дисков. В этом случае точные рекомендации дать сложно, но за точку отсчета можно взять удвоение размера каждой ВМ. (Здесь и далее под снимком состояния понимается соответствующий функционал ESX(i). Дело в том, что снимки состояния (snapshot) могут быть реализованы на системе хранения независимо от ESX(i), и я имею в виду не функционал систем хранения.)

Примерная формула выглядит следующим образом:

Объем места для группы ВМ = Количество ВМ? (Размер диска? T +

Размер диска? S + Объем памяти – Объем памяти? R).

Q T – коэффициент тонких (thin) дисков. Если такие диски не используются, равен 1. Если используются, то абстрактно оценку дать сложно, зависит от характера приложения в ВМ. По сути, thin-диски занимают места на системе хранения меньше, чем номинальный размер диска. Так вот – этот коэффициент показывает, какую долю от номинального размера занимают диски виртуальных машин;

Q S – размер снимков состояния. 10/30/200 процентов, в зависимости от про-

должительности непрерывного использования;

Q R – процент зарезервированной памяти. Зарезервированная память в файл подкачки не помещается, файл подкачки создается меньшего размера. Размер его равен: объем памяти ВМ минус объем зарезервированной памяти.

Оценочные входные данные, для примера, см. в табл. 1.3.

Таблица 1.3. Данные для планирования объема дисковой подсистемы

Группа ВМ

Размер дисков одной ВМ, Гб

Используются тонкие диски?

Примерный размер снапшотов

Средний размер ОЗУ ВМ, Гб

Резервирование ОЗУ, %

Количе ство ВМ в группе

Инфраструктура

Серверы приложений

Критичные серверы приложений

Тестовые и временные

Получаем оценку требуемого объема:

Q инфраструктурная группа – 15 ? (20 + 20 ? 10% + 2 – 2 ? 0) = 360 Гб;

Q серверы приложений – 20 ? (40 + 40 ? 10% + 2 – 2 ? 0) = 920 Гб;

Q критичные серверы – 10 ? (100 + 100 ? 10% + 6 – 6 ? 0.5) = 1130 Гб;

Q тестовые и временные – 20 ? (20 ? 30% + (20 ? 30%) ? 200% + 2 – 2 ? 0) =

Следовательно, мы можем создать два LUN по 1,4 Тб и примерно поровну распределить между ними виртуальные машины. Или создать 4–5 LUN по 600– 800 Гб и поместить машины разных групп на разные LUN. Оба варианта (и промежуточные между ними) приемлемы. Выбор между ними делается, исходя из прочих предпочтений (например, организационных).

Еще одним ресурсом дисковой подсистемы является производительность. В случае виртуальных машин скорость в Мб/сек не является надежным критери ем, потому что при обращении большого количества ВМ на одни и те же диски обращения идут непоследовательно. Для виртуальной инфраструктуры более важной характеристикой является количество операций ввода-вывода (IOPS, Input/ Output per second). нашей инфраструктуры должна позволять больше этих операций, чем их запрашивают виртуальные машины.

Какой путь проходят обращения гостевой ОС к физическим дискам в общем случае:

1. Гостевая ОС передает запрос драйверу контроллера SAS/SCSI (который для нее эмулирует гипервизор).

2. Драйвер передает его на сам виртуальный контроллер SAS/SCSI.

3. Гипервизор перехватывает его, объединяет с запросами от других ВМ и передает общую очередь драйверу физического контроллера (HBA в случае FC и аппаратного iSCSI или Ethernet-контроллер в случае NFS и программного iSCSI).

4. Драйвер передает запрос на контроллер.

5. Контроллер передает его на систему хранения, по сети передачи данных.

6. Контроллер системы хранения принимает запрос. Запрос этот – операция чтения или записи с какого-то LUN или тома NFS.

7. LUN – это «виртуальный раздел» на массиве RAID, состоящем из физиче ских дисков. То есть запрос передается контроллером СХД на диски этого массива RAID.

Где может быть узкое место дисковой подсистемы:

Q скорее всего, на уровне физических дисков. Важно количество физических дисков в массиве RAID. Чем их больше, тем лучше операции чтения-записи могут быть распараллелены. Также чем быстрее (в терминах I/O) сами диски, тем лучше;

Q разные уровни массивов RAID обладают разной производительностью. За-

RAID-10 – самый быстрый, но наименее эффективно использует пространство дисков, отнимая 50% на поддержку отказоустойчивости;

RAID-6 – самый надежный, но страдает низкой производительностью на записи (30–40% от показателей RAID-10 при 100% записи), хотя чтение с него такое же быстрое, как с RAID-10;

RAID-5 компромиссен. Производительность на запись лучше RAID-6 (но хуже RAID-10), выше эффективность хранения (на отказоустойчивость забирается емкость лишь одного диска). Но RAID-5 страдает от серьезных проблем, связанных с долгим восстановлением данных после выхода из строя диска в случае использования современных дисков большой емкости и больших RAID-групп, во время которого остается незащищенным от другого сбоя (превращаясь в RAID-0) и резко теряет в производительности;

RAID-0, или «RAID с нулевой отказоустойчивостью», для хранения значимых данных использовать нельзя;

Q настройки системы хранения, в частности кеша контроллеров системы хранения. Изучение документации СХД важно для правильной ее настройки и эксплуатации;

Q сеть передачи данных. Особенно если планируется к использованию IP

СХД, iSCSI или NFS. Я ни в коем случае не хочу сказать, что не надо их использовать, – такие системы давно и многими эксплуатируются. Я хочу сказать, что надо постараться убедиться, что переносимой в виртуальную среду нагрузке хватит пропускной способности сети с планируемой пропускной способностью.

Результирующая скорость дисковой подсистемы следует из скорости дисков и алгоритма распараллеливания контроллером обращений к дискам (имеются в виду тип RAID и аналогичные функции). Также имеет значение отношение числа операций чтения к числу операций записи – это отношение мы берем из статистики или из документации к приложениям в наших ВМ.

Разберем пример. Примем, что наши ВМ будут создавать нагрузку до 1000 IOps, 67% из которых будет составлять чтение, а 33% – запись. Сколько и каких дисков нам потребуется в случае использования RAID-10 и RAID-5?

В массиве RAID-10 в операциях чтения участвуют сразу все диски, а в операции записи – лишь половина (потому что каждый блок данных записывается сразу на два диска). В массиве RAID-5 в чтении участвуют все диски, но при записи каждого блока возникают накладные расходы, связанные с подсчетом и изменением контрольной суммы. Можно считать, что одна операция записи на массив RAID-5 вызывает четыре операции записи непосредственно на диски.

Q запись – 1000 ? 0,33% = 330 ? 2 (так как в записи участвует лишь половина

дисков) = 660 IOps.

Всего от дисков нам надо 1330 IOps. Если поделить 1330 на количество IOps, заявленное в характеристиках производительности одного диска, получим требуемое количество дисков в массиве RAID-10 под указанную нагрузку.

Q чтение – 1000 ? 0,67% = 670 IOps;

Q запись – 1000 ? 0,33% = 330 ? 4 = 1320 IOps.

Всего нам от дисков надо 1990 IOps.

По документации производителей один жесткий диск SAS 15k обрабатывает 150–180 IOps. Один диск SATA 7.2k – 70–100 IOps. Однако есть мнение, что лучше ориентироваться на несколько другие цифры: 50–60 для SATA и 100–120 для SAS.

Закончим пример.

При использовании RAID-10 и SATA нам потребуется 22–26 дисков.

При использовании RAID-5 и SAS нам потребуется 16–19 дисков.

Очевидно, что приведенные мною расчеты достаточно приблизительны. В системах хранения используются разного рода механизмы, в первую очередь кешировование – для оптимизации работы системы хранения. Но как отправная точка для понимания процесса сайзинга дисковой подсистемы эта информация пригодна.

За кадром остаются методики получения требуемого для ВМ количества IOPS и отношение чтения к записи. Для уже существующей инфраструктуры (при переносе ее в виртуальные машины) эти данные можно получить с помощью специаль ных средств сбора информации, например VMware Capacity Planner. Для инфра структуры планируемой – из документации к приложениям и собственного опыта.

Любой компьютер с MMX процессором, шиной PCI и объемом памяти более 64 МБ следует признать вполне достаточным для видеомонтажа, если вы никуда не торопитесь.

Споры по поводу выбора компьютера для видеомонтажа никогда не утихают, о чем свидетельствует соответствующая в нашем форуме. Что лучше: Intel или AMD, Western Digital или Seagate, Asus или Gigabyte, Cola или Pepsi - эти вопросы из года в год вызывают эмоциональные дискуссии самого разного уровня во всех уголках Рунета. Принимаясь за такую щекотливую тему, чувствуешь себя канатоходцем перед выступлением - на такую тревожную, неопределенную и обманчивую стезю предстоит вступить. Принимая во внимание специфику темы, в этой статье мы решили сдвинуть акцент в теоретическую область, по возможности, воздержавшись от оценок конкретных экземпляров оборудования. С одной стороны, выбранный подход продлит срок актуальности статьи, с другой стороны, уменьшит поток гневных комментариев, всенепременно образующийся в результате расхождения высказанных в статье идей и мнения некоторых читателей.

Примем как данное, что, так как процесс обработки видео всегда связан с длительными пересчетами и рендерингами, загружающими систему под 100%, первостепенное требование к видеомонтажному компьютеру - надежность. Сбой или зависание, например, игрового компьютера чреваты однократной перезагрузкой, что, конечно, неприятно, но отнюдь не критично. Зависание рабочего компьютера где-нибудь на 80% многочасового пересчета проекта совершенно недопустимо. Производительность по степени важности следует поставить на второе после надежности место.

1. Процессор

Обычно на процессор компьютера тратится наибольшая часть бюджета, так как в глазах неискушенного пользователя параметры этого элемента напрямую ассоциируются с "крутостью" компьютера. Давайте попробуем разобраться, насколько он в действительности важен, ответив на самый очевидный вопрос: а зачем он нужен? Процессор в основном влияет на два "видеомонтажных" параметра:

  1. Мгновенный комфорт работы.
  2. Время ожидания результата.

Мгновенный комфорт работы - эта общая отзывчивость и скорость реакции системы на действия пользователя. При видеомонтаже она обычно сводится к скорости рендеринга предпросмотра. А именно: при какой сложности монтажа вы сможете получить плавное realtime-превью. В тривиальном случае, ограничивающимся нарезкой исходного DV-видео, сменой последовательности фрагментов и заменой звуковой дорожки, с такой задачей вполне справится и Celeron 2.0 GHz. При наложении эффектов, переходов, цветокоррекции, компоузинге и т.д. разумеется, желателен более быстрый процессор, однако не стоит забывать, что комфорт монтажа - количественная, а не качественная характеристика. Это означает, что, с одной стороны, даже Celeron 2.0 GHz не накладывает принципиальных ограничений на процесс монтажа, а, с другой стороны, и для самого современного процессора можно найти задачу, с которой он не справится в реальном времени.

Второй процессорозависимый параметр - время ожидания результата. Им будем называть время, необходимое компьютеру для рендеринга смонтированного ролика в выходной файл. Пожалуй, этот параметр не имеет принципиального значения. Редко кто во время многочасового рендеринга сидит и неотрывно следит за продвижением индикатора готовности. В большинстве случаев, просчет происходит в фоновом режиме при уменьшенном приоритете процесса кодера. Пользователь при этом спокойно занимается своими делами. Рост частоты процессора обеспечивает приблизительно линейное снижение времени ожидания.

Наряду с этими основными параметрами, есть еще несколько менее значимых, но требующих к себе внимания.

Во-первых, благодаря "заслугам" маркетинговой политики, с недавнего времени тип процессора начал ограничивать выбор программного обеспечения, которым сможет воспользоваться пользователь. Например, Adobe Premiere Pro 2.0 отказывается запускаться на процессорах, не поддерживающих набор инструкций SSE2, хотя объективных причин для подобного ограничения не наблюдается. Таким образом, волей-неволей приходится постепенно отказываться от использования устаревших процессоров, даже если их производительность вас вполне устраивает.

Во-вторых, многоядерность. Необходимо помнить, что на сегодняшний день далеко не все программное обеспечение для работы с видео хорошо распараллеливается. Если наличие двух ядер (или хотя бы Hyper-Threading’a) в любом случае оправдано за счет того, что определенно применимо для облегчения фонового просчета, то большее число ядер может оказаться невостребованным.

В-третьих, немаловажный параметр - энергопотребление и, соответственно, тепловыделение и шумность. Для студийного компьютера, он, конечно, не играет принципиальной роли, а для домашнего весьма значим. Мало приятного, если компьютер будет докучать вам назойливым гулом во время многочасовых просчетов, способных случайно затянуться и за полночь. Intel и AMD в последнее время, наконец, озаботились данной проблемой, и сегодня можно без особенных финансовых вложений обеспечить достойное охлаждение ЦП малошумным кулером. Сделать это тем проще и дешевле, чем современнее модельный ряд выбранного процессора, но ниже его производительность.

Исходя из вышесказанного, сформулируем основные правила выбора процессора для абстрактного видеомонтажного компьютера:

  1. Выбор производителя процессора должен базироваться на анализе текущей, на момент покупки, ситуации на рынке.
  2. Процессор должен принадлежать к наиболее современной и перспективной линейке.
  3. Конкретный рейтинг по производительности имеет лишь количественное значение, и должен приниматься во внимание в последнюю очередь при наличии свободных средств.

2. Оперативная память

При выборе оперативной памяти необходимо различать две группы характеристик:

  1. Объем.
  2. Скоростные характеристики, складывающиеся из типа памяти, режима работы, рабочей частоты, латентности.

С объемом все просто. Представить себе современный компьютер с объемом памяти менее 256 МБ довольно затруднительно, так как планок DDR2 меньшего объема нет в продаже. Этот объем и стоит признать минимально допустимым, хотя, конечно, о комфортной работе в этом случае мечтать не приходится. Adobe Premiere Pro 2.0 сразу после запуска, с пустым проектом занимает в памяти приблизительно 300МБ. Если принять во внимание интересы операционной системы и еще десятка сопутствующих активной монтажной работе утилит, сойдемся на том, что 1 ГБ на сегодняшний момент оптимальный объем. 2 гигабайта, конечно, тоже пригодятся, но уже для достаточно специфических задач - когда в работе над проектом одновременно используется несколько тяжелых приложений, например, Premiere, Audition и Photoshop. Едва ли можно назвать подобные действия любительским монтажом. Не забывайте, что нехватка памяти также негативно влияет и на мгновенный комфорт работы, причем гораздо драматичнее, чем неторопливость центрального процессора. Поэтому в случае выбора между мощностью процессора и достаточным объемом памяти всегда следует отдавать предпочтение второму варианту.

Из скоростных характеристик памяти следует уделять внимание только двуканальному режиму работы. Отказываться от практически бесплатного увеличения производительности нерезонно, так что позаботьтесь о паре модулей. Можно было бы задуматься над выбором типа памяти, но сегодня системы на базе DDR-II получили безоговорочное преимущество - на нее рассчитано подавляющее большинство современных материнских плат. Поэтому выбора нет, и голову не сломаешь. Что касается рабочей частоты и латентности - эти параметры незначительно влияют на производительность при обработке видео, так что ими можно пренебречь – лишь бы заработало.

3. Видеокарта

Как ни странно, но процесс обработки видео никак не оптимизируется видеокартой (по состоянию на 2009 год данное утверждение спорно: см. - прим. ред.) . Конечно, это утверждение не касается профессиональных программно-аппаратных комплексов, но на момент написания статьи относится ко всем "народным" видеокартам. А как же аппаратное ускорение декодирования и кодирования видео, возмутятся производители видеокарт? С декодированием очень просто: мало того, что современные процессоры без проблем справляются с декодированием практически любых потоков, вплоть до MPEG4 AVC 1920x1080, так ускорение от аппаратного декодирования в сравнении с хорошо оптимизированными софтверными декодерами если и есть, то измеримо всего десятком-другим процентов (см. статью " "). С кодированием ситуация не менее туманная (см. тестирование " "). Пока ни о каком серьезном применении данной функции говорить не приходится, а если даже производители со временем и доведут ее до ума, позвольте предположить, что работать она будет только в проприетарном софте, разумеется, выполненном в плюшкообразном стиле, с максимально урезанными возможностями и обязательной поддержкой сменных скинов.

Так что при выборе видеокарты необходимо осознанно и хладнокровно игнорировать все традиционные характеристики: чипсет, количество памяти, разрядность шины, число конвейеров и т.д. Никакая видеокарта, выпущенная с 2001 года, не ограничит ваши возможности по обработке видео, за исключением случаев использования специальных плагинов или фильтров, охочих до ресурсов GPU видеокарты.

Главное, с чем вы должны определиться — это с числом мониторов, которые вы собираетесь использовать. Если их больше одного, встроенное в материнскую плату видео не вариант. В этом случае подойдет самая простая видеокарта с двумя выходами от надежного производителя. Не стоит брать дешевый noname — такая карта может уменьшить стабильность системы, а также подвести в качестве 2D изображения.

4. Звук

Для исключительно видеомонтажного компьютера аудиокарта не имеет никакого значения - так как вся обработка звука производится в цифровом виде, конкретное звуковоспроизводящее оборудование на результате никак не сказывается. Главное, чтобы звук был слышен - что обеспечит как интегрированная в материнскую плату аудиокарта, так и любая, приобретенная отдельно (PCI-плату подобрать нетрудно, заглянув в раздел ). Если ваша работа подразумевает серьезную обработку звука, выбрать аудиокарту вам помогут коллеги из раздела " ".

5. Платы ввода видео

Платы ввода видео делятся на два принципиально разных типа:

  1. Цифровые.
  2. Аналоговые.

Приход материнских плат с поддержкой SLI принес пользу не только геймерам, но опосредовано и видеомонтажерам. Дело в том, что наличие двух слотов PCI-Express x16 на некоторых современных платах позволяет установить две видеокарты, но использовать их независимо друг от друга. Таким образом, число мониторов можно легко увеличить вплоть до 4х. В многомониторной конфигурации мониторы совсем не обязательно должны быть одинаковыми. Это очень кстати при наличии старого 14-15” монитора с разрешением 800х600х85: его удобно использовать в качестве "просмотрового окна" в дополнение к двум основным. В идеале роль просмотрового окна лучше переложить на телевизор. В этом случае вы сразу будете видеть ваше творение в наиболее естественных для него условиях (если только вы не собираетесь просматривать его в будущем только на компьютере).

8. Материнская плата

Когда вы определились с остальным оборудованием, имеет смысл выбрать материнскую плату. К сожалению, дать универсальные рекомендации на этот счет сложно. Разумеется, плата должна поддерживать выбранный тип процессора и памяти, но рациональнее обеспечить совместимость с будущими процессорами, выбрав самый современный чипсет и наиболее обнадеживающий сокет. На сегодняшний день для систем на базе процессора Intel оптимальны платы с Intel’овским чипсетом и Socket 775. Если вы планируете использовать (пусть даже и в перспективе) более двух видеовоспроизводящих устройств, подумайте о плате с двумя слотами PCI-Express 16x. Современные видеокарты для PCI и PCI-E1x, конечно, тоже есть в продаже, но мало распространенны и дороже популярных 16х аналогов. Если вы твердо уверены, что больше двух мониторов на вашем рабочем столе не окажется, рациональнее взять материнскую плату с одним слотом PCI-E x16, но, возможно, с большим выводком других "писиаев".

С точки зрения надежности, плата должна быть максимально "простой" - по возможности, без дополнительных интегрированных контроллеров (RAID, LAN и т.д.). Ведь чем сложней разводка, тем меньше надежность, а необходимый контроллер можно всегда купить во внешнем исполнении за символические деньги. Не стоит гнаться за встроенным FireWire контроллером. В отличие от своих внешних PCI и PCI-Express аналогов, он, скорее всего, не будет иметь разъема для дополнительного 12V питания, а в случае несовместимости с тем или иным оборудованием извлечь его из системы и заменить будет весьма проблематично.

Выбирая производителя, помните, что даже у таких именитых из них, как Asus, случаются неудачи. Пожалуй, единственный, кто в последние годы не посадил ни одного пятна на свою репутацию в плане надежности - это корпорация Intel, однако ее платы предназначены, скорее, для профессиональных применений, и в домашних условиях неоправданны. Аппроксимируя, заключим, что наиболее популярные брэнды в единой ценовой категории в среднем по времени предлагают приблизительно одинаковые как по надежности, так и по производительности устройства. Выбирать конкретную модель следует, скорее, отталкиваясь от фактических характеристик платы.

9. Остальное

Так как приоритетным фактором для видеомонтажного компьютера является стабильность, особое внимание следует обратить на его корпус. Экономить на этом элементе категорически запрещено! Для улучшения конвекции и, следовательно, охлаждения, корпус должен быть просторным. При большом числе жестких дисков необходимо их активное охлаждение. Декларируемая мощность блока питания, к сожалению, однозначно ничего не говорит о его качестве, так что не стоит стремиться к многоваттности. Тут, наконец, можно расслабиться и ориентироваться просто по цене: такие фирмы как , производят достойные корпусы, что самым прямым образом сказывается на их стоимости.

Все DVD-RW приводы, кроме изделий фирмы Plextor, сейчас имеют практически одинаковые характеристики и стоят смешные деньги. Если на выбранной материнской плате найдется пара IDE-разъемов (что, к сожалению, весьма маловероятно), обратите внимание на возможность установить два привода DVD-RW. Архивы проектов, DVD с готовыми фильмами, неиспользованные сцены, сборники звуков и видеоотрывков - все это предстоит записывать часто и помногу, и в этом важном деле второй привод окажется удачным подспорьем (при использовании хотя бы двух жестких дисков, разумеется – в одиночку даже RAID0 не справится с одновременной записью двух болванок 16х).

10. Заключение

В изложенной точке зрения на видеомонтажный компьютер отсутствовал догматический мотив, а рекомендации по конкретному оборудованию были сведены к минимуму. Надеемся, что материал поможет читателям получить общее представление о наиболее важных аспектах выбора комплектующих для оптимизированного для работы с видео ПК. Как видите, процесс конфигурирования и сборки такого компьютера достаточно вариативное, творческое и интересное дело. При соответствующем подходе озвученная методика позволяет собирать компьютеры в широком ценовом диапазоне - от $600 до $2000. Система, собранная в экономном варианте, обещает быть легко масштабируемой, и в будущем, при необходимости, без труда "плавно превратится" в более производительную.

Однако не забывайте: сколько бы гигагерц ни держал ваш процессор, сколько бы гигабайт ни вмещали жесткие диски, сколько бы дюймов ни было в мониторе - качество выходного продукта определяется исключительно вашим творческим потенциалом и желанием делать хорошие фильмы.

Дисковая подсистема компьютера как важный инструмент для обработки растровой графики. Какой вариант быстрее?

В технологических процессах допечатной обработки изображений производительность компьютера играет важную роль. Во-первых, существуют определенные минимальные системные требования для профессиональной работы с графикой. Так, например, подготовить качественный полноцветный макет печатного издания, используя 14-дюймовый монитор и видеокарту, неспособную отображать 24-разрядный цвет, практически невозможно. Во-вторых, соответствие вашей рабочей платформы этим минимальным требованиям еще не означает, что работа с графическими файлами большого объема будет комфортной. Для повышения эффективности работы с компьютером, он должен обладать запасом производительности. Это позволяет выполнять даже ресурсоемкие операции (масштабирование, наложение фильтров на изображение и т. п.) достаточно быстро, а в идеале - в режиме реального времени. Немалый вклад в общую производительность графической станции вносит ее дисковая подсистема. Она становится "узким местом" системы при обработке файлов, объем которых сравним с объемом оперативной памяти компьютера.

Ситуация с жесткими дисками для платформы Wintel всегда выглядела следующим образом: существовали SCSI-винчестеры, ориентированные на Hi-End-сектор рынка, и параллельно предлагались менее дорогие IDE-варианты, предназначенные для установки в остальные системы. За последние пару лет произошел самый настоящий технологический прорыв в области накопителей с интерфейсом IDE - достаточно сказать, что если в конце 1998 года средним по всем показателям считался жесткий диск емкостью 4,3 Гбайт, с частотой вращения шпинделя 5400 об./мин и плотностью записи 2 Гбайт на пластину, то в конце 2000 года в среднюю категорию попадают диски объемом 40-45 Гбайт / 7200 об./мин / 15-20 Гбайт на пластину. При этом нормой становится использование стандарта ATA-100 и уменьшение шума работающего диска до величин порядка 30 дБ.

В области жестких дисков SCSI такого скачкообразного роста характеристик не наблюдалось - до сих пор средняя емкость для дисков этого стандарта находится на уровне 18 Гбайт при плотности записи порядка 6 Гбайт на пластину. Превосходство в производительности над IDE-дисками сохраняется благодаря другим важным параметрам - высокой частоте вращения шпинделя (10 000 об./мин являются нормой), большому объему встроенного буфера (от 4 до 8 Мбайт против 0,5-2 Мбайт у IDE-моделей), а также во многом благодаря особенностям SCSI-технологий вообще.

Тем не менее, современные жесткие диски стандарта IDE буквально наступают на пятки своим дорогим SCSI-собратьям. Самые весомые аргументы в пользу IDE-варианта дисковой подсистемы вашего компьютера - чрезвычайно низкая цена (в 2-4 раза меньше, чем у SCSI) при большой емкости, низком тепловыделении и уровне шума.

Ситуация подогревается еще и тем, что в последнее время популярными стали RAID-массивы дисковых накопителей стандарта IDE. До этого RAID-технологии применялись в основном для дисковых подсистем SCSI. Появление на рынке относительно недорогих IDE RAID-контроллеров позволило IDE-винчестерам еще больше расширить их рыночную нишу. Стандарт RAID 1 (Mirror) позволяет увеличить надежность дисковой подсистемы пропорционально количеству избыточных жестких дисков. Так, построив RAID-массив в режиме Mirror из двух одинаковых винчестеров, мы в два раза увеличиваем надежность хранения нашей информации (она дублируется) и заодно получаем приятный бонус в виде несколько увеличившейся скорости чтения с дискового массива (это возможно благодаря поочередному считыванию блоков информации с двух винчестеров и организации ее в единый поток; этим занимается на аппаратном уровне RAID-контроллер). В случае использования RAID 0 (режим STRIPE) мы получаем увеличение скорости нашей дисковой подсистемы пропорционально количеству дисков, составляющих массив - информация разбивается на небольшие блоки и "раскидывается" по дискам. Таким образом, чисто теоретически, можно было бы увеличить быстродействие дисковой подсистемы в количество раз, равное количеству винчестеров в массиве. К сожалению, на практике скорость увеличивается не так значительно, но об этом вы сможете прочитать ниже, оценив результаты тестов. Нельзя не отметить главный недостаток режима RAID 0 (Stripe) - надежность хранения информации уменьшается ровно в то количество раз, которое равно числу используемых винчестеров. Специально для устранения этого неприятного эффекта предназначен режим RAID 0+1 - своеобразная "смесь" режимов Mirror и Stripe. Для организации массива RAID 0+1 необходимы как минимум 4 жестких диска. Результат - надежность одиночного диска плюс двойной объем и увеличившееся быстродействие.

Представления о производительности различных типов жестких дисков у многих пользователей зачастую сумбурны. Большинство людей знают только то, что "SCSI - это ужасно круто, намного быстрее, чем IDE", некоторые, из числа "продвинутых", искренне считают, что RAID-массив из двух дисков в режиме Stripe ровно в два раза быстрее одиночного винчестера. На самом деле в этой области сложилось много мифов, зачастую совсем неверных. Эта статья - попытка прояснить ситуацию, точно измерив быстродействие разных типов дисковых подсистем. Хотелось бы обратить особое внимание на то, что для оценки производительности использовались не синтетические наборы тестов (от которых, как правило, мало толку), а самые что ни на есть практические задачи из арсенала людей, профессионально занимающихся графикой на PC.

Итак, тестировались следующие варианты дисковых подсистем:

IDE -винчестер устаревшей серии (5400 об./мин, 512 кбайт кэш, 4 Гбайт на пластину) с интерфейсом АТА-33 - Fujitsu MPD3130AT; системная плата - i440BX с встроенным контроллером ATA-33.
IDE -винчестер новой серии (7200 об./мин, 2048 Кбайт кэш, 20 Гбайт на пластину) с интерфейсом АТА-33 - Western Digital WD200; i440BX, ATA-33 (встроенный).
IDE -винчестер новой серии (7200 об./мин, 2048 Кбайт кэш, 20 Гбайт на пластину) с интерфейсом АТА-100 - Western Digital WD200; RAID-контроллер Promise FastTrak100 (SPAN).
RAID -массив из двух современных IDE-дисков в режиме Stripe - 2xWestern Digital WD200; Highpoint Technologies HPT370 UDMA/ATA 100 Raid Controller (STRIPE).
SCSI -винчестер высокого класса (10 000 об./мин, 4096 Кбайт кэш, 6 Гбайт на пластину) с интерфейсом SCSI Ultra160 - Fujitsu MAJ 3182 MP; контроллер SCSI - Adaptec 29160N.

Для чистоты эксперимента, каждый вариант дисковой подсистемы устанавливался в систему абсолютно "с нуля". Диск (или дисковый массив) разбивался программой FDISK на три логических. При этом объем загрузочного раздела (логический диск С:\) всегда устанавливался равным 3 Гбайт. Остальное пространство делилось поровну между дисками D:\ и E:\. Операционная система устанавливалась на диск С:\, файл подкачки Photoshop располагался на диске D:\; там же находились тестовые файлы. Файловая система - FAT32.

Для того, чтобы дать хорошую нагрузку на дисковую подсистему и таким образом оценить ее производительность, объем оперативной памяти был ограничен до 128 Мбайт (притом, что в системах такого класса, предназначенных для работы с растровой графикой, 256 Мбайт являются начальным уровнем). Объем памяти, доступной программе Photoshop 5.5, устанавливался в 50% от общей свободной. Этот объем составлял примерно 57 Мбайт. Все тесты прогонялись с двумя файлами различного объема - размер первого составлял 1/5 от объема памяти, доступного Photoshop, размер второго - в 1.5 раза больше (). Это позволило получить данные о скорости выполнения той или иной операции в двух случаях: когда обрабатываемый файл с запасом помещается в оперативной памяти, и когда он там гарантированно не помещается целиком. Надо сказать, что для файла меньшего объема результаты, полученные на разных дисковых подсистемах, практически идентичны, что совсем неудивительно - основная обработка происходила в оперативной памяти. Различия в этом случае заметны только в операциях чтения/записи - при открытии и сохранении файла. Совсем другая картина наблюдалась при обработке файла большого объема. Поскольку файл не помещался целиком в оперативной памяти, Photoshop активно задействовал дисковую подсистему компьютера. Результаты этих тестов, как наиболее показательные, оформлены в виде диаграмм. Полные результаты, включающие в себя тесты с файлом меньшего объема, а также с более мощным процессором, можно увидеть в сводной таблице № 2 .

Интересующиеся могут повторить все приведенные в этой статье тесты на других системах, поскольку все используемые настройки приведены в таблице. Тестовые файлы были созданы следующим образом: из каталога... \Adobe\Photoshop5.5\Goodies\ Samples\ был взят файл CMYK balloons.tif. После перевода в формат RGB он был увеличен до размеров 2240x1680 и 6400x4800 пикселов, результатом чего стали два файла формата TIFF RGB объемом 10,7 и 89,7 Мбайт соответственно. Над полученными файлами и проводились все операции. После каждой операции результат отменялся командой Undo. Последняя операция (Save) производилась в формате CMYK. Каждый тест прогонялся три раза, результаты усреднялись. После каждого теста система перезагружалась.

Система № 1: Fujitsu MPD3130AT; i440BX, ATA-33

Жесткий диск Fujitsu серии MPD - вполне заслуженный ветеран. Полтора года тому назад винчестеры такого класса, как Fujitsu MPD, Quantum CR и прочие их аналоги являлись самыми быстрыми в секторе жестких дисков стандарта IDE. Этот винчестер имеет три пластины емкостью по 4,32 Гбайт, 6 головок чтения/записи и встроенный буфер объемом 512 Кбайт. Среднее время поиска - 9,5/10,5 мс (чтение/запись), частота вращения шпинделя - 5400 об./мин, уровень шума - 36 дБ. Поддерживается стандарт АТА-66, однако это не более, чем маркетинговый ход, поскольку скорость передачи данных находится в пределах 14,5-26,1 Мбайт/с, что полностью вписывается в возможности стандарта АТА-33 (33,3 Мбайт/с).

Fujitsu MPD3130AT показал себя как надежный, тихий винчестер. При работе шума вращающегося шпинделя почти не слышно, но звук позиционируемых головок явственно различим. Греется диск очень мало - даже при длительной работе корпус остается прохладным или едва теплым.

В тестах MPD3130AT существенно проигрывает всем остальным участникам, что совсем неудивительно, учитывая разницу характеристик с ближайшим конкурентом WD200 (частота вращения - 5400 и 7200 об./мин соответственно, плотность записи - 4,3 Гбайт на пластину против 20 Гбайт).

Тестирование на двух различных операционных системах дало несколько противоречивые результаты: в Windows 98 заметно быстрее выполняются операции открытия и сохранения файла, а в Windows 2000 - все остальные. В остальном - никаких сюрпризов.

Система № 2: Western Digital WD200; i440BX, ATA-33.

WD200 - представитель нового поколения жестких дисков. Основные параметры - 7200 об./мин, увеличенный до 2048 Кбайт внутренний кэш, плотность записи - 20 Гбайт на пластину. Диск имеет одну пластину и две головки. Среднее время поиска заявлено производителем как 8,9/10,9 мс, что не очень отличается от характеристик Fujitsu MPD3130AT. Тем не менее, WD200 заметно быстрее. Во-первых, сказывается больший объем встроенного буфера. Во-вторых, скорость обмена на участке "буфер-поверхность" достигает впечатляющих 30,5-50 Мбайт/с - все-таки 20 Гбайт на пластину - нешуточная плотность записи.

В работе диск показал себя с самой положительной стороны - несмотря на повышенную скорость вращения шпинделя, он оказался тише Fujitsu MPD (заявленный уровень шума - 30 дБ). Перемещения головок практически не слышны.

С тепловыделением дела обстоят похуже, но вполне приемлемо. После часа интенсивной работы винчестер нагрелся градусов до 45, т.е. на ощупь был довольно теплым, но не горячим.

В целом данная конфигурация оставила очень благоприятное впечатление и является несомненным чемпионом по соотношению "цена-производительность". Судите сами - при цене порядка 130 долл. этот винчестер образует вполне законченное решение с встроенным контроллером АТА-33 чипсета 440ВХ. И никаких проблем с Windows 98, как это наблюдается в случае использования АТА-100.

Система № 3: Western Digital WD200; ATA-100 Promise FastTrak100 (SPAN).

Тесты выявили очень интересный момент - при использовании интерфейса АТА-100 в Windows 98 производительность дисковой подсистемы оказалась в большинстве случаях ниже, чем при использовании АТА-33. А в отдельных случаях наблюдалось просто катастрофическое (в 5-10 раз) падение производительности! Поскольку в Windows 2000 результаты были абсолютно предсказуемыми (то есть АТА-100 оказался, как и положено, быстрее АТА-33), это дает основания подозревать в некорректной работе связку Windows 98 + ATA-100. Возможно причина кроется в конкретной модели контроллера - Promise FastTrak100. К тому же, большинство тестов выполнялось быстрее в Windows 2000.

Из всего этого можно сделать логичный вывод - для серьезной работы с графикой Windows 98 не подходит. Если вы хотите использовать последние достижения в области IDE, а именно интерфейс АТА-100 или RAID-массив в режиме STRIPE - лучше работать с ОС семейства NT (Windows NT 4.0 или Windows 2000), которые в таких режимах ведут себя более корректно.

При использовании ОС Windows 2000 выигрыш от перехода с АТА-33 на АТА-100 есть, но он невелик.

Система № 4: два диска Western Digital WD200 + HPT370 UDMA/ATA 100 Raid Controller(STRIPE).

И, наконец, в деле был испытан RAID-массив из двух одинаковых жестких дисков в режиме чередования блоков данных (STRIPE). Использовался размер блока 64 Кбайт, как наиболее оптимальный (по данным других независимых испытаний). Теоретически быстродействие такой дисковой подсистемы может быть в 2 раза больше, чем у диска-одиночки. Но результаты тестов не оставляют поводов для оптимизма. В подавляющем большинстве задач выигрыш в производительности составляет 5-15% относительно одиночного диска с интерфейсом АТА-100.

Одним словом, результаты неутешительные. Рекомендовать построение массива RAID 0 можно лишь тому, кто хочет вытянуть максимальную производительность из технологии IDE, невзирая на все вышеописанные недостатки. Но это может понадобиться разве что тем, кто занимается вводом несжатого видео на PC.

Система № 5: Fujitsu MAJ 3182 MP + SCSI-контроллер Adaptec 29160N.

Последний участник "соревнований" - SCSI-винчестер весьма высокого класса. Надо сказать, что MAJ 3182 был выбран в качестве "верхней планки" данного теста. Что ж, свое превосходство этому жесткому диску удалось показать наглядно - практически во всех тестах он идет "ноздря в ноздрю" со своим главным соперником - RAID-массивом в режиме STRIPE.

Представление о потенциальных возможностях Fujitsu MAJ 3182 MP могут дать и его характеристики. Частота вращения шпинделя - 10 025 об./мин, количество дисков - 3, головок - 5, среднее время поиска - 4,7/5,2 мс, объем встроенного буфера - 4096 Кбайт. Используется интерфейс SCSI Ultra160, обеспечивающий синхронную скорость передачи данных на участке "буфер-контроллер" в 160 Мбайт/с.

Все эти впечатляющие параметры сказались на энергопотреблении и шумности винчестера. Греется Fujitsu MAJ 3182 MP просто ужасно - температура корпуса после продолжительной работы поднимается, наверное, до 60°С, если не больше - корпус явственно обжигает пальцы. Уровень шума при работе тоже не маленький - 40 дБ. И самый главный недостаток - цена. На момент написания этих строк комплект из жесткого диска и контроллера SCSI-160 стоил в Москве около 500 долл.

Итоги

Итак, по результатам тестов хотелось бы сделать несколько выводов, которые будут полезны тем, кто собирается модернизировать дисковую подсистему своей графической станции.

  1. Диски предыдущих поколений с небольшой плотностью записи и малым объемом встроенного буфера значительно проигрывают современным моделям по всем основным параметрам - скорости, емкости и бесшумности. Смело меняйте старенький винчестер класса Fujitsu MPD на новый высокооборотистый жесткий диск с повышенной плотностью записи (15-20 Гбайт на пластину) и большим объемом кэша (2 Мбайт). Выигрыш в производительности может составлять 100 и более процентов. Причем все сказанное остается в силе даже при использовании интерфейса АТА-33.
  2. Переход с АТА-33 на АТА-100 не дает большого прироста производительности. Покупать отдельный контроллер АТА-100, пусть и недорогой (порядка 30 долл.), на мой взгляд не стоит. Подходящий вариант - наличие на системной плате "бесплатного" встроенного контроллера этого стандарта.
  3. RAID-массив в режиме STRIPE показал очень хорошую производительность - на уровне "десятитысячника" SCSI, а зачастую и выше. При этом нужно учитывать очень привлекательную стоимость такой конфигурации, ведь два винчестера, составляющих массив, вместе с недорогим RAID-контроллером от Highpoint стоят меньше, чем один SCSI винчестер без контроллера! (130+130+30 = 290 долл.). И плюс ко всему, мы получаем огромную, по сравнению со SCSI-вариантом, емкость - 40 Гбайт. Единственный, но очень большой минус - уменьшение надежности хранения данных в 2 раза. Впрочем, если дисковый массив такого типа будет использоваться в качестве средства для оперативной работы, а не как долговременного хранилища ценной информации, его приобретение более чем оправдано.
  4. SCSI-винчестеры верхнего уровня, как и следовало ожидать, обладают высочайшей производительностью.

Однако, учитывая высокую цену, большое тепловыделение и уровень шума таких устройств, приобретение их оправдано только в том случае, когда нужна бескомпромиссно высокая производительность (и надежность дисковой подсистемы, ведь SCSI-винчестеры всегда славились своей надежностью и большой наработкой на отказ).

В заключение хотелось бы обратить внимание читателей на две строки в последней таблице - результаты измерений при замене процессора Pentium-III-650E (частота системной шины 100 МГц) на Pentium-III-866EB (FSB 133 МГц). Как видно, замена процессора на ощутимо более мощный не дает большого разброса результатов. Это показывает, что выбранная методика тестирования была правильной (низкая "процессорозависимость", основная нагрузка ложится на дисковую подсистему).

С Андреем Никулиным можно связаться по электронной почте: [email protected] .

Редакция благодарит за помощь компании Elko Moscow, SMS, "Пирит" и "Русский Стиль", предоставившие оборудование для тестирования.

Таблица 1. Состав тестовой платформы:
Системная плата ASUS P3B-F
Процессор Intel Pentium III-650E (FSB 100 MHz)
Оперативная память 128 Мбайт, PC-133 M.tec (2-2-2-8-Fast)
Видеоадаптер Creative 3DBlaster TNT2 Ultra
RAID-контроллер Highpoint Technologies HPT370 UDMA/ATA 100 Raid Controller
ATA-100 контроллер Promise FastTrak100
SCSI-контроллер Adaptec 29160N (Single Channel 32-bit PCI-to-Ultra160 SCSI Host Adapter (OEM))
Жесткие диски IDE-Fujitsu MPD3130AT
IDE - Western Digital WD200 - 2 шт.
SCSI - Fujitsu MAJ 3182 MP
Операционная система Windows 98 4.10.1998 + DirectX 7.0a
Windows 2000 Professional 5.00.2195 Service Pack 1
Тестовая программа (настройки опций) Adobe Photoshop 5.5: Cache Settings (Параметры кэш-памяти): Cache Levels - 4
Опция Use cache for histograms включена Physical Memory Usage (Использование физической памяти): Available RAM - 113 961 Kбайт; Used by Photoshop - 50%; Photoshop RAM - 56 980 Kбайт.
Scratch Disks (Диски подкачки): First: D:\; остальные отключены.
Тестовые файлы 0,2 Photoshop RAM; 2240x1680 пикселов; 24-разрядный цвет; RGB TIFF, 10,7 Мбайт;
1,5 Photoshop RAM; 6400x4800x24; RGB TIFF; 87,9 Мбайт.

Журналов в свободном доступе.

Диски относятся к машинным носителям информации с прямым доступом. Понятие прямой доступ означает, что ПК может "обратиться" к дорожке, на которой начинается участок с искомой информацией или куда нужно записать новую информацию, непосредственно, где бы ни находилась головка записи/чтения накопителя.Накопители на дисках более разнообразны (табл. 4.6):

    накопители на гибких магнитных дисках (НГМД), иначе, на флоппи-дисках или дискетах;

    накопители на жестких магнитных дисках (НЖМД) типа "винчестер";

    накопители на сменных жестких магнитных дисках;

    накопители сверхвысокой плотности записи, иначе, VHD-накопители;

    накопители на оптических компакт-дисках CD-ROM(CompactDiskROM);

    накопители на оптических дисках типа CD-R,CD-RW

    накопители на магнитооптических дисках (НМОД) и др.

Таблица 4.6.Сравнительные характеристики дисковых накопителей

Тип накопителя

Емкость, Мб

Время доступа, мс

Трансфер, Кбайт/с

Вид доступа

65 -100150Чтение/записьНГМД

Винчестер1,2; 1,44

Чтение/запись

Бернулли

Чтение/запись

Чтение/запись

65200-600Чтение/записьVHD

Только чтение

Чтение/однократная запись

Чтение/запись

Время доступа -средний временной интервал, в течение которого накопитель находит требуемые данные -представляет собой сумму времени для позиционирования головок чтения/записи на нужную дорожку и ожидания нужного сектора.Трансфер -скорость передачи данных при последовательном чтении.

Магнитные диски (МД) относятся к магнитным машинным носителям информации. В качестве запоминающей среды у них используются магнитные материалы со специальными свойствами (с прямоугольной петлей гистерезиса), позволяющими фиксировать два магнитных состояния -два направления намагниченности. Каждому из этих состояний ставятся в соответствие двоичные цифры: 0и 1.Накопители на МД (НМД) являются наиболее распространенными внешними запоминающими устройствами в ПК. Диски бывают жесткими и гибкими, сменными и встроенными в ПК. Устройство для чтения и записи информации на магнитном диске называетсядисководом.

Все диски: и магнитные, и оптические характеризуются своим диаметром или, иначе,форм-фактором. Наибольшее распространение получили диски с форм-факторами3,5" (89мм) и 5,25" (133мм). Диски с форм-фактором 3,5"при меньших габаритах имеют большую емкость, меньшее время доступа и более высокую скорость чтения данных подряд(трансфер), более высокие надежность и долговечность. Информация на МД записывается и считываетсямагнитными головками вдоль концентрических окружностей -дорожек (треков). Количество дорожек на МД и их информационная емкость зависят от типа МД, конструкции накопителя на МД, качества магнитных головок и магнитного покрытия.

Тут надо нарисовать структуру дискеты.

Каждая дорожка МД разбита насектора. В одном секторе дорожки может быть помещено 128, 256, 512или 1024байт, но обычно 512байт данных. Обмен данными между НМД и ОП осуществляется последовательно целым числом секторов.

Кластер - это минимальная единица размещения информации на диске, состоящая из одного или нескольких смежных секторов дорожки.

При записи и чтении информации МД вращается вокруг своей оси, а механизм управления магнитной головкой подводит ее к дорожке, выбранной для записи или чтения информации.

Данные на дисках хранятся вфайлах, которые обычно отождествляют с участком (областью, полем) памяти на этих носителях информации.Файл -это именованная область внешней памяти, выделенная для хранения массива данный. Поле памяти создаваемому файлу выделяется кратным определенному количеству кластеров. Кластеры, выделяемые одному файлу, могут находиться в любом свободном месте дисковой памяти и необязательно являются смежными. Файлы, хранящиеся в разбросанных по диску кластерах, называютсяфрагментированными.

Дня пакетов магнитных дисков (диски установлены на одной оси) и для двухсторонних дисков вводится понятие "цилиндр".Цилиндром называется совокупность дорожек МД, находящихся на одинаковом расстоянии от его центра.

Нагибком магнитном диске (дискете) магнитный слой наносится на гибкую основу. Используемые в ПК ГМД имеют форм-фактор 5,25"и 3,5".Емкость ГМД колеблется в пределах от 180Кбайт до 2,88Мбайта. ГМД диаметром 5,25дюйма помещается в плотный гибкий конверт, а диаметром 3,5дюйма -в пластмассовую кассету для защиты от пыли и механических повреждений. Основные характеристики некоторых типов НГМД приведены в табл. 4.7.

Накопители на гибких магнитных дисках

Тип дискеты

Полная емкость, Кбайт

Рабочая емкость. Кбайт (после форматирования)

Плотность записи, бит/мм

Плотность дорожек, дорожек/мм

Число дорожек на одной поверхности диска

Число поверхностей (сторон)

Среднее время доступа, мс

Скорость передачи, Кбайт/с

Скорость вращения, об./мин

Число секторов

Емкость сектора дорожки, байт

Конструктивно дискета диаметром 133мм изготовляется из гибкого пластика (лавсана), покрытого износоустойчивым ферролаком, и помещается в футляр-конверт. Дискета имеет две прорези: центральное отверстие для соединения с дисководом и смещенное от центра небольшое отверстие (обычно скрытое футляром), определяющее радиус-вектор начала всех дорожек на ГМД. Футляр также имеет несколько прорезей: центральное отверстие, чуть большее, чем отверстие на дискете; широкое окно для считывающих и записывающих магнитных головок и боковую прорезь в виде прямоугольника, закрытие которой липкой лентой, например, защищает дискету от записи и стирания информации.

Дискета диаметром 89мм имеет более жесткую конструкцию, более тщательно защищена от внешних воздействий, но в принципе имеет примерно те же конструктивные элементы. Режим запрета записи на этих дискетах устанавливается специальным переключателем, расположенным в одном из углов дискеты.

В последние годы появились дискеты с тефлоновым покрытием (например,VerbatimDataLifePlus), которое предохраняет магнитное покрытие и записанную на нем информацию от грязи, пыли, воды, жира, отпечатков пальцев и даже от растворителей типа ацетона. Возможная емкость 3,5-дюймовой дискетыDataLifePlus - 2,88Мбайта. Следует упомянуть и дискеты "Goanywhere", распространяемые у нас в стране под названием "Вездеход". Они также обладают стойкостью к различным внешним воздействиям: температуре, влажности, запыленности. Каждую новую дискету в начале работы с ней следует отформатировать.

Форматирование дискеты -это создание структуры записи информации на ее поверхности: разметка дорожек, секторов, записи маркеров и другой служебной информации.Возможный вариант форматирования зависит от типа дискеты (маркируемого на ее конверте):

SS/SD - односторонняя (Single Sides), одинарной плотности (Single Density);

SS/DD - односторонняя, двойной плотности (Double Density);

DS/SD - двухсторонняя (Double Sides), одинарной плотности;

Дисковой подсистемой компьютера называют устройства, используемые для повседневного хранения и считывания данных. Традиционно к ней относят флоппи-дисководы и жесткие диски. В последнее время сюда относят и устройства для работы с компакт-дисками.

Флоппи-дисководы – "ветераны" среди дисковых устройств. Они считывают данные с дискет (носителя информации) и производят на них запись. Тип дисковода определяется видом используемой дискеты (FloppyDisk). На сегодняшний день широко применяются дискеты размером 3.5" с поддержкой двухсторонней записи высокой плотности (DSHD). Емкость такой дискеты традиционно составляет 1.44 Мб, хотя с использованием специального Software она может быть повышена до 2,8 Мб или, наоборот, понижена. Дискеты размером 5.25" практически вышли из употребления.

На сегодняшний день дискеты не являются основным средством хранения данных и программ и используются, обычно, для переноса небольших файлов с одного компьютера на другой. Именно это обстоятельство и определило живучесть более компактных и удобных в транспортировке 3.5" дискет. Стандартом для компьютера считается наличие одного 3.5" дисковода, который чаще всего изготавливается во внутреннем исполнении (бывают и варианты в отдельном корпусе).

Производители дисководов: Teac, NEC, Mitsumi, Panasonic, Epson… Производители дискет: Verbatim, BASF, Sony, TDK, FujiFilm… Особо отметим дискеты Verbatim, которые считаются наиболее надежными и имеют различные варианты исполнения, в т.ч. с тефлоновым покрытием.

Жесткий диск (Hard Disk) впервые был реализован для ПК в 1983 году и с тех пор стал основным устройством хранения информации. Принцип хранения данных на жестких дисках тот же, что и на дискетах: намагничивание участков тонкого ферромагнитного слоя, нанесенного на поверхность носителя. Только в жестких дисках используются более прогрессивные мелкодисперсные и многослойные покрытия, нанесенные на идеально плоские и гладкие алюминиевые или стеклянные диски. Обычно жесткий диск имеет 4 "блина", т.е. носителя с двухсторонним покрытием.

Главным параметром жесткого диска считают его емкость. Первый жесткий диск, названный создателями "винчестер", имел емкость 10 Мб. С тех пор этот параметр существенно вырос и достигает 160 Гб. Современные настольные ПК оснащаются жесткими дисками 20, 40 и 60 Гб, мобильные ПК зачастую имеют устройства меньшей емкости.

Главный резерв производительности и вместимости диска – увеличение плотности записи информации на магнитный слой носителя (пластины). По мнению исследователей, предел плотности для нынешней технологии магнитной записи – 40-50 Гбит/кв.дюйм. Сегодня серийно выпускаются диски с плотностью записи 14-15 Гбит/кв.дюйм, хотя имеются варианты и 22,5 Гбит/кв.дюйм. Вот как развивался этот показатель:



Жесткий диск взаимодействует с остальными элементами компьютера через контроллер и имеет два интерфейса: EIDE и SCSI. Диск с интерфейсом EIDE (часто его называют IDE) более распространен и менее дорогостоящ, имеет встроенный контроллер на материнской плате, но создает нагрузку на процессор, что замедляет выполнение команд. Интерфейс SCSI более дорогое решение, позволяющее существенно увеличить скорость работы с жестким диском, уменьшить нагрузку на процессор. При этом требуется дополнительная установка платы с контроллером.

Еще один параметр жесткого диска частота его вращения. Собственно вращается блок дисков, находящихся внутри герметичного корпуса. В большинстве дисков применяется частота вращения 5400 и 7200 об/мин, хотя имеются модели с 10000 и 15000 об/мин. Увеличение скорости вращения ведет к повышению производительности жесткого диска, но увеличивает шум, производимый им при работе.

Все современные жесткие диски имеют кэш-буфер данных, размер которого для IDE-дисков колеблется в пределах от 512 Кб до 2 Мб, а для SCSI-дисков достигает 16 Мб.

Максимальная внутренняя скорость последовательного чтения данных (transfer) составляет на сегодня 30…48 Мб/с. Существуют разработки со скоростью чтения 1 Гбит/с.

Среднее время поиска при чтении/записи (seek) колеблется от 15 мс до 3,9 мс. Среднее время поиска соседней дорожки при чтении/записи составляет 2…0,8 мс.

Современные жесткие диски используют протокол UltraATA/33, UltraATA/66 или
UltraATA/100, обеспечивающие внешнюю скорость чтения диска, соответственно, .33, 66 или 100 Мб/с. Разработан новый интерфейс UltraATA/133, который пока не нашел должной поддержки производителей. Ожидается выход дисков с интерфейсом Serial ATA со скоростью 1,5 Гбит/с, который впоследствии может быть ускорен еще вчетверо.

В заключении отметим такой специфический параметр жесткого диска, как ударопрочность, которая в рабочем состоянии составляет 10…60 Gs, а в нерабочем – 100…400 Gs.

Основные производители жестких дисков: Seagate, Fujitsu, IBM, WesternDigital, Quantum, Maxtor, Samsung…