Проблемы и ошибки        29.06.2020   

Broadwell или haswell что лучше. Тестируем процессор Intel Broadwell и сравниваем его производительность и нагрев с Haswell

Процессорный гигант - лидер среди всех чипмейкеров - продолжает реализовывать стратегию «тик-так», согласно которой каждый год (вот тут-то и появляются загвоздки - прим. автора) компания выпускает пакет решений, построенных на новой архитектуре. Под «тиком» подразумеваются процессоры, выполненные по старой архитектуре, но переведенные на новый техпроцесс. Под «таком» - чипы, выполненные по уже отработанным технормам, но с новой архитектурой. Центральные процессоры Broadwell - это именно «тик»-процессоры. Грубо говоря, Intel взяла архитектуру Haswell и поставила ее на 14-нм «рельсы». Хотя вы прекрасно понимаете, что все здесь условно. Каждое семейство чипов Intel претерпевает определенные изменения. И настольные Broadwell не являются исключением.

Поколение Год Техпроцесс «Тик» или «Так»?
Conroe/Merom 2006 65 нм Так
Penryn 2007 45 нм Тик
Nehalem 2008 45 нм Так
Westmere 2010 32 нм Тик
Sandy Bridge 2011 32 нм Так
Ivy Bridge 2012 22 нм Тик
Haswell 2013 22 нм Так
Broadwell 2015 14 нм Тик
Skylake 2015 14 нм Так

И все же новые 14-нанометровые решения можно смело назвать выстраданными. Дело в том, что при проектировании и производстве Broadwell в Intel столкнулись с серьезными проблемами. В итоге релиз был отложен больше, чем на год. Первые решения на архитектуре Broadwell были показаны еще на выставке IFA 2014 в сентябре прошлого года. Но это касалось исключительно систем-на-кристалле Core M, предназначенных для планшетов и ноутбуков. В итоге временной отрезок между появлением настольных версий Haswell и Broadwell составил приблизительно два года.

Прошлой весной Intel даже презентовала набор логики Z97/H97 Express, предназначенный как раз для Broadwell. Однако задержки с производством побудили компанию выпустить линейку процессоров Devil’s Canyon (Haswell Refresh). Получилось неплохо, ведь Intel представила свой первый в мире центральный процессор, функционирующий на тактовой частоте 4 ГГц. Так и было заполнено время в ожидании 14-нанометровых Broadwell. Парадокс заключается в том, что уже совсем скоро (предположительно, в конце августа) будет представлена линейка настольных центральных процессоров Skylake и платформы LGA1151.

Особенности архитектуры и технические характеристики

Настольные процессоры Broadwell были представлены на выставке Computex 2 июня. На данный момент есть пять моделей: две Core i7 и три Core i5. Также были представлены три Xeon под LGA1150: E3-1285 v4, E3-1285L v4 и E3-1265L v4. Литера C в названии означает два факта. Во-первых, эти решения имеют упаковку LGA. То есть мы имеем дело с классическими центральными процессорами, устанавливаемыми в гнездо LGA1150. Во-вторых, они оснащены разблокированным множителем, хотя Intel уже приучила нас к тому, что оверклокерские решения имеют в названии либо букву K, либо X. Есть предположение, что таким образом Intel сопоставляет Core i7-5775C с TDP, равным 65 Вт, не с 88-ваттным Core i7-4790K, но с 65-ваттным Core i7-4790S. Оно и понятно: в таком случае Broadwell-решение оказывается на 35% быстрее в x86-вычислениях, плюс обладает вдвое более производительной встроенной графикой.

R-процессоры имеют упаковку BGA, то есть намертво припаиваются к материнской плате. Очевидно, что эти чипы будут использоваться в уже готовых системах. Например, в моноблоках.

Ниже приведена подробная таблица с техническими характеристиками настольных процессоров Broadwell.

Intel Core i7-5775C Intel Core i7-5775R Intel Core i5-5675C Intel Core i5-5675R Intel Core i5-5575R
Число ядер/потоков 4/8 4/8 4/4 4/4 4/4
3,3 (3,7) ГГц 3,3 (3,8) ГГц 3,1 (3,6) ГГц 3,1 (3,6) ГГц 2,8 (3,3) ГГц
Разблокированный множитель Есть Нет Есть Нет Нет
Кэш третьего уровня 6 Мбайт 6 Мбайт 4 Мбайт 4 Мбайт 4 Мбайт
128 Мбайт 128 Мбайт 128 Мбайт 128 Мбайт 128 Мбайт
Контроллер памяти DDR3, двухканальный, 1333-1600 МГц DDR3, двухканальный, 1333-1600 МГц DDR3, двухканальный, 1333-1600 МГц DDR3, двухканальный, 1333-1600 МГц
Встроенное графическое ядро Iris Pro 6200 (GT3e), 1150 МГц Iris Pro 6200 (GT3e), 1100 МГц Iris Pro 6200 (GT3e), 1050 МГц
Уровень TDP 65 Вт 65 Вт 65 Вт 65 Вт 65 Вт
Упаковка LGA BGA LGA BGA BGA
Цена $366 $348 $276 $265 $244

Как я уже говорил, то, что процессор относится к поколению «тик», отнюдь не означает, что никаких изменений в архитектуре произведено не было. У Intel существует определенный подход. А именно внедряемое улучшение применяется только в том случае, если оно резко положительно сказывается на производительности - как минимум вдвое сильнее, чем вызванный этим рост энергопотребления.

Большинство микроархитектурных изменений сосредоточилось во входной части исполнительного конвейера. Точнее, были увеличены объемы буферных зон. Так, увеличилось окно планировщика. Ровно в полтора раза вырос объем таблицы ассоциативной трансляции адресов второго уровня (L2 TLB) - до 1500 записей. Плюс вся схема трансляции обзавелась вторым обработчиком промахов. Все эти изменения позволили процессорам Broadwell лучше справляться с предсказанием сложных ветвлений кода.

Скорость исполнения операций умножения увеличилась с пяти тактов до трех тактов. Операции деления ускорили темп за счет использования 10-битного делителя. Наконец, были оптимизированы векторные gather-инструкции из набора AVX2.

В итоге при одинаковой частоте архитектура Broadwell оказывается быстрее Haswell в среднем на 5%. Впрочем, сравнению производительности архитектур я посвящу целый параграф далее.

Фотография кристалла настольного процессора Intel Broadwell

Новые 14-нанометровые чипы обзавелись встроенным графическим модулем Iris Pro 6200. Уже было сказано, что он вдвое производительнее HD Graphics 4600. Встроенный GPU занимает львиную долю полезной площади кристалла. Однако основной фишкой, внедренной специально в том числе и для Iris Pro 6200, стало использование дополнительных 128 Мбайт памяти eDRAM. Технически она реализована при помощи распайки на стеклотекстолите еще одного кристалла. Таким образом, в Intel постарались решить проблему недостатка пропускной способности памяти. Кристалл eDRAM, выполненный по 22-нанометровой технологии, получил название Crystalwell. Хотя мы сейчас и говорим о нем применительно к встроенной графике Iris Pro 6200, но эту память смело можно назвать кэшем четвертого уровня. Отмечу, что eDRAM использовался в некоторых решениях поколения Haswell. Так что эту технологию нельзя назвать новой. При этом именно в настольных Broadwell использование Crystalwell становится стандартом де-факто.

Собственно говоря, ничего и не изменилось. Кэш, выполненный по 22-нм техпроцессу, функционирует со скоростью 1600 МГц. Он имеет 16-кратную ассоциативность и сообщается с CPU при помощи 256-битной двунаправленной шины. В итоге максимальная пропускная способность между eDRAM и процессором может достигать 102,4 Гбайт/с суммарно (по 51,2 Гбайт/с в каждую сторону). Использование Crystalwell в теории даст хороший прирост производительности в задачах, связанных с обработкой больших данных.

Intel Core i5-5675C

Как известно, Intel старается в каждом новом поколении настольных процессоров интегрировать в них все более и более производительную графику. У Sandy Bridge это была HD Graphics 3000 с 12 исполнительными устройствами, у Ivy Bridge - HD Graphics 4000 с 16 исполнительными устройствами. В настольные чипы Haswell в основном «устанавливалось» видео HD Graphics 4600 (вариант GT2 с 20 исполнительными устройствами). В некоторые модели (с BGA-упаковкой) внедрялась графика уровня HD Graphics 5000, Iris Pro Graphics 5100 или 5200 (GT3 и GT3e), располагающая 40 исполнительными устройствами. В настольные процессоры Broadwell, как мы уже выяснили, интегрирована графика Iris Pro 6200 - самая мощная на сегодняшний день вариация GT3e, оснащенная 48 исполнительными устройствами. При этом несколько изменилась их компоновка. Отныне в каждый отдельный блок GPU входит не 10 исполнительных устройств, но восемь. В одном графическом модуле находится три таких блока GPU. Например, в мобильных процессорах Core M используется графика GT2, которая имеет в своем арсенале один модуль на 24 исполнительных устройства.

Блок-схема встроенного графического ядра Iris Pro 6200

К нам в тестовую лабораторию прибыл образец под названием Core i5-5675C - возможно, самая ходовая модель среди всех, построенных на базе архитектуры Broadwell. «Камень» имеет четыре ядра, но не имеет поддержки технологии Hyper-Threading. Классическая ситуация для любого современного Core i5. Если сравнивать этот процессор с Core i5-4690K, вышедшим весной прошлого года, то сразу же обращает на себя внимание разница в скорости работы. Номинальная тактовая частота Core i5-5675C составляет 3,1 ГГц, которая может быть увеличена до 3,6 ГГц в режиме Turbo Boost. Core i5-4690K работает на 400 МГц быстрее, что может стать основополагающим в сравнении между этими кристаллами. Очевидно, что такая ситуация с тактовыми частотами обусловлена теми проблемами, с которыми пришлось столкнуться Intel при переходе на 14-нанометровый техпроцесс. Если бы настольные Broadwell вышли год назад, то тот же Core i5-5675C правильно было бы сравнивать с Core i5-4670K (3,4 (3,8) ГГц). Тогда разница в частоте ощущалась бы не так сильно.

Intel Core i5-5675C Intel Core i5-4690K
Кодовое имя Broadwell-C Haswell Refresh (Devil’s Canyon)
Техпроцесс 14 нм 22 нм
Сокет LGA1150 LGA1150
Поддерживаемы наборы логики Z97/H97 Express Z97/H97/Z87/H87/B85 Express
Число ядер/потоков 4/4 4/4
Тактовая частота (в режиме Turbo Boost) 3,1 (3,6) ГГц 3,5 (3,9) ГГц
Разблокированный множитель Есть Есть
Кэш третьего уровня 4 Мбайт 6 Мбайт
Кэш четвертого уровня (eDRAM) 128 Мбайт Нет
Контроллер памяти DDR3, двухканальный, 1333/1600 МГц
Встроенное графическое ядро Iris Pro 6200, 1100 МГц HD Graphics 4600, 1200 МГц
Уровень TDP 65 Вт 88 Вт
Цена $276 $242

Уменьшился и кэш третьего уровня. Казалось бы, с использованием 14-нм техпроцесса можно было, наоборот, его увеличить. Однако интеграция Crystalwell, мощного встроенного GPU, да и, видимо, не такой высокий процент выхода годных чипов и так не в лучшую сторону сказались на итоговой стоимости настольных Broadwell. Они заметно дороже моделей семейства Devil’s Canyon. Так вот, у Core i7 вместо 8 Мбайт теперь 6 Мбайт кэша третьего уровня. У Core i5 - 4 Мбайт вместо 6 Мбайт. Много это или мало? Например, у Core i3 тоже 4 Мбайт L3. Компенсируется ли такое уменьшение наличием 128 Мбайт eDRAM? Вряд ли. Кэш третьего уровня имеет латентность в размере приблизительно 20 тактов, плюс он оснащен шиной примерно вдвое более высокой частотой. Crystalwell попросту медленнее, существенно медленнее.

Скриншот CPU-Z центрального процессора Intel Core i5-5675C

Broadwell-процессоры с LGA-упаковкой совместимы с материнскими платами для платформы LGA1150. Но только с чипсетами девятого семейства, то есть с Z97/H97 Express. Решения на основе Z87 Express и иже с ним новых «камней» поддерживать не будут. Об этом стало известно еще год назад, однако все равно грустно. Отсюда получаем еще одно заключение: Настольные Core i7-5775C и Core i5-5675C, по всей видимости, станут последними решениями для этой платформы. Дальше наступит эпоха LGA1151, Z170 Express и Skylake-S с блэк-джеком и DDR4.

Кстати, о памяти. Настольные Broadwell оснащены стандартным двухканальным контроллером памяти DDR3-1333/1600. Здесь ничего нового нет.

Наконец, Core i5-5675C имеет TDP в размере всего 65 Вт. Скажем спасибо все тому же 14-нм техпроцессу и FinFET-транзисторам второго поколения, которые уменьшились в своих размерах на треть. В итоге площадь кристалла Broadwell составляет всего 167 мм 2 против 177 мм 2 у Haswell.

Что ж, вот, пожалуй, все, что необходимо знать о линейке настольных процессоров Broadwell. Плюсы и минусы подобных решений уже сейчас ясны. Остается только узнать, на что способен предоставленный нам образец Core i5-5675C.

Тестирование

Как мы уже выяснили, для работы с Core i5-5675C нужна материнская плата на базе чипсетов девятой серии. Только предварительно необходимо обновить BIOS материнской платы. Для начала предлагаю сравнить производительность архитектур Broadwell и Haswell. А уже затем определить уровень быстродействия всех компонентов Core i5-5675C: вычислительной части, встроенного графического ядра и контроллера памяти.

Тестовый стенд

  • Процессор: Intel Core i5-5675C
  • Процессорный кулер: ENERMAX LIQTECH 240
  • Материнская плата: MSI Z97 XPOWER AC
  • Видеокарта: GAINWARD GeForce GTX 780 Phantom GLH
  • Оперативная память: DDR3-2133, 2x 8 Гбайт
  • Накопитель: OCZ Vertex 3, 360 Гбайт
  • Блок питания: LEPA G1600, 1600 Вт
  • Периферия: Samsung U28D590D , ROCCAT ARVO, ROCCAT SAVU
  • Операционная система: Windows 8.1 х64

Сравнение производительности архитектур Broadwell и Haswell

Для сравнения архитектур я взял два процессора - Core i5-5675C и Core i5-4690K - и выставил для каждого их них одинаковую частоту 3 ГГц. Использовался идентичный тестовый стенд, в которую входил двухканальный набор памяти DDR3-2133.

Вот с «мозгов» и начнем. Как видите, особой разницы между Core i5-5675C и Core i5-4690K не наблюдается. Ничего удивительного: в процессорах используются одинаковые контроллеры памяти.

Результаты тестирования в AIDA64

Как мы уже выяснили, архитектура Broadwell теоретически должна быть быстрее Haswell приблизительно на 5%. В тесте CINEBENCH R15 так и вышло - разница составила 6,2%.

Результаты тестирования в CINEBENCH R15

Очевидно, что это правило будет действовать не всегда. Вот, например, в бенчмарке x264 FHD центральные процессоры продемонстрировали одинаковые результаты. А в известном приложении wPrime, используемым среди оверклокеров, впереди вновь оказался Broadwell.

Результаты тестирования в x264 FHD

Результаты тестирования в wPrime 1.55

В LuxMark при одинаковых частотах Core i5-5675C быстрее Core i5-4690K на 11,2%. Вот это уже серьезный прирост, на мой взгляд.

Результаты тестирования в LuxMark 2.0

И вновь решение на базе архитектуры Broadwell оказывается впереди. На этот раз в Fryrender. Разница составила ни много ни мало 5,5%.

Результаты тестирования в Fryrender

В WinRAR при архивировании тестового пакета Core i5-5675C справился со своей задачей быстрее Core i5-4690K на 6,8%.

Результаты тестирования в WinRAR

В LinX 0.6.5 процессоры продемонстрировали практически одинаковые результаты.

Результаты тестирования в LinX 0.6.5

Как видите, архитектура Broadwell не сможет покорить пользователей производительностью в х86-вычислениях. Да, в большинстве случаев (в пяти из семи) она действительно оказалась быстрее Haswell. Однако необходимо учитывать, что данное испытание носило экспериментальный характер. По факту Core i5-4690K работает на более высокой частоте, нежели Core i5-5675C. Плюс в некоторых приложениях прироста производительности не наблюдается вовсе.

С другой стороны, в этом нет ничего удивительного. Все же Broadwell - это «тик»-процессоры. Следовательно, как я уже говорил, изменений по сравнению с Haswell у них минимум.

Подсистема памяти и кэш

Контроллер памяти в Broadwell, может, используется и тот же, но гораздо интереснее узнать, как поведет себя кэш четвертого уровня. Тест кэша и памяти AIDA64 - очередное подтверждение тому, что Crystalwell вряд ли сможет стать «продолжением» кэша третьего уровня. Так, она заметно медленнее. Если у L3 чтение производится со скоростью 174 Гбайт/с, то L4 может похвастать лишь 47396 Мбайт/с. Разница громадная. При этом для кэша третьего уровня задержка составила приблизительно 7 нс, а для кэша четвертого уровня - 35,6 нс. То есть разница в быстродействии L3 и L4 очевидна.

Опять же тест кэша и памяти демонстрирует, насколько Crystalwell быстрее оперативной памяти DDR3-2133. Чтение производится заметно быстрее: 47396 Мбайт/с против 33101 Мбайт/с. Задержка меньше: 35,6 нс против 47,1 нс. Использование более быстрой оперативной памяти подобное отставание не сократит. Мы не раз доказывали, что эффективные частоты, превышающие параметр 2133 МГц, можно смело считать «кукурузными» - так энтузиасты называют красивые числа, не влияющие, тем не менее, на итоговый результат.

В остальном тест кэша и памяти AIDA64 продемонстрировал прогнозируемые показатели.

Тест кэша и памяти Intel Core i5-5675C

Вычисления

При равной частоте Broadwell, как мы успели выяснить, на 5-10% быстрее Haswell. Но новые 14-нанометровые решения Intel не могут похвастать высокими частотами. Если продолжить сравнивать Core i5-5675C с Core i5-4690K, то второй чип работает быстрее на 400 МГц. И эта разница может нивелировать все превосходство архитектуры Broadwell над Haswell. Собственно говоря, так и происходит в комплексном бенчмарке SiSoftware Sandra 2014. В арифметическом тесте Core i5-4690K даже опережает Core i5-5675C.

Примечательны и другие моменты. Во-первых, Broadwell-чип оказался быстрее флагманского восьмиядерника AMD FX-8370 . Во-вторых, Core i5-5675C не под силу тягаться с более производительными и быстрыми Core i7, оснащенными к тому же технологией многопоточности Hyper-Threading.

Результаты тестирования Intel Core i5-5675C в SiSoftware Sandra 2014

Результаты тестирования Intel Core i5-5675C в SiSoftware Sandra 2014

А вот в скрипте 3Ds Max быстрее оказался Core i5-4690K. Core i5-5675C уступил ему на 12%. Достаточно приличное отставание.

Результаты тестирования Intel Core i5-5675C в 3Ds Max

Как мы уже выяснили, в CINEBENCH R15 при одинаковых частотах Core i5-5675C быстрее Core i5-4690K на 6,2%. «При своих» характеристиках в роли догоняющего уже выступает чип Broadwell. Правда, разница у «камней» минимальная - всего 12 баллов. Вот так более высокие частоты меняют картину быстродействия.

Результаты тестирования Intel Core i5-5675C в CINEBENCH R15

В Fryrender архитектура Broadwell тоже взяла вверх над Haswell. При установке реальных частот центральных процессоров разница в 5,5% уменьшилась до 3,7%: Core i5-5675C оказался быстрее Core i5-4690K.

Результаты тестирования Intel Core i5-5675C в Fryrender

В LuxMark процессор Core i5-5675C при одинаковой частоте оказался заметно быстрее Core i5-4690K. На целых 11,2%. Что удивительно, в дефолте эта разница не уменьшилась, а, наоборот, увеличилась до 13,6%.

Интересен и тот факт, что вместе с графикой Core i5-5675C набрал больше баллов, чем 16-поточный Core i7-5960X - самый быстрый настольный центральный процессор на сегодняшний день.

Результаты тестирования Intel Core i5-5675C в LuxMark

Photoshop - наглядный пример, когда толку от использования eDRAM нет никакого. Core i5-4690K оказался заметно быстрее Broadwell-чипа.

Результаты тестирования Intel Core i5-5675C в Photoshop

Как я уже говорил, Crystalwell может дать хороший прирост производительности в задачах, связанных с работой с объемными данными. Примером такого паттерна может стать архиватор. Встроенный бенчмарк WinRAR продемонстрировала очень высокий результат. Да и при реальном архивировании Core i5-5675C оказался быстрее Core i5-4690K.

Результаты тестирования Intel Core i5-5675C в WinRAR и 7Zip

Результаты тестирования Intel Core i5-5675C в x264

Производительность Core i5-5675C в приложениях находится на разном уровне в зависимости от используемого ПО. В некоторых программах 14-нм чип оказывается быстрее Core i5-4690K. В некоторых приложениях, как говорится, частота решает, а потому вперед вырывается 22-нм член семейства Devil’s Canyon. Но по факту оба этих процессора демонстрируют приблизительно схожий уровень быстродействия. За некоторым исключениями.

Процессорозависимость

Использование кэша четвертого уровня в играх - вот еще один сценарий работы Core i5-5675C. Например, в 3DMark 11 тестовый стенд с Broadwell оказался заметно быстрее компьютера с Core i5-4690K на борту. Новинка даже вплотную приблизилась к Core i7-4770K.

Однако этот параграф посвящен другой теме. В разрешении WQHD, прилично нагружающим видеокарту GeForce GTX 780, разница в частоте между Core i5-5675C и Core i5-4690K не сказывается. Уровень FPS более-менее одинаковый. Наоборот, в некоторых играх впереди оказывается стенд именно с Broadwell-кристаллом. Хотя разница минимальна - это раз. Во-вторых, на итоговый результат могла повлиять новая версия драйвера.

Результаты тестирования Intel Core i5-5675C в играх

Как итог, можно смело констатировать тот факт, что Core i5-5675C, если он будет использоваться в игровом компьютере, сдюжит. Однако решения Haswell Refresh, на мой взгляд, за счет более высокой частоты выглядят предпочтительнее. На фоне процессоров Intel в роли явных отстающих выступают разве что «камни» AMD.

Встроенная графика Iris Pro 6200

Про встроенную графику Iris Pro 6200 было сказано немало слов. Настало время оценить производительность этого решения. Тем более, что AMD недавно выпустила гибридный процессор A10-7870K , оснащенный разогнанным GPU Radeon R7.

В GTA V при минимальных настройках качества графики удалось заполучить вполне играбельный уровень FPS даже в разрешении Full HD. А вот в Far Cry 4 и в «Ведьмак 3» в 1080p уже не поиграешь.

Iris Pro 6200 и Far Cry 4

В Far Cry 4 и «Ведьмак 3» быстрее оказалось решение AMD. Однако в Full HD в обоих случаях было неиграбельно. На мой взгляд, в этих играх сказалась поддержка драйвера. В теории производитель дискретных видеокарт (это я про AMD) должен следить за обновлением своего ПО под новые приложения. Впрочем, в GTA V и в 720p, и в 1080p больше FPS оказалось именно у Iris Pro 6200.

Iris Pro 6200 и новые игры

Iris Pro 6200 удалось набрать свыше 3000 «попугаев» в бенчмарке 3DMark 11 (режим Performance). AMD A10-7870K такой прытью в этом синтетическом приложении похвастать не может.

В некоторых играх Iris Pro 6200 заметно опережает Radeon R7. Например, в Bioshock infinite разница в FPS достигает 23,9% в разрешении 720p и 27,6% в разрешении 1080p.

Iris Pro 6200 и игры

Iris Pro 6200 и игры

Что же, производительность Iris Pro 6200 поражает. Особенно на фоне HD Graphics 4600, реализованной в десктопных Haswell. В ряде случаев в современных играх достигнут вполне играбельный уровень FPS даже в разрешении Full HD. Даже с высокими настройками качества графики. Но самое интересное - ядро Iris Pro 6200 оказалось быстрее интегрированной графики A10-7870K. Кажется, теперь AMD лишилась еще одного аргумента в противостоянии с Intel. С другой стороны, стоимость самого дешевого Broadwell (то есть Core i5-5675C) составляет 276 долларов США. AMD A10-7870K стоит 137 долларов США, то есть в два раза меньше.

Все больше подробностей начинает появляться по поводу следующего поколения процессоров Intel. Процессоры под кодовым названием Broadwell, которые планируется выпустить во второй половине 2014 года, являются сжатой версией текущей линейки процессоров Haswell. Как и предшественники, процессоры серии Broadwell будут выпущены в нескольких модификациях, включая Broadwell-D для ноутбуков, Broadwell-U для ультрабуков и Broadwell-Y для планшетов.

Компания Intel использует так называемый «тик-так» процесс разработки. В одном цикле фирма выпускает абсолютно новую архитектуру с новым дизайном и новыми функциями (это «тик»), а затем, в течение следующего цикла сжимает уже имеющиеся устройства путем использования новых процессов производства (это «так»). Процессоры Broadwell относятся ко второму циклу и будут созданы с помощью использования деталей размером 14 нанометров, в то время как линейка Haswell имеет детали размером 22 нанометра.

В результате, компания Intel способна значительно снизить энергопотребление своих процессоров. Считается, что Broadwell-Y будет способен отвести 4,5 Вт тепла в нормальных условиях. Процессор также будет поддерживать технологию настраиваемого отвода тепла, расчётная мощность которого будет колебаться от 3,5 до 2,8 Вт.

К сожалению, данные технологии позволяют измерить лишь количество выделяемого процессором тепла во время работы. Они не могут указать нам на его энергоэффективность, однако можно сделать вывод, что Broadwell-Y разработан для безвентиляторных моделей с целью низкого энергопотребления. Считается, что процессоры Broadwell-Y будут иметь 2 64-битные ядра (технология dual-core), использовать графический процессор Intel GT2 и поддерживать до 8 гигабайт оперативной памяти.

Неясность в том, является ли данный процессор угрозой для архитектуры ARM? К сожалению, вопрос сложный. На рынке смартфонов, где ARM имеет наибольший успех, Broadwell-Y не несет никакой угрозы. Уже существующая линейка процессоров от компании Qualcomm имеют по четыре ядра, а их показатель отвода тепла значительно ниже, чем у Broadwell-Y. Компания MediaTek уже выпустила процессор, который имеет восемь ядер, а все остальные крупные фирмы уже работают над 64-битными процессорами на основе ARMv8, которые выйдут в свет раньше, чем Broadwell. Конечно, работоспособность этой линейки процессоров еще не ясна, но маловероятно, что им удастся пробиться на рынок смартфонов.

На рынке планшетов Broadwell-Y будет действительно привлекательным для высококачественных устройств. Вполне вероятно, что следующее поколение планшетов Surface Pro (Surface Pro 3?) будут использовать либо процессоры серии U (как планшеты Surface Pro 2), либо перейдут на серию Y, что позволит компании Microsoft сделать свои планшеты тоньше. Последнее время компанія Intel преуспевает на этом рынке, так как Asus и Samsung используют их процессоры в своих планшетах. Если процессоры Broadwell-Y хорошо себя проявят в вопросах энергосбережения и работоспособности, другие производители также могут обратить на них внимание. Однако на данный момент, большинство планшетов на ОС Android используют процессоры Atom, которые значительно отличаются от серий Haswell и Broadwell.

Архитектура ARM занимает лидирующие позиции на рынке смартфонов и планшетов, в то время как Intel лишь завоевывает их. Однако в такой отрасли как серверный бизнес, Intel значительно превосходит всех своих конкурентов.

С появлением 64-битной архитектуры ARMv8 и после обнародования компанией AMD планов по выпуску 64-битного ARM-процессора Hierofalcon в те же временные рамки, что и процессоры Broadwell, ARM начали активную борьбу за продвижение на рынке серверов. В этой отрасли каждый сэкономленный ватт важен по причине счетов за электричество, требований к охлаждению и экологического влияния. Использование процессора с большими способностями к отводу тепла могут значительно снизить общие затраты на поддержание серверов. Именно поэтому ARM-процессоры могут заинтересовать владельцев серверов. Благодаря поддержке такой ОС как Linux, ARM-процессоры могут служить заменой процессоров Intel для серверов. Но если Intel будет и дальше увеличить показатели процессоров серии Broadwell по выводу тепла, то ARM-процессоры не будут иметь никаких шансов на этом рынке.

Учитывая, что Intel, ARM и AMD имеют наполеоновские планы на 2014 год, будет интересно посмотреть, как это все отразится на развитии планшетов.

Многим пользователям известно, что лидер чипмейкерской индустрии - корпорация Intel - выпускает свои решения, исходя из стратегии «тик-так». «Тиком» считается поколение центральных процессоров, обладающих старой архитектурой, но перенесенной на новый техпроцесс. «Таком» считаются чипы, выполненные на базе новой микроархитектуры, но с применением старого, проверенного техпроцесса. Например, CPU на базе архитектуры Haswell - это «так». Они выполнены согласно 22-нм техпроцессу. А решения на основе архитектуры Broadwell - это «тик». Они будут производиться по 14-нм технологическим «рельсам». Следовательно, следующее поколение интегральных решений - Skylake - будет опять считаться «так»-поколением.

Наглядная демонстрация принципа «тик-так»

Собственно говоря, уже только из этого принципа вытекает логичный факт, что настольные центральные процессоры на базе архитектуры Broadwell не будут заметно быстрее Haswell (если они вообще будут быстрее). Ведь основные отличия, заключающиеся между «тик» и «так», как раз и заключаются в переходе на более тонкий 14-нанометровый техпроцесс. В Сети уже проскакивала информация о том, что в среднем решения Core M на базе Broadwell быстрее Haswell-процессоров приблизительно на 3%. Вряд ли ситуация кардинальным образом изменится и среди CPU для настольных ПК.

Процессор Intel Broadwell

Как известно, в Intel столкнулись с серьезными проблемами при переходе на 14-нанометровый техпроцесс. Первоначально планировалось, что линейка центральных процессоров на основе Broadwell появится на рынке во втором квартале прошлого года. Однако этого не произошло. В мае, дабы поддержать уровень продаж своей продукции, были выпущены модели «камней» Haswell Refresh, обладающие лишь более высокими тактовыми частотами. А первые решения на базе Broadwell были продемонстрированы только в августе, а затем и в сентябре на выставке IFA 2014. Это были SoC Core M, предназначенные для использования в планшетах. Уже в этом году в рамках выставки CES 2015 была представлена линейка CPU, ориентированная на использование в ноутбуках и мини-ПК. Появление центральных процессоров для десктопов, по некоторым данным, запланировано на второй квартал текущего года. То есть весной, когда обычно Intel и презентует свои настольные новинки. При этом главный исполнительный директор Intel Брайан Кржанич (Brian Krzanich) заявил, что в этом году задержек и переносов не будет. И платформа для процессоров Skylake выйдет во второй половине года. Предположительно, это будет начало третьего квартала. Однако в Сети присутствует информация , что десктопные решения на базе Broadwell и Skylake могут появиться практически одновременно либо в конце второго квартала, либо в начале третьего.

План выхода процессоров Intel

Как бы там ни было, очевидно, что в этом году временной отрезок между появлением «тик» и «так» процессоров будет очень небольшим. Обычно этот период приблизительно равен году. К тому же в Сети появилась информация , что у Skylake есть проблема с тактовой частотой. Технические семплы, предположительно относящиеся к топовым CPU семейства Core i5/i7, могут работать в режиме Turbo Boost только со скоростью 2,9 ГГц. Плюс сам факт того, что платформы появятся практически одновременно, на мой взгляд, отлично свидетельствует о том, что Broadwell и Skylake в плане х86-вычислений будут обладать приблизительно одинаковым уровнем быстродействия. Следовательно, не будет большой разницы и в сравнении с Haswell. А ведь к моменту появления первых 14-нм настольных решений этой платформе исполнится уже два года. Однако, как видите, она будет еще долго считаться актуальной и современной.

Системы на базе процессоров Haswell еще долгое время будут считаться современными, ведь новые решения не предложат пользователю заметный прирост производительности

Настольные процессоры Broadwell будут упаковываться в корпуса для сокета LGA1150. Следовательно, они будут совместимы с материнскими платами на базе наборов логики Z97/H97 Express. А вот для Intel Skylake разработана иная платформа с гнездом LGA1151. Это означает, что пользователю, желающему собрать ПК на базе самой прогрессивной архитектуры, придется вместе с «камнем» приобрести и материнскую плату. Не так давно я писал о полной неразберихе в настольных платформах AMD . Так вот, Intel имеет все шансы закончить год сразу с пятью актуальными платформами для десктопов, породив тем самым самую настоящую путаницу:

  • LGA1150 под Haswell (Z87 Express);
  • LGA2011-v3 под Haswell-E и Broadwell-E;
  • LGA1150 под Haswell Refresh и Broadwell (Z97 Express);
  • LGA1151 под Skylake (DDR3);
  • LGA1151 под Skylake (DDR4).

Очевидно, что основные технологические наработки и инновации Intel в первую очередь расчитаны для мобильных устройств. А процессоры для настольных ПК уже достаточно приличное время как бы «подгоняются» под необходимый формат. Это хорошо заметно, ведь сначала Intel анонсирует именно решения для ноутбуков и планшетов. А потому мы уже довольно долгое время не наблюдаем серьезного роста производительности именно в х86-вычислениях между разными поколениями CPU. Конечно, на сегодняшний день современный центральный процессор - это очень сложное устройство со множеством интегрированных компонентов. Так, развивается встроенная графика, которая, в отличие от вычислительной части, от поколения к поколению заметно прибавляет в плане производительности. В то же время использование более тонкого техпроцесса позволяет делать более энергоэффективные кристаллы. И все же, когда мы говорим о настольных ПК, есть предпосылки, что роста быстродействия в х86-вычислениях не будет заметно как минимум ближайшие два года. А то и больше. Однако, как говорится, поживем - увидим.

ВведениеЭтим летом компания Intel совершила странное: она умудрилась сменить целых два поколения процессоров, ориентированных на общеупотребительные персональные компьютеры. Сначала на смену Haswell пришли процессоры с микроархитектурой Broadwell, но затем в течение буквально пары месяцев они утратили свой статус новинки и уступили место процессорам Skylake, которые будут оставаться наиболее прогрессивными CPU как минимум ещё года полтора. Такая чехарда со сменой поколений произошла главным образом в связи с проблемами Intel, возникшими при внедрении нового 14-нм техпроцесса, который применяется при производстве и Broadwell, и Skylake. Производительные носители микроархитектуры Broadwell по пути в настольные системы сильно задержались, а их последователи вышли по заранее намеченному графику, что привело к скомканности анонса процессоров Core пятого поколения и серьёзному сокращению их жизненного цикла. В результате всех этих пертурбаций, в десктопном сегменте Broadwell заняли совсем узкую нишу экономичных процессоров с мощным графическим ядром и довольствуются теперь лишь небольшим уровнем продаж, свойственным узкоспециализированным продуктам. Внимание же передовой части пользователей переключилось на последователей Broadwell – процессоры Skylake.

Надо заметить, что в последние несколько лет компания Intel совсем не радует своих поклонников ростом производительности предлагаемых продуктов. Каждое новое поколение процессоров прибавляет в удельном быстродействии лишь по несколько процентов, что в конечном итоге приводит к отсутствию у пользователей явных стимулов к модернизации старых систем. Но выход Skylake – поколения CPU, по пути к которому Intel, фактически, перепрыгнула через ступеньку – внушал определённые надежды на то, что мы получим действительно стоящее обновление самой распространённой вычислительной платформы. Однако, ничего подобного так и не случилось: Intel выступила в своём привычном репертуаре. Broadwell был представлен общественности в качестве некого ответвления от основной линии процессоров для настольных систем, а Skylake оказались быстрее Haswell в большинстве приложений совсем незначительно .

Поэтому несмотря на все ожидания, появление Skylake в продаже вызвало у многих скептическое отношение. Ознакомившись с результатами реальных тестов, многие покупатели попросту не увидели реального смысла в переходе на процессоры Core шестого поколения. И действительно, главным козырем свежих CPU выступает прежде всего новая платформа с ускоренными внутренними интерфейсами, но не новая процессорная микроархитектура. И это значит, что реальных стимулов к обновлению основанных систем прошлых поколений Skylake предлагает немного.

Впрочем, мы бы всё-таки не стали отговаривать от перехода Skylake всех без исключения пользователей. Дело в том, что пусть Intel и наращивает производительность своих процессоров очень сдержанными темпами, с момента появления Sandy Bridge, которые всё ещё трудятся во многих системах, сменилось уже четыре поколения микроархитектуры. Каждый шаг по пути прогресса вносил свой вклад в увеличение производительности, и к сегодняшнему дню Skylake способен предложить достаточно существенный прирост в производительности по сравнению со своими более ранними предшественниками. Только чтобы увидеть это, сравнивать его надо не с Haswell, а с более ранними представителями семейства Core, появившимися до него.

Собственно, именно таким сравнением мы сегодня и займёмся. Учитывая всё сказанное, мы решили посмотреть, насколько выросла производительность процессоров Core i7 с 2011 года, и собрали в едином тесте старшие Core i7, относящиеся к поколениям Sandy Bridge, Ivy Bridge, Haswell, Broadwell и Skylake. Получив же результаты такого тестирования, мы постараемся понять, обладателям каких процессоров целесообразно затевать модернизацию старых систем, а кто из них может повременить до появления последующих поколений CPU. Попутно мы посмотрим и на уровень производительности новых процессоров Core i7-5775C и Core i7-6700K поколений Broadwell и Skylake, которые до настоящего момента в нашей лаборатории ещё не тестировались.

Сравнительные характеристики протестированных CPU

От Sandy Bridge до Skylake: сравнение удельной производительности

Для того, чтобы вспомнить, как же менялась удельная производительность интеловских процессоров в течение последней пятилетки, мы решили начать с простого теста, в котором сопоставили скорость работы Sandy Bridge, Ivy Bridge, Haswell, Broadwell и Skylake, приведённых к одной и той же частоте 4,0 ГГц. В этом сравнении нами были использованы процессоры линейки Core i7, то есть, четырёхъядерники, обладающие технологией Hyper-Threading.

В качестве основного тестового инструмента был взят комплексный тест SYSmark 2014 1.5, который хорош тем, что воспроизводит типичную пользовательскую активность в общеупотребительных приложениях офисного характера, при создании и обработке мультимедийного контента и при решении вычислительных задач. На следующих графиках отображены полученные результаты. Для удобства восприятия они нормированы, за 100 процентов принята производительность Sandy Bridge.



Интегральный показатель SYSmark 2014 1.5 позволяет сделать следующие наблюдения. Переход от Sandy Bridge к Ivy Bridge увеличил удельную производительность совсем незначительно – примерно на 3-4 процента. Дальнейший шаг к Haswell оказался гораздо более результативным, он вылился в 12-процентное улучшение производительности. И это – максимальный прирост, который можно наблюдать на приведённом графике. Ведь дальше Broadwell обгоняет Haswell всего лишь на 7 процентов, а переход от Broadwell к Skylake и вовсе наращивает удельную производительность лишь на 1-2 процента. Весь же прогресс от Sandy Bridge до Skylake выливается в 26-процентное увеличение производительности при постоянстве тактовых частот.

Более подробную расшифровку полученных показателей SYSmark 2014 1.5 можно посмотреть на трёх следующих графиках, где интегральный индекс производительности разложен по составляющим по типу приложений.









Обратите внимание, наиболее заметно с вводом новых версий микроархитектур прибавляют в скорости исполнения мультимедийные приложения. В них микроархитектура Skylake превосходит Sandy Bridge на целых 33 процента. А вот в счётных задачах, напротив, прогресс проявляется меньше всего. И более того, при такой нагрузке шаг от Broadwell к Skylake даже оборачивается небольшим снижением удельной производительности.

Теперь, когда мы представляем себе, что же происходило с удельной производительностью процессоров Intel в течение последних нескольких лет, давайте попробуем разобраться, чем наблюдаемые изменения были обусловлены.

От Sandy Bridge до Skylake: что изменилось в процессорах Intel

Сделать точкой отсчёта в сравнении разных Core i7 представителя поколения Sandy Bridge мы решили не просто так. Именно данный дизайн подвёл крепкий фундамент под всё дальнейшее совершенствование производительных интеловских процессоров вплоть до сегодняшних Skylake. Так, представители семейства Sandy Bridge стали первыми высокоинтегрированными CPU, в которых в одном полупроводниковом кристалле были собраны и вычислительные, и графическое ядра, а также северный мост с L3-кешем и контроллером памяти. Кроме того, в них впервые стала использоваться внутренняя кольцевая шина, посредством которой была решена задача высокоэффективного взаимодействия всех структурных единиц, составляющих столь сложный процессор. Этим заложенным в микроархитектуре Sandy Bridge универсальным принципам построения продолжают следовать все последующие поколения CPU без каких бы то ни было серьёзных корректив.

Немалые изменения в Sandy Bridge претерпела внутренняя микроархитектура вычислительных ядер. В ней не только была реализована поддержка новых наборов команд AES-NI и AVX, но и нашли применение многочисленные крупные улучшения в недрах исполнительного конвейера. Именно в Sandy Bridge был добавлен отдельный кеш нулевого уровня для декодированных инструкций; появился абсолютно новый блок переупорядочивания команд, основанный на использовании физического регистрового файла; были заметно улучшены алгоритмы предсказания ветвлений; а кроме того, два из трёх исполнительных порта для работы с данными стали унифицированными. Такие разнородные реформы, проведённые сразу на всех этапах конвейера, позволили серьёзно увеличить удельную производительность Sandy Bridge, которая по сравнению с процессорами предыдущего поколения Nehalem сразу выросла почти на 15 процентов. К этому добавился 15-процентный рост номинальных тактовых частот и отличный разгонный потенциал, в результате чего в сумме получилось семейство процессоров, которое до сих пор ставится в пример Intel, как образцовое воплощение фазы «так» в принятой в компании маятниковой концепции разработки.

И правда, подобных по массовости и действенности улучшений в микроархитектуре после Sandy Bridge мы уже не видели. Все последующие поколения процессорных дизайнов проводят куда менее масштабные усовершенствования в вычислительных ядрах. Возможно, это является отражением отсутствия реальной конкуренции на процессорном рынке, возможно причина замедления прогресса кроется в желании Intel сосредоточить усилия на совершенствовании графических ядер, а может быть Sandy Bridge просто оказался настолько удачным проектом, что его дальнейшее развитие требует слишком больших трудозатрат.

Отлично иллюстрирует произошедший спад интенсивности инноваций переход от Sandy Bridge к Ivy Bridge. Несмотря на то, что следующее за Sandy Bridge поколение процессоров и было переведено на новую производственную технологию с 22-нм нормами, его тактовые частоты совсем не выросли. Сделанные же улучшения в дизайне в основном коснулись ставшего более гибким контроллера памяти и контроллера шины PCI Express, который получил совместимость с третьей версией данного стандарта. Что же касается непосредственно микроархитектуры вычислительных ядер, то отдельные косметические переделки позволили добиться ускорения выполнения операций деления и небольшого увеличения эффективности технологии Hyper-Threading, да и только. В результате, рост удельной производительности составил не более 5 процентов.

Вместе с тем, внедрение Ivy Bridge принесло и то, о чём теперь горько жалеет миллионная армия оверклокеров. Начиная с процессоров этого поколения, Intel отказалась от сопряжения полупроводникового кристалла CPU и закрывающей его крышки посредством бесфлюсовой пайки и перешла на заполнение пространства между ними полимерным термоинтерфейсным материалом с очень сомнительными теплопроводящими свойствами. Это искусственно ухудшило частотный потенциал и сделало процессоры Ivy Bridge, как и всех их последователей, заметно менее разгоняемыми по сравнению с очень бодрыми в этом плане «старичками» Sandy Bridge.

Впрочем, Ivy Bridge – это всего лишь «тик», а потому особых прорывов в этих процессорах никто и не обещал. Однако никакого воодушевляющего роста производительности не принесло и следующее поколение, Haswell, которое, в отличие от Ivy Bridge, относится уже к фазе «так». И это на самом деле немного странно, поскольку различных улучшений в микроархитектуре Haswell сделано немало, причём они рассредоточены по разным частям исполнительного конвейера, что в сумме вполне могло бы увеличить общий темп исполнения команд.

Например, во входной части конвейера была улучшена результативность предсказания переходов, а очередь декодированных инструкций стала делиться между параллельными потоками, сосуществующими в рамках технологии Hyper-Threading, динамически. Попутно произошло увеличение окна внеочередного исполнения команд, что в сумме должно было поднять долю параллельно выполняемого процессором кода. Непосредственно в исполнительном блоке были добавлены два дополнительных функциональных порта, нацеленных на обработку целочисленных команд, обслуживание ветвлений и сохранение данных. Благодаря этому Haswell стал способен обрабатывать до восьми микроопераций за такт – на треть больше предшественников. Более того, новая микроархитектура удвоила и пропускную способность кеш-памяти первого и второго уровней.

Таким образом, улучшения в микроархитектуре Haswell не затронули лишь скорость работы декодера, который, похоже, на данный момент стал самым узким местом в современных процессорах Core. Ведь несмотря на внушительный список улучшений, прирост удельной производительности у Haswell по сравнению с Ivy Bridge составил лишь около 5-10 процентов. Но справедливости ради нужно оговориться, что на векторных операциях ускорение заметно гораздо сильнее. А наибольший выигрыш можно увидеть в приложениях, использующих новые AVX2 и FMA-команды, поддержка которых также появилась в этой микроархитектуре.

Процессоры Haswell, как и Ivy Bridge, сперва тоже не особенно понравились энтузиастам. Особенно если учесть тот факт, что в первоначальной версии никакого увеличения тактовых частот они не предложили. Однако спустя год после своего дебюта Haswell стали казаться заметно привлекательнее. Во-первых, увеличилось количество приложений, обращающихся к наиболее сильным сторонам этой архитектуры и использующих векторные инструкции. Во-вторых, Intel смогла исправить ситуацию с частотами. Более поздние модификации Haswell, получившие собственное кодовое наименование Devil’s Canyon, смогли нарастить преимущество над предшественниками благодаря увеличению тактовой частоты, которая, наконец, пробила 4-гигагерцовый потолок. Кроме того, идя на поводу у оверклокеров, Intel улучшила полимерный термоинтерфейс под процессорной крышкой, что сделало Devil’s Canyon более подходящими объектами для разгона. Конечно, не такими податливыми, как Sandy Bridge, но тем не менее.

И вот с таким багажом Intel подошла к Broadwell. Поскольку основной ключевой особенностью этих процессоров должна была стать новая технология производства с 14-нм нормами, никаких значительных нововведений в их микроархитектуре не планировалось – это должен был быть почти самый банальный «тик». Всё необходимое для успеха новинок вполне мог бы обеспечить один только тонкий техпроцесс с FinFET-транзисторами второго поколения, в теории позволяющий уменьшить энергопотребление и поднять частоты. Однако практическое внедрение новой технологии обернулось чередой неудач, в результате которых Broadwell досталась лишь экономичность, но не высокие частоты. В итоге те процессоры этого поколения, которые Intel представила для настольных систем, вышли больше похожими на мобильные CPU, чем на продолжателей дела Devil’s Canyon. Тем более, что кроме урезанных тепловых пакетов и откатившихся частот они отличаются от предшественников и уменьшившимся в объёме L3-кешем, что, правда, несколько компенсируется появлением расположенного на отдельном кристалле кэша четвёртого уровня.

На одинаковой с Haswell частоте процессоры Broadwell демонстрируют примерно 7-процентное преимущество, обеспечиваемое как добавлением дополнительного уровня кеширования данных, так и очередным улучшением алгоритма предсказания ветвлений вместе с увеличением основных внутренних буферов. Кроме того, в Broadwell реализованы новые и более быстрые схемы выполнения инструкций умножения и деления. Однако все эти небольшие улучшения перечёркиваются фиаско с тактовыми частотами, относящими нас в эпоху до Sandy Bridge. Так, например, старший оверклокерский Core i7-5775C поколения Broadwell уступает по частоте Core i7-4790K целых 700 МГц. Понятно, что ожидать какого-то роста производительности на этом фоне бессмысленно, лишь бы обошлось без её серьёзного падения.

Во многом именно из-за этого Broadwell и оказался непривлекательным для основной массы пользователей. Да, процессоры этого семейства отличаются высокой экономичностью и даже вписываются в тепловой пакет с 65-ваттными рамками, но кого это, по большому счёту, волнует? Разгонный же потенциал первого поколения 14-нм CPU оказался достаточно сдержанным. Ни о какой работе на частотах, приближающихся к 5-гигагерцовой планке речь не идёт. Максимум, которого можно добиться от Broadwell при использовании воздушного охлаждения пролегает в окрестности величины 4,2 ГГц. Иными словами, пятое поколение Core вышло у Intel, как минимум, странноватым. О чём, кстати, микропроцессорный гигант в итоге и пожалел: представители Intel отмечают, что поздний выход Broadwell для настольных компьютеров, его сокращённый жизненный цикл и нетипичные характеристики отрицательно сказались на уровне продаж, и больше компания на подобные эксперименты пускаться не планирует.

Новейший же Skylake на этом фоне представляется не столько как дальнейшее развитие интеловской микроархитектуры, сколько своего рода работа над ошибками. Несмотря на то, что при производстве этого поколения CPU используется тот же 14-нм техпроцесс, что и в случае Broadwell, никаких проблем с работой на высоких частотах у Skylake нет. Номинальные частоты процессоров Core шестого поколения вернулись к тем показателям, которые были свойственны их 22-нм предшественникам, а разгонный потенциал даже немного увеличился. На руку оверклокерам здесь сыграл тот факт, что в Skylake конвертер питания процессора вновь перекочевал на материнскую плату и снизил тем самым суммарное тепловыделение CPU при разгоне. Жаль только, что Intel так и не вернулась к использованию эффективного термоинтерфейса между кристаллом и процессорной крышкой.

Но вот что касается базовой микроархитектуры вычислительных ядер, то несмотря на то, что Skylake, как и Haswell, представляет собой воплощение фазы «так», нововведений в ней совсем немного. Причём большинство из них направлено на расширение входной части исполнительного конвейера, остальные же части конвейера остались без каких-либо существенных изменений. Перемены касаются улучшения результативности предсказания ветвлений и повышения эффективности блока предварительной выборки, да и только. При этом часть оптимизаций служит не столько для улучшения производительности, сколько направлена на очередное повышение энергоэффективности. Поэтому удивляться тому, что Skylake по своей удельной производительности почти не отличается от Broadwell, не следует.

Впрочем, существуют и исключения: в отдельных случаях Skylake могут превосходить предшественников в производительности и более заметно. Дело в том, что в этой микроархитектуре была усовершенствована подсистема памяти. Внутрипроцессорная кольцевая шина стала быстрее, и это в конечном итоге расширило полосу пропускания L3-кэша. Плюс к этому контроллер памяти получил поддержку работающей на высоких частотах памяти стандарта DDR4 SDRAM.

Но в итоге тем не менее получается, что бы там не говорила Intel о прогрессивности Skylake, с точки зрения обычных пользователей это – достаточно слабое обновление. Основные улучшения в Skylake сделаны в графическом ядре и в энергоэффективности, что открывает перед такими CPU путь в безвентиляторные системы планшетного форм-фактора. Десктопные же представители этого поколения отличаются от тех же Haswell не слишком заметно. Даже если закрыть глаза на существование промежуточного поколения Broadwell, и сопоставлять Skylake напрямую с Haswell, то наблюдаемый рост удельной производительности составит порядка 7-8 процентов, что вряд ли можно назвать впечатляющим проявлением технического прогресса.

Попутно стоит отметить, что не оправдывает ожиданий и совершенствование технологических производственных процессов. На пути от Sandy Bridge дo Skylake компания Intel сменила две полупроводниковых технологии и уменьшила толщину транзисторных затворов более чем вдвое. Однако современный 14-нм техпроцесс по сравнению с 32-нм технологией пятилетней давности так и не позволил нарастить рабочие частоты процессоров. Все процессоры Core последних пяти поколений имеют очень похожие тактовые частоты, которые если и превышают 4-гигагерцовую отметку, то совсем незначительно.

Для наглядной иллюстрации этого факта можно посмотреть на следующий график, на котором отображена тактовая частота старших оверклокерских процессоров Core i7 разных поколений.



Более того, пик тактовой частоты приходится даже не на Skylake. Максимальной частотой могут похвастать процессоры Haswell, относящиеся к подгруппе Devil’s Canyon. Их номинальная частота составляет 4,0 ГГц, но благодаря турбо-режиму в реальных условиях они способны разгоняться до 4,4 ГГц. Для современных же Skylake максимум частоты – всего лишь 4,2 ГГц.

Всё это, естественно, сказывается на итоговой производительности реальных представителей различных семейств CPU. И далее мы предлагаем посмотреть, как всё это отражается на быстродействии платформ, построенных на базе флагманских процессоров каждого из семейств Sandy Bridge, Ivy Bridge, Haswell, Broadwell и Skylake.

Как мы тестировали

В сравнении приняли участие пять процессоров Core i7 разных поколений: Core i7-2700K, Core i7-3770K, Core i7-4790K, Core i7-5775C и Core i7-6700K. Поэтому список комплектующих, задействованных в тестировании, получился достаточно обширным:

Процессоры:

Intel Core i7-2600K (Sandy Bridge, 4 ядра + HT, 3,4-3,8 ГГц, 8 Мбайт L3);
Intel Core i7-3770K (Ivy Bridge, 4 ядра + HT, 3,5-3,9 ГГц, 8 Мбайт L3);
Intel Core i7-4790K (Haswell Refresh, 4 ядра + HT, 4,0-4,4 ГГц, 8 Мбайт L3);
Intel Core i7-5775C (Broadwell, 4 ядра, 3,3-3,7 ГГц, 6 Мбайт L3, 128 Мбайт L4).
Intel Core i7-6700K (Skylake, 4 ядра, 4,0-4,2 ГГц, 8 Мбайт L3).

Процессорный кулер: Noctua NH-U14S.
Материнские платы:

ASUS Z170 Pro Gaming (LGA 1151, Intel Z170);
ASUS Z97-Pro (LGA 1150, Intel Z97);
ASUS P8Z77-V Deluxe (LGA1155, Intel Z77).

Память:

2x8 Гбайт DDR3-2133 SDRAM, 9-11-11-31 (G.Skill F3-2133C9D-16GTX);
2x8 Гбайт DDR4-2666 SDRAM, 15-15-15-35 (Corsair Vengeance LPX CMK16GX4M2A2666C16R).

Видеокарта: NVIDIA GeForce GTX 980 Ti (6 Гбайт/384-бит GDDR5, 1000-1076/7010 МГц).
Дисковая подсистема: Kingston HyperX Savage 480 GB (SHSS37A/480G).
Блок питания: Corsair RM850i (80 Plus Gold, 850 Вт).

Тестирование выполнялось в операционной системе Microsoft Windows 10 Enterprise Build 10240 с использованием следующего комплекта драйверов:

Intel Chipset Driver 10.1.1.8;
Intel Management Engine Interface Driver 11.0.0.1157;
NVIDIA GeForce 358.50 Driver.

Производительность

Общая производительность

Для оценки производительности процессоров в общеупотребительных задачах мы традиционно используем тестовый пакет Bapco SYSmark, моделирующий работу пользователя в реальных распространённых современных офисных программах и приложениях для создания и обработки цифрового контента. Идея теста очень проста: он выдаёт единственную метрику, характеризующую средневзвешенную скорость компьютера при повседневном использовании. После выхода операционной системы Windows 10 этот бенчмарк в очередной раз обновился, и теперь мы задействуем самую последнюю версию – SYSmark 2014 1.5.



При сравнении Core i7 разных поколений, когда они работают в своих номинальных режимах, результаты получаются совсем не такие, как при сопоставлении на единой тактовой частоте. Всё-таки реальная частота и особенности работы турбо-режима оказывает достаточно существенное влияние на производительность. Например, согласно полученным данным, Core i7-6700K быстрее Core i7-5775C на целых 11 процентов, но при этом его преимущество над Core i7-4790K совсем незначительно – оно составляет всего лишь порядка 3 процентов. При этом нельзя обойти вниманием и то, что новейший Skylake оказывается существенно быстрее процессоров поколений Sandy Bridge и Ivy Bridge. Его преимущество над Core i7-2700K и Core i7-3770K достигает 33 и 28 процентов соответственно.

Более глубокое понимание результатов SYSmark 2014 1.5 способно дать знакомство с оценками производительности, получаемое в различных сценариях использования системы. Сценарий Office Productivity моделирует типичную офисную работу: подготовку текстов, обработку электронных таблиц, работу с электронной почтой и посещение Интернет-сайтов. Сценарий задействует следующий набор приложений: Adobe Acrobat XI Pro, Google Chrome 32, Microsoft Excel 2013, Microsoft OneNote 2013, Microsoft Outlook 2013, Microsoft PowerPoint 2013, Microsoft Word 2013, WinZip Pro 17.5 Pro.



В сценарии Media Creation моделируется создание рекламного ролика с использованием предварительно отснятых цифровых изображений и видео. Для этой цели применяются популярные пакеты Adobe Photoshop CS6 Extended, Adobe Premiere Pro CS6 и Trimble SketchUp Pro 2013.



Сценарий Data/Financial Analysis посвящён статистическому анализу и прогнозированию инвестиций на основе некой финансовой модели. В сценарии используются большие объёмы численных данных и два приложения Microsoft Excel 2013 и WinZip Pro 17.5 Pro.



Результаты, полученные нами при различных сценариях нагрузки, качественно повторяют общие показатели SYSmark 2014 1.5. Обращает на себя внимание лишь тот факт, что процессор Core i7-4790K совсем не выглядит устаревшим. Он заметно проигрывает новейшему Core i7-6700K только в расчётном сценарии Data/Financial Analysis, а в остальных случаях либо уступает своему последователю на совсем малозаметную величину, либо вообще оказывается быстрее. Например, представитель семейства Haswell опережает новый Skylake в офисных приложениях. Но процессоры более старых годов выпуска, Core i7-2700K и Core i7-3770K, выглядят уже несколько устаревшими предложениями. Они проигрывают новинке в разных типах задач от 25 до 40 процентов, и это, пожалуй, является вполне достаточным основанием, чтобы Core i7-6700K можно было рассматривать в качестве достойной им замены.

Игровая производительность

Как известно, производительность платформ, оснащенных высокопроизводительными процессорами, в подавляющем большинстве современных игр определяется мощностью графической подсистемы. Именно поэтому при тестировании процессоров мы выбираем наиболее процессорозависимые игры, а измерение количества кадров выполняем дважды. Первым проходом тесты проводятся без включения сглаживания и с установкой далеко не самых высоких разрешений. Такие настройки позволяют оценить, насколько хорошо проявляют себя процессоры с игровой нагрузкой в принципе, а значит, позволяют строить догадки о том, как будут вести себя тестируемые вычислительные платформы в будущем, когда на рынке появятся более быстрые варианты графических ускорителей. Второй проход выполняется с реалистичными установками – при выборе FullHD-разрешения и максимального уровня полноэкранного сглаживания. На наш взгляд такие результаты не менее интересны, так как они отвечают на часто задаваемый вопрос о том, какой уровень игровой производительности могут обеспечить процессоры прямо сейчас – в современных условиях.

Впрочем, в этом тестировании мы собрали мощную графическую подсистему, основанную на флагманской видеокарте NVIDIA GeForce GTX 980 Ti. И в результате в части игр частота кадров продемонстрировала зависимость от процессорной производительности даже в FullHD-разрешении.

Результаты в FullHD-разрешении с максимальными настройками качества


















Обычно влияние процессоров на игровую производительность, особенно если речь идёт о мощных представителях серии Core i7, оказывается незначительным. Однако при сопоставлении пяти Core i7 разных поколений результаты получаются совсем не однородными. Даже при установке максимальных настроек качества графики Core i7-6700K и Core i7-5775C демонстрируют наивысшую игровую производительность, в то время как более старые Core i7 от них отстают. Так, частота кадров, которая получена в системе с Core i7-6700K превышает производительность системы на базе Core i7-4770K на малозаметный один процент, но процессоры Core i7-2700K и Core i7-3770K представляются уже ощутимо худшей основой геймерской системы. Переход с Core i7-2700K или Core i7-3770K на новейший Core i7-6700K даёт прибавку в числе fps величиной в 5-7 процентов, что способно оказать вполне заметное влияние на качество игрового процесса.

Увидеть всё это гораздо нагляднее можно в том случае, если на игровую производительность процессоров посмотреть при сниженном качестве изображения, когда частота кадров не упирается в мощность графической подсистемы.

Результаты при сниженном разрешении


















Новейшему процессору Core i7-6700K вновь удаётся показать наивысшую производительность среди всех Core i7 последних поколений. Его превосходство над Core i7-5775C составляет порядка 5 процентов, а над Core i7-4690K – около 10 процентов. В этом нет ничего странного: игры достаточно чутко реагируют на скорость подсистемы памяти, а именно по этому направлению в Skylake были сделаны серьёзные улучшения. Но гораздо заметнее превосходство Core i7-6700K над Core i7-2700K и Core i7-3770K. Старший Sandy Bridge отстаёт от новинки на 30-35 процентов, а Ivy Bridge проигрывает ей в районе 20-30 процентов. Иными словами, как бы ни ругали Intel за слишком медленное совершенствование собственных процессоров, компания смогла за прошедшие пять лет на треть повысить скорость работы своих CPU, а это – очень даже ощутимый результат.

Тестирование в реальных играх завершают результаты популярного синтетического бенчмарка Futuremark 3DMark.









Вторят игровым показателям и те результаты, которые выдаёт Futuremark 3DMark. При переводе микроархитектуры процессоров Core i7 c Sandy Bridge на Ivy Bridge показатели 3DMark выросли на величину от 2 до 7 процентов. Внедрение дизайна Haswell и выпуск процессоров Devil’s Canyon добавил к производительности старших Core i7 дополнительные 7-14 процентов. Однако потом появление Core i7-5775C, обладающего сравнительно невысокой тактовой частотой, несколько откатило быстродействие назад. И новейшему Core i7-6700K, фактически, пришлось отдуваться сразу за два поколения микроархитектуры. Прирост в итоговом рейтинге 3DMark у нового процессора семейства Skylake по сравнению с Core i7-4790K составил до 7 процентов. И на самом деле это не так много: всё-таки самое заметное улучшение производительности за последние пять лет смогли привнести процессоры Haswell. Последние же поколения десктопных процессоров, действительно, несколько разочаровывают.

Тесты в приложениях

В Autodesk 3ds max 2016 мы тестируем скорость финального рендеринга. Измеряется время, затрачиваемое на рендеринг в разрешении 1920x1080 с применением рендерера mental ray одного кадра стандартной сцены Hummer.



Ещё один тест финального рендеринга проводится нами с использованием популярного свободного пакета построения трёхмерной графики Blender 2.75a. В нём мы измеряем продолжительность построения финальной модели из Blender Cycles Benchmark rev4.



Для измерения скорости фотореалистичного трёхмерного рендеринга мы воспользовались тестом Cinebench R15. Maxon недавно обновила свой бенчмарк, и теперь он вновь позволяет оценить скорость работы различных платформ при рендеринге в актуальных версиях анимационного пакета Cinema 4D.



Производительность при работе веб-сайтов и интернет-приложений, построенных с использованием современных технологий, измеряется нами в новом браузере Microsoft Edge 20.10240.16384.0. Для этого применяется специализированный тест WebXPRT 2015, реализующий на HTML5 и JavaScript реально использующиеся в интернет-приложениях алгоритмы.



Тестирование производительности при обработке графических изображений происходит в Adobe Photoshop CC 2015. Измеряется среднее время выполнения тестового скрипта, представляющего собой творчески переработанный Retouch Artists Photoshop Speed Test, который включает типичную обработку четырёх 24-мегапиксельных изображений, сделанных цифровой камерой.



По многочисленным просьбам фотолюбителей мы провели тестирование производительности в графической программе Adobe Photoshop Lightroom 6.1. Тестовый сценарий включает пост-обработку и экспорт в JPEG с разрешением 1920x1080 и максимальным качеством двухсот 12-мегапиксельных изображений в RAW-формате, сделанных цифровой камерой Nikon D300.



В Adobe Premiere Pro CC 2015 тестируется производительность при нелинейном видеомонтаже. Измеряется время рендеринга в формат H.264 Blu-Ray проекта, содержащего HDV 1080p25 видеоряд с наложением различных эффектов.



Для измерения быстродействия процессоров при компрессии информации мы пользуемся архиватором WinRAR 5.3, при помощи которого с максимальной степенью сжатия архивируем папку с различными файлами общим объёмом 1,7 Гбайт.



Для оценки скорости перекодирования видео в формат H.264 используется тест x264 FHD Benchmark 1.0.1 (64bit), основанный на измерении времени кодирования кодером x264 исходного видео в формат MPEG-4/AVC с разрешением 1920x1080@50fps и настройками по умолчанию. Следует отметить, что результаты этого бенчмарка имеют огромное практическое значение, так как кодер x264 лежит в основе многочисленных популярных утилит для перекодирования, например, HandBrake, MeGUI, VirtualDub и проч. Мы периодически обновляем кодер, используемый для измерений производительности, и в данном тестировании приняла участие версия r2538, в которой реализована поддержка всех современных наборов инструкций, включая и AVX2.



Кроме того, мы добавили в список тестовых приложений и новый кодер x265, предназначенный для транскодирования видео в перспективный формат H.265/HEVC, который является логическим продолжением H.264 и характеризуется более эффективными алгоритмами сжатия. Для оценки производительности используется исходный 1080p@50FPS Y4M-видеофайл, который перекодируется в формат H.265 с профилем medium. В этом тестировании принял участие релиз кодера версии 1.7.



Преимущество Core i7-6700K над ранними предшественниками в различных приложениях не подлежит сомнению. Однако больше всего выиграли от произошедшей эволюции два типа задач. Во-первых, связанные с обработкой мультимедийного контента, будь то видео или изображения. Во-вторых, финальный рендеринг в пакетах трёхмерного моделирования и проектирования. В целом, в таких случаях Core i7-6700K превосходит Core i7-2700K не менее, чем на 40-50 процентов. А иногда можно наблюдать и гораздо более впечатляющее улучшение скорости. Так, при перекодировании видео кодеком x265 новейший Core i7-6700K выдаёт ровно вдвое более высокую производительность, чем старичок Core i7-2700K.

Если же говорить о том приросте в скорости выполнения ресурсоёмких задач, которую может обеспечить Core i7-6700K по сравнению с Core i7-4790K, то тут уже столь впечатляющих иллюстраций к результатам работы интеловских инженеров привести нельзя. Максимальное преимущество новинки наблюдается в Lightroom, здесь Skylake оказался лучше в полтора раза. Но это скорее – исключение из правила. В большинстве же мультимедийных задач Core i7-6700K по сравнению с Core i7-4790K предлагает лишь 10-процентное улучшение производительности. А при нагрузке иного характера разница в быстродействии и того меньше или же вообще отсутствует.

Отдельно нужно сказать пару слов и о результате, показанном Core i7-5775C. Из-за небольшой тактовой частоты этот процессор медленнее, чем Core i7-4790K и Core i7-6700K. Но не стоит забывать о том, что его ключевой характеристикой является экономичность. И он вполне способен стать одним из лучших вариантов с точки зрения удельной производительности на каждый ватт затраченной электроэнергии. В этом мы легко убедимся в следующем разделе.

Энергопотребление

Процессоры Skylake производятся по современному 14-нм технологическому процессу с трёхмерными транзисторами второго поколения, однако, несмотря на это, их тепловой пакет вырос до 91 Вт. Иными словами, новые CPU не только «горячее» 65-ваттных Broadwell, но и превосходят по расчётному тепловыделению Haswell, выпускаемые по 22-нм технологии и уживающиеся в рамках 88-ваттного теплового пакета. Причина, очевидно, состоит в том, что изначально архитектура Skylake оптимизировалась с прицелом не на высокие частоты, а на энергоэффективность и возможность использования в мобильных устройствах. Поэтому для того, чтобы десктопные Skylake получили приемлемые тактовые частоты, лежащие в окрестности 4-гигагерцевой отметки, пришлось задирать напряжение питания, что неминуемо отразилось на энергопотреблении и тепловыделении.

Впрочем, процессоры Broadwell низкими рабочими напряжениями тоже не отличались, поэтому существует надежда на то, что 91-ваттный тепловой пакет Skylake получили по каким-то формальным обстоятельствам и, на самом деле, они окажутся не прожорливее предшественников. Проверим!

Используемый нами в тестовой системе новый цифровой блок питания Corsair RM850i позволяет осуществлять мониторинг потребляемой и выдаваемой электрической мощности, чем мы и пользуемся для измерений. На следующем ниже графике приводится полное потребление систем (без монитора), измеренное «после» блока питания и представляющее собой сумму энергопотребления всех задействованных в системе компонентов. КПД самого блока питания в данном случае не учитывается. Для правильной оценки энергопотребления мы активировали турборежим и все имеющиеся энергосберегающие технологии.



В состоянии простоя качественный скачок в экономичности настольных платформ произошёл с выходом Broadwell. Core i7-5775C и Core i7-6700K отличаются заметно более низким потреблением в простое.



Зато под нагрузкой в виде перекодирования видео самыми экономичными вариантами CPU оказываются Core i7-5775C и Core i7-3770K. Новейший же Core i7-6700K потребляет больше. Его энергетические аппетиты находятся на уровне старшего Sandy Bridge. Правда, в новинке, в отличие от Sandy Bridge, есть поддержка инструкций AVX2, которые требуют достаточно серьёзных энергетических затрат.

На следующей диаграмме приводится максимальное потребление при нагрузке, создаваемой 64-битной версией утилиты LinX 0.6.5 с поддержкой набора инструкций AVX2, которая базируется на пакете Linpack, отличающемся непомерными энергетическими аппетитами.



И вновь процессор поколения Broadwell показывает чудеса энергетической эффективности. Однако если смотреть на то, сколько электроэнергии потребляет Core i7-6700K, то становится понятно, что прогресс в микроархитектурах обошёл стороной энергетическую эффективность настольных CPU. Да, в мобильном сегменте с выходом Skylake появились новые предложения с чрезвычайно соблазнительным соотношением производительности и энергопотребления, однако новейшие процессоры для десктопов продолжают потреблять примерно столько же, сколько потребляли их предшественники за пять лет до сегодняшнего дня.

Выводы

Проведя тестирование новейшего Core i7-6700K и сравнив его с несколькими поколениями предшествующих CPU, мы вновь приходим к неутешительному выводу о том, что компания Intel продолжает следовать своим негласным принципам и не слишком стремится наращивать быстродействие десктопных процессоров, ориентированных на высокопроизводительные системы. И если по сравнению со старшим Broadwell новинка предлагает примерно 15-процентное улучшение производительности, обусловленное существенно лучшими тактовыми частотами, то в сравнении с более старым, но более быстрым Haswell она уже не кажется столь же прогрессивной. Разница в производительности Core i7-6700K и Core i7-4790K, несмотря на то, что эти процессоры разделяет два поколения микроархитектуры, не превышает 5-10 процентов. И это очень мало для того, чтобы старший десктопный Skylake можно было бы однозначно рекомендовать для обновления имеющихся LGA 1150-систем.

Впрочем, к столь незначительным шагам Intel в деле повышения скорости работы процессоров для настольных систем стоило бы давно привыкнуть. Прирост быстродействия новых решений, лежащий примерно в таких пределах, – давно сложившаяся традиция. Никаких революционных изменений в вычислительной производительности интеловских CPU, ориентированных на настольные ПК, не происходит уже очень давно. И причины этого вполне понятны: инженеры компании заняты оптимизацией разрабатываемых микроархитектур для мобильных применений и в первую очередь думают об энергоэффективности. Успехи Intel в адаптации собственных архитектур для использования в тонких и лёгких устройствах несомненны, но адептам классических десктопов при этом только и остаётся, что довольствоваться небольшими прибавками быстродействия, которые, к счастью, пока ещё не совсем сошли на нет.

Однако это совсем не значит, что Core i7-6700K можно рекомендовать лишь для новых систем. Задуматься о модернизации своих компьютеров вполне могут обладатели конфигураций, в основе которых лежит платформа LGA 1155 с процессорами поколений Sandy Bridge и Ivy Bridge. В сравнении с Core i7-2700K и Core i7-3770K новый Core i7-6700K выглядит очень неплохо – его средневзвешенное превосходство над такими предшественниками оценивается в 30-40 процентов. Кроме того, процессоры с микроархитектурой Skylake могут похвастать поддержкой набора инструкций AVX2, который к настоящему моменту нашел достаточно широкое применение в мультимедийных приложениях, и благодаря этому в некоторых случаях Core i7-6700K оказывается быстрее гораздо сильнее. Так, при перекодировании видео мы даже видели случаи, когда Core i7-6700K превосходил Core i7-2700K в скорости работы более чем в два раза!

Есть у процессоров Skylake и целый ряд других преимуществ, связанных с внедрением сопутствующей им новой платформы LGA 1151. И дело даже не столько в появившейся в ней поддержке DDR4-памяти, сколько в том, что новые наборы логики сотой серии наконец-то получили действительно скоростное соединение с процессором и поддержку большого количества линий PCI Express 3.0. В результате, передовые LGA 1151-системы могут похвастать наличием многочисленных быстрых интерфейсов для подключения накопителей и внешних устройств, которые лишены каких-либо искусственных ограничений по пропускной способности.

Плюс к тому, оценивая перспективы платформы LGA 1151 и процессоров Skylake, в виду нужно иметь и ещё один момент. Intel не будет спешить с выводом на рынок процессоров следующего поколения, известных как Kaby Lake. Если верить имеющейся информации, представители этой серии процессоров в вариантах для настольных компьютеров появятся на рынке только в 2017 году. Так что Skylake будет с нами ещё долго, и система, построенная на нём, сможет оставаться актуальной в течение очень продолжительного промежутка времени.

Эта новость не слишком обрадует тех, кто не планирует использовать процессоры Intel с архитектурой Haswell, а вместо этого ожидает появления Broadwell. Точнее, она может стать аргументом в пользу приобретения Haswell сейчас вместо долгого ожидания следующего поколения. Шведский ресурс sweclockers.com получил возможность столкнуть лбами два поколения процессоров Intel, заполучив в своё распоряжение новый гибридный ультрабук Lenovo Yoga 3 Pro , в котором установлен процессор Core M 5Y70 . Его соперником стал Microsoft Surface Pro 2 , несущий на борту чип Core i5-4200U . Обе системы были укомплектованы двухканальной памятью DDR3L-1600.

Само по себе такое сравнение имело бы мало смысла, поскольку тактовая частота ядер Core M 5Y70 может варьироваться в широчайших пределах — от 1,1 до 2,6 ГГц, в то время как у Core i5-4200U диапазон уже, и минимальное значение составляет 1,6 ГГц. Но последняя версия утилиты HWiNFO64 умеет определять не только мгновенную, но и усреднённую частоту при многопоточной нагрузке. Тактовые частоты обоих процессоров были приведены к единому знаменателю, составившему 2296 МГц, что сделало тестирование более репрезентативным. Тем не менее, сравнивать современные процессоры, особенно мобильные, крайне сложно, поэтому сотрудники ресурса пока решили опубликовать результаты лишь трёх тестов: Cinebench 11.5, Cinebench 15 и x264 Benchmark. Представленные в таблице данные для Broadwell являются усреднёнными значениями, полученными в результате как минимум одиннадцати повторений, что также уменьшает ошибку и увеличивает степень достоверности тестирования.

Что ж, Broadwell показал себя неплохо, но, если верить приведённым результатам, звёзд с неба ухватить не смог, опередив своего соперника в лице Haswell лишь на 2-3 процента. Intel называет цифру более пяти процентов, но её тестовый сценарий совсем иной, и в нём новая архитектура может раскрыться полнее — к примеру, за счёт улучшений в частях, отвечающих за криптографию и виртуализацию. Кроме того, у Core M 5Y70 больше объём кеша второго уровня - четыре мегабайта против трёх у соперника. Опираясь на опубликованные результаты, можно сделать следующий вывод: при равных частотах переход с Haswell на Broadwell даёт меньший выигрыш, нежели давал в своё время переход с Ivy Bridge на Haswell (от 5 до 7 процентов на типовых задачах).

В итоге нельзя сказать, что система на базе нового 14-нанометрового процессора намного лучше старой, использующей 22-нанометровую технологию. По крайней мере, когда речь идёт о чистой вычислительной производительности, ведь графическое ядро в Core M 5Y70 гораздо мощнее (HD Graphics 5300 против HD Graphics 4400). У новинки более чем в три раза меньше теплопакет: 4,5 ватта против 15 ватт у Haswell, однако мы уже упоминали в новостях, что именно Lenovo Yoga 3 Pro не может похвастаться длительным временем автономной работы — всего 3 часа в режиме максимальной нагрузки; впрочем, Surface Pro 2 также не является долгожителем. Разумеется, выводы делать рано: во-первых, речь идёт лишь о мобильной версии Broadwell, а во-вторых, три теста — ещё не приговор. Подождём появления настольного варианта. К сожалению, ждать придётся долго — как минимум до лета 2015 года.