Установка и настройка        06.09.2019   

Зарядно разрядное устройство для литий ионных аккумуляторов. Особенности зарядки литиевых аккумуляторов и зарядные устройства для них

Литиевые аккумулятор (Li-Io, Li-Po) являются самыми популярными на данный момент перезаряжаемыми источниками электрической энергии. Литиевый аккумулятор имеет номинальное напряжение 3.7 Вольт, именно оно указывается на корпусе. Однако, заряженный на 100% аккумулятор имеет напряжение 4.2 В, а разряженный “в ноль” – 2.5 В, вообще нет смысла разряжать аккумулятор ниже 3 В, во-первых, он от этого портится, во-вторых, в промежутке от 3 до 2.5 В аккумулятор отдаёт всего пару процентов энергии. Таким образом, рабочий диапазон напряжений принимаем 3 – 4.2 Вольта. Мою подборку советов по эксплуатации и хранению литиевых аккумуляторов вы можете посмотреть вот в этом видео

Есть два варианта соединения аккумуляторов, последовательное и параллельное.

При последовательном соединении суммируется напряжение на всех аккумуляторах, при подключении нагрузки с каждого аккумулятора идет ток, равный общему току в цепи, в общем сопротивление нагрузки задает ток разряда. Это вы должны помнить со школы. Теперь самое интересное, емкость. Емкость сборки при таком соединении по хорошему равна емкости аккумулятора с самой маленькой емкостью. Представим, что все аккумуляторы заряжены на 100%. Смотрите, ток разряда у нас везде одинаковый, и первым разрядится аккумулятор с самой маленькой емкостью, это как минимум логично. И как только он разрядится, дальше нагружать данную сборку будет уже нельзя. Да, остальные аккумуляторы еще заряжены. Но если мы продолжим снимать ток, то наш слабый аккумулятор начнет переразряжаться, и выйдет из строя. То есть правильно считать, что емкость последовательно соединенной сборки равна емкости самого малоемкого, либо самого разряженного аккумулятора. Отсюда делаем вывод: собирать последовательную батарею нужно во первых из одинаковых по емкости аккумуляторов, и во вторых, перед сборкой они все должны быть заряжены одинаково, проще говоря на 100%. Существует такая штука, называется BMS (Battery Monitoring System), она может следить за каждым аккумулятором в батарее, и как только один из них разрядится, она отключает всю батарею от нагрузки, об этом речь пойдёт ниже. Теперь что касается зарядки такой батареи. Заряжать ее нужно напряжением, равным сумме максимальных напряжений на всех аккумуляторах. Для литиевых это 4.2 вольта. То есть батарею из трех заряжаем напряжением 12.6 в. Смотрите что происходит, если аккумуляторы не одинаковые. Быстрее всех зарядится аккумулятор с самой маленькой емкостью. Но остальные то еще не зарядились. И наш бедный аккумулятор будет жариться и перезаряжаться, пока не зарядятся остальные. Переразряда, я напомню, литий тоже очень сильно не любит и портится. Чтобы этого избежать, вспоминаем предыдущий вывод.

Перейдем к параллельному соединению. Емкость такой батареи равна сумме емкостей всех аккумуляторов в нее входящих. Разрядный ток для каждой ячейки равен общему току нагрузки, деленному на число ячеек. То есть чем больше акумов в такой сборке, тем больший ток она может отдать. А вот с напряжением происходит интересная вещь. Если мы собираем аккумуляторы, имеющие разное напряжение, то есть грубо говоря заряженные до разного процента, то после соединения они начнут обмениваться энергией до тех пор, пока напряжение на всех ячейках не станет одинаковым. Делаем вывод: перед сборкой акумы опять же должны быть заряжены одинаково, иначе при соединении пойдут большие токи, и разряженный акум будет испорчен, и скорее всего может даже загореться. В процессе разряда аккумуляторы тоже обмениваются энергией, то есть если одна из банок имеет меньшую емкость, остальные не дадут ей разрядиться быстрее их самих, то есть в параллельной сборке можно использовать аккумуляторы с разной емкостью. Единственное исключение – работа при больших токах. На разных аккумуляторах под нагрузкой по-разному просаживается напряжение, и между “сильным” и “слабым” акумом начнёт бежать ток, а этого нам совсем не нужно. И то же самое касается зарядки. Можно абсолютно спокойно заряжать разные по емкости аккумуляторы в параллели, то есть балансировка не нужна, сборка будет сама себя балансировать.

В обоих рассмотренных случаях нужно соблюдать ток зарядки и ток разрядки. Ток зарядки для Li-Io не должен превышать половины ёмкости аккумулятора в амперах (аккумулятор на 1000 mah – заряжаем 0.5 А, аккумулятор 2 Ah, заряжаем 1 А). Максимальный ток разрядки обычно указан в даташите (ТТХ) аккумулятора. Например: ноутбучные 18650 и аккумы от смартфонов нельзя грузить током, превышающим 2 ёмкости аккумулятора в Амперах (пример: акум на 2500 mah, значит максимум с него нужно брать 2.5*2 = 5 Ампер). Но существуют высокотоковые аккумуляторы, где ток разряда явно указан в характеристиках.

Особенности зарядки аккумуляторов китайскими модулями

Стандартный покупной зарядно-защитный модуль за 20 рублей для литиевого аккумулятора (ссылка на Aliexpress )
(позиционируется продавцом как модуль для одной банки 18650) может и будет заряжать любой литиевый аккумулятор вне зависимости от формы, размера и емкости до правильного напряжения 4,2 вольта (напряжение полностью заряженного аккумулятора, под завязку). Даже если это огромный литиевый пакет на 8000mah (разумеется речь идет про одну ячейку на 3,6-3,7v). Модуль дает зарядный ток 1 ампер , это значит что им можно без опаски заряжать любой аккумулятор емкостью от 2000mah и выше (2Ah, значит зарядный ток – половина емкости, 1А) и соответственно время зарядки в часах будет равно емкости аккумулятора в амперах (на самом деле чуть больше, полтора-два часа на каждые 1000mah). Кстати аккумулятор можно подключать к нагрузке уже во время заряда.

Важно! Если вы хотите заряжать аккумулятор меньшей емкости (например одну старую банку на 900mah или крошечный литиевый пакетик на 230mah), то зарядный ток 1А это много, его следует уменьшить. Это делается заменой резистора R3 на модуле согласно приложенной таблице. Резистор необязательно smd, подойдет самый обычный. Напоминаю, что зарядный ток должен составлять половину от емкости аккумулятора (или меньше, не страшно).

Но если продавец говорит, что этот модуль для одной банки 18650, можно ли им заряжать две банки? Или три? Что если нужно собрать емкий пауэрбанк из нескольких аккумуляторов?
МОЖНО! Все литиевые аккумуляторы можно подключать параллельно (все плюсы к плюсам, все минусы к минусам) ВНЕ ЗАВИСИМОСТИ ОТ ЕМКОСТИ. Спаянные параллельно аккумуляторы сохраняют рабочее напряжение 4,2v а их емкость складывается. Даже если вы берете одну банку на 3400mah а вторую на 900 – получится 4300. Аккумуляторы будут работать как одно целое и разряжаться будут пропорциональной своей емкости.
Напряжение в ПАРАЛЛЕЛЬНОЙ сборке ВСЕГДА ОДИНАКОВО НА ВСЕХ АККУМУЛЯТОРАХ! И ни один аккумулятор физически не может разрядиться в сборке раньше других, здесь работает принцип сообщающихся сосудов. Те, кто утверждают обратное и говорят что аккумуляторы с меньшей емкостью разрядятся быстрее и умрут – путают с ПОСЛЕДОВАТЕЛЬНОЙ сборкой, плюйте им в лицо.
Важно! Перед подключением друг к другу все аккумуляторы должны иметь примерно одинаковое напряжение, чтобы в момент спаивания между ними не потекли уравнительные токи, они могут быть очень большими. Поэтому лучше всего перед сборкой просто зарядить каждый аккумулятор по отдельности. Разумеется время зарядки всей сборки будет увеличиваться, раз вы используете все тот же модуль на 1А. Но можно спараллелить два модуля, получив зарядный ток до 2А (если ваше зарядное устройство может столько дать). Для этого нужно соединить перемычками все аналогичные клеммы модулей (кроме Out- и B+, они продублированы на платах другими пятаками, уже и так окажутся соединенными). Либо можно купить модуль (ссылка на Aliexpress ), на котором микросхемы уже стоят в параллель. Этот модуль способен заряжать током в 3 Ампера.

Простите за совсем очевидные вещи, но люди по-прежнему путают, поэтому придется обсудить разницу между параллельным и последовательным соединением.
ПАРАЛЛЕЛЬНОЕ соединение (все плюсы к плюсам, все минусы к минусам) сохраняет напряжение аккумулятора 4,2 вольта, но увеличивает емкость, складывая все емкости вместе. Во всех пауэрбанках применяется параллельное соединение нескольких аккумуляторов. Такая сборка по-прежнему может заряжаться от USB и повышающим преобразователем напряжение поднимается до выходных 5v.
ПОСЛЕДОВАТЕЛЬНОЕ соединение (каждый плюс к минусу последующего аккумулятора) дает кратное увеличение напряжения одной заряженной банки 4,2в (2s – 8,4в, 3s – 12,6в и так далее), но емкость остается прежняя. Если используются три аккумулятора на 2000mah, то емкость сборки – 2000mah.
Важно! Считается что для последовательной сборки священно обязательно нужно использовать только аккумуляторы одинаковой емкости. На самом деле это не так. Можно использовать разные, но тогда емкость батареи будет определяться НАИМЕНЬШЕЙ емкостью в сборке. Складываете 3000+3000+800 – получаете сборку на 800mah. Тогда спецы начинают кукарекать, что тогда менее емкий аккумулятор будет быстрее разряжаться и умрет. А это неважно! Главное и действительно священное правило – для последовательной сборки всегда и обязательно нужно использовать плату защиты BMS на нужное количество банок. Она будет определять напряжение на каждой ячейке и отключит всю сборку, если какая-то разрядится первой. В случае с банкой на 800 она и разрядится, БМС отключит нагрузку от батареи, разряд остановится и остаточный заряд по 2200mah на остальных банках уже не будет иметь значения – нужно заряжаться.

Плата BMS в отличии от одинарного зарядного модуля НЕ ЯВЛЯЕТСЯ ЗАРЯДНЫМ УСТРОЙСТВОМ последовательной сборки. Для зарядки нужен настроенный источник нужного напряжения и тока . Об этом Гайвер снял видео, поэтому не тратьте время, посмотрите его, там об этом максимально досконально.

Можно ли заряжать последовательную сборку, соединив несколько одинарных зарядных модулей?
На самом деле при некоторых допущениях – можно. Для каких-то самоделок зарекомендовала себя схема с использованием одинарных модулей, соединенных также последовательно, но для КАЖДОГО модуля нужен СВОЙ ОТДЕЛЬНЫЙ ИСТОЧНИК ПИТАНИЯ. Если заряжаете 3s – берёте три телефонных зарядки и подключаете каждую к одному модулю. При использовании одного источника – короткое замыкание по питанию , ничего не работает. Такая система также работает и как защита сборки (но модли способны отдавать не более 3 ампер) Либо же просто заряжайте сборку побаночно, подключая модуль к каждому аккумулятору до полного заряда.

Индикатор заряженности аккумулятора

Тоже насущная проблема – хотя бы примерно знать сколько процентов заряда остается на аккумуляторе, чтобы он не разрядился в самый ответственны момент.
Для параллельных сборок на 4,2 вольта самым очевидным решением будет сразу приобрести готовую плату пауэрбанка, на которой уже есть дисплей отображающий проценты заряда. Эти проценты не супер-точные, но всё же помогают. Цена вопроса примерно 150-200руб, все представлены на сайте Гайвера. Даже если вы собираете не пауэрбанк а что-то другое, плата эта довольно дешевая и небольшая, чтобы разместить ее в самоделке. Плюс она уже имеет функцию заряда и защиты аккумуляторов.
Есть готовые миниатюрные индикаторы на одну или несколько банок, 90-100р
Ну а самым дешевым и народным методом является использование повышающего преобразователя МТ3608 (30 руб.), настроенного на 5-5,1v. Собственно если вы делаете пауэрбанк на любом преобразователе на 5 вольт, то даже не нужно ничего докупать. Доработка заключается в установке красного или зеленого светодиода (другие цвета будут работать на другом выходном напряжении, от 6в и выше) через токоограничивающий резистор 200-500ом между выходной плюсовой клеммой (это будет плюс) и входной плюсовой (для светодиода это получится минус). Вы не ошиблись, между двумя плюсами! Дело в том, что при работе преобразователя между плюсами создается разница напряжения, +4,2 и +5в дают между собой напряжение 0,8в. При разряде аккумулятора его напряжение будет падать, а выходное с преобразователя всегда стабильно, значит разница будет увеличиваться. И при напряжении на банке 3,2-3,4в разница достигнет необходимой величины, чтобы зажечь светодиод – он начинает показывать, что пора заряжаться.

Чем измерять емкость аккумуляторов?

Мы уже привыкли в мнению, что для замера нужен Аймакс b6, а он стоит денег и для большинства радиолюбителей избыточен. Но есть способ замерить емкость 1-2-3баночного аккумулятора с достаточной точностью и дешево – простой USB-тестер.

В современных мобильных электронных устройствах, даже тех, которые спроектированы с учетом минимизации энергопотребления, использование невосстанавливаемых батарей уходит в прошлое. И с экономической точки зрения — уже на непродолжительном интервале времени суммарная стоимость необходимого количества разовых батарей быстро превысит стоимость одного аккумулятора, и с точки зрения удобства пользователя — проще перезарядить аккумулятор, чем искать, где купить новую батарейку. Соответственно, зарядные устройства для аккумуляторов становятся товаром с гарантированным спросом. Неудивительно, что практически все производители интегральных схем для устройств электропитания уделяют внимание и «зарядному» направлению.

Еще лет пять назад обсуждение микросхем для заряда аккумуляторных батарей (Battery Chargers IC) начиналось со сравнения основных типов аккумуляторов — никелевых и литиевых. Но в настоящее время никелевые аккумуляторы практически перестали использоваться и большинство производителей микросхем заряда либо полностью прекратило выпуск микросхем для никелевых батарей, либо выпускает микросхемы, инвариантные к технологии батареи (так называемые Multi-Chemistry IC). В номенклатуре компании STMicroelectronics в настоящее время присутствуют только микросхемы, предназначенные для работы с литиевыми аккумуляторами.

Коротко напомним основные особенности литиевых аккумуляторов. Достоинства:

  • Высокая удельная электроемкость. Типичные значения 110…160Вт*час*кг, что в 1,5…2,0 раза превышает аналогичный параметр для никелевых батарей. Соответственно, при равных габаритах емкость литиевой батареи выше.
  • Низкий саморазряд: примерно 10% в месяц. В никелевых батареях этот параметр равен 20…30%.
  • Отсутствует «эффект памяти», благодаря чему эта батарея проста в обслуживании: нет необходимости разряжать аккумулятор до минимума перед очередной зарядкой.

Недостатки литиевых батарей:

  • Необходимость защиты по току и напряжению. В частности, необходимо исключить возможность короткого замыкания выводов аккумулятора, подачи напряжения обратной полярности, перезаряда.
  • Необходимость защиты от перегрева: нагрев батареи выше определенного значения негативно влияет на ее емкость и срок службы.

Существуют две промышленные технологии изготовления литиевых аккумуляторов: литий-ионная (Li-Ion) и литий-полимерная (Li-Pol). Однако, поскольку алгоритмы заряда этих батарей совпадают, то микросхемы заряда не разделяют литий-ионную и литий-полимерную технологии. По этой причине обсуждение достоинств и недостатков Li-Ion- и Li-Pol-аккумуляторов пропустим, сославшись на литературу .

Рассмотрим алгоритм заряда литиевых батарей, представленный на рисунке 1.

Рис. 1.

Первая фаза, так называемый предварительный заряд, используется только в тех случаях, когда батарея сильно разряжена. Если напряжение батареи ниже 2,8 В, то ее нельзя сразу заряжать максимально возможным током: это крайне отрицательно скажется на сроке службы аккумулятора. Необходимо сначала «подзарядить» батарею малым током примерно до 3,0 В, и только после этого заряд максимальным током становится допустим.

Вторая фаза: зарядное устройство как источник постоянного тока. На этом этапе через батарею протекает максимальный для заданных условий ток. При этом, напряжение аккумулятора постепенно растет до тех пор, пока не достигнет предельного значения, равного 4,2 В. Строго говоря, по завершению второго этапа заряд можно прекратить, но при этом следует иметь в виду, что аккумулятор на данный момент заряжен примерно на 70% своей емкости. Отметим, что во многих зарядных устройствах максимальный ток подается не сразу, а плавно нарастает до максимума в течение нескольких минут — используется механизм «плавного старта» (Soft Start).

Если желательно зарядить батарею до значений емкости, близких к 100%, то переходим к третьей фазе: зарядное устройство как источник постоянного напряжения. На этом этапе к батарее приложено постоянное напряжение 4,2 В, а ток, протекающий через батарею, в процессе заряда уменьшается от максимума до некоторого заранее заданного минимального значения. В тот момент, когда значение тока уменьшается до этого предела, заряд батареи считается законченным и процесс завершается.

Напомним, что одним из ключевых параметров аккумуляторной батареи является ее емкость (единица измерения — А*час). Так, типичная емкость литий-ионного аккумулятора типоразмера ААА равна 750…1300 мА*ч. Как производная от этого параметра используется характеристика «ток 1С», это величина тока, численно равная номинальной емкости (в приведенном примере — 750…1300 мА). Значение «тока 1С» имеет смысл только как определение величины максимального тока при заряде батареи и величины тока, при которой заряд считается законченным. Принято считать, что величина максимального тока не должна превышать величины 1*1С, а заряд батареи можно считать завершенным при снижении тока до величины 0,05…0,10*1С. Но это те параметры, которые можно считать оптимальными для конкретного типа батареи. В реальности одно и то же зарядное устройство может работать с аккумуляторами различных производителей и различной емкости, при этом емкость конкретной батареи остается для зарядного устройства неизвестной. Следовательно, заряд батареи любой емкости в общем случае будет происходить не в оптимальном для батареи режиме, а в режиме, предустановленном для зарядного устройства.

Перейдем к рассмотрению линейки микросхем заряда компании STMicroelectronics.

Микросхемы STBC08 и STC4054

Эти микросхемы представляют собой достаточно простые изделия для заряда литиевых аккумуляторов. Микросхемы выполнены в миниатюрных корпусах типа DFN6 и TSOT23-5L , соответственно. Это позволяет использовать данные компоненты в мобильных устройствах с достаточно жесткими требованиями по массогабаритным характеристикам (например, сотовые телефоны, МР3-плейеры). Схемы включения STBC08 и STC4054 представлены на рисунке 2.

Рис. 2.

Несмотря на ограничения, которые накладывает минимальное количество внешних выводов в корпусах, микросхемы обладают достаточно широкими функциональными возможностями:

  • Нет необходимости в применении внешнего MOSFET-транзистора, блокировочного диода и токового резистора. Как следует из рисунка 2, внешняя обвязка ограничивается фильтрующим конденсатором на входе, программирующим резистором и двумя (для STC4054- одним) индикаторными светодиодами.
  • Максимальное значение тока заряда программируется номиналом внешнего резистора и может достигать значения 800мА. Факт окончания заряда определяется в тот момент, когда в режиме постоянного напряжения значение зарядного тока снизится до величины 0,1*I BAT , то есть, также задается номиналом внешнего резистора. Максимальный ток заряда определяется из соотношения:

I BAT = (V PROG /R PROG)*1000;

где I BAT — ток заряда в Амперах, R PROG — сопротивление резистора в Омах, V PROG — напряжение на выходе PROG, равное 1,0 Вольта.

  • В режиме постоянного напряжения на выходе формируется стабильное напряжение 4,2В с точностью не хуже 1%.
  • Заряд сильно разряженных батарей автоматически начинается с режима предварительной зарядки. До тех пор, пока напряжение на выходе аккумулятора не достигнет величины 2,9В, заряд осуществляется слабым током величиной 0,1*I BAT . Подобный метод, как уже отмечалось, предотвращает весьма вероятный выход из строя при попытке заряда сильно разряженных аккумуляторов обычным способом. Кроме того, величина стартового значения зарядного тока принудительно ограничивается, что также увеличивает срок службы батарей.
  • Реализован режим автоматической капельной подзарядки- при снижении напряжения батареи до 4,05В цикл заряда будет перезапущен. Это позволяет обеспечить постоянный заряд батареи на уровне не ниже 80% от его номинальной емкости.
  • Защита от перенапряжения и перегрева. Если значение входного напряжения превышает определенный предел (в частности, 7,2В) или если температура корпуса превысит величину 120°С, то зарядное устройство отключается, защищая себя и аккумулятор. Разумеется, реализована также защита от низкого входного напряжения- если входное напряжение опустилось ниже определенного уровня (U VLO), то зарядное устройство также отключится.
  • Возможность подключения светодиодов индикации позволяет пользователю иметь представление о текущем состоянии процесса зарядки батареи.

Микросхемы заряда батареи L6924D и L6924U

Данные микросхемы представляют собой устройства с более широкими возможностями по сравнению с STBC08 и STC4054. На рисунке 3 представлены типовые схемы включения микросхем L6924D и L6924U .

Рис. 3.

Рассмотрим те функциональные особенности микросхем L6924 , которые касаются задания параметров процесса заряда батареи:

1. В обеих модификациях есть возможность задать максимальную продолжительность заряда батареи начиная с момента перехода в режим стабилизации постоянного тока (также используется термин «режим быстрой зарядки» — Fast charge phase). При переходе в этот режим запускается сторожевой таймер, запрограммированный на определенную длительность T PRG номиналом конденсатора, подключенного к выводу T PRG . Если до срабатывания данного таймера заряд батареи не будет прекращен по штатному алгоритму (снижение тока, протекающего через батарею, ниже значения I END), то после срабатывания таймера зарядка будет прервана принудительно. При помощи этого же конденсатора задается максимальная продолжительность режима предварительной зарядки: она равна 1/8 от продолжительности T PRG . Также, если за это время не произошел переход в режим быстрой зарядки, происходит выключение схемы.

2. Режим предварительной зарядки. Если для устройства STBC08 ток в этом режиме задавался как величина, равная 10% от I BAT , а напряжение переключения в режим постоянного тока было фиксированным, то в модификации L6924U этот алгоритм сохранился без изменений, но в микросхеме L6924D оба этих параметра задаются с использованием внешних резисторов, подключаемых ко входам I PRE и V PRE .

3. Признак завершения зарядки на третьей фазе (режим стабилизации постоянного напряжения) в устройствах STBC08 и STC4054 задавался как величина, равная 10% от I BAT . В микросхемах L6924 этот параметр программируется номиналом внешнего резистора, подключаемого к выводу I END . Кроме того, для микросхемы L6924D существует возможность снизить значение напряжения на выводе V OUT с общепринятого значения 4,2 В до значения 4,1 В.

4. Значение максимального зарядного тока I PRG в данных микросхемах задается традиционным образом — посредством номинала внешнего резистора.

Как видим, в простых «зарядках» STBC08 и STC4054 при помощи внешнего резистора задавался только один параметр — зарядный ток. Все остальные параметры были либо жестко зафиксированы, либо являлись функцией от I BAT . В микросхемах L6924 есть возможность тонкой подстройки еще нескольких параметров и, кроме того, осуществляется «страховка» максимальной продолжительности процесса зарядка батареи.

Для обеих модификаций L6924 предусмотрено два режима работы, если входное напряжение формируется сетевым AC/DC-адаптером. Первый — стандартный режим линейного понижающего регулятора выходного напряжения. Второй — режим квазиимпульсного регулятора. В первом случае в нагрузку может быть отдан ток, величина которого чуть меньше, чем величина входного тока, отбираемого от адаптера. В режиме стабилизации постоянного тока (вторая фаза — Fast charge phase) разница между входным напряжением и напряжением на «плюсе» батареи рассеивается как тепловая энергия, вследствие чего рассеиваемая мощность на этой фазе заряда максимальна. При работе в режиме импульсного регулятора в нагрузку может быть отдан ток, значение которого выше, чем значение входного тока. При этом «в тепло» уходит существенно меньшая энергия. Это, во-первых, снижает температуру внутри корпуса, а во-вторых — повышает эффективность устройства. Но при этом следует иметь в виду, что точность стабилизации тока в линейном режиме равно приблизительно 1%, а в импульсном — около 7%.

Работа микросхем L6924 в линейном и квазиимпульсном режимах иллюстрируется рисунком 4.

Рис. 4.

Микросхема L6924U, кроме того, может работать не от сетевого адаптера, а от USB-порта. В этом случае микросхема L6924U реализует некоторые технические решения , которые позволяют дополнительно снизить рассеиваемую мощность за счет увеличения продолжительности зарядки.

Микросхемы L6924D и L6924U имеют дополнительный вход принудительного прерывания заряда (то есть отключения нагрузки) SHDN.

В простых микросхемах заряда температурная защита заключается в прекращении заряда при повышении температуры внутри корпуса микросхемы до 120°С. Это, конечно, лучше, чем полное отсутствие защиты, но величина 120°С на корпусе с температурой самой батареи связана более чем условно. В изделиях L6924 предусмотрена возможность подключения термистора, непосредственно связанного с температурой аккумулятора (резистор RT1 на рисунке 3). При этом появляется возможность задать температурный диапазон, в котором заряд батареи станет возможным. С одной стороны, литиевые батареи не рекомендуется заряжать при минусовой температуре, а с другой — также крайне нежелательно, если батарея при зарядке нагревается более чем до 50°С. Применение термистора дает возможность производить зарядку батареи только при благоприятных температурных условиях.

Естественно, дополнительный функционал микросхем L6924D и L6924U не только расширяет возможности проектируемого устройства, но и приводит к увеличению площади на плате, занимаемой как самим корпусом микросхемы, так и внешними элементами обвязки.

Микросхемы заряда аккумулятора STBC21 и STw4102

Это — дальнейшее усовершенствование микросхемы L6924. С одной стороны, реализован приблизительно тот же функциональный пакет:

  • Линейный и квазиимпульсный режим.
  • Термистор, связанный с батареей, как ключевой элемент температурной защиты.
  • Возможность задания количественных параметров для всех трех фаз процесса зарядки.

Некоторые дополнительные возможности, отсутствовавшие в L6924:

  • Защита от неправильной полярности.
  • Защита от короткого замыкания.
  • Существенным отличием от L6924 является наличие цифрового интерфейса I 2 C для задания значений параметров и других настроек. Как следствие, становятся возможными более точные настройки процесса заряда. Рекомендуемая схема включения STBC21 приведена на рисунке 5. Очевидно, что в данном случае вопрос об экономии площади платы и о жестких массогабаритных характеристиках не стоит. Но также очевидно, что применение данной микросхемы в малогабаритных диктофонах, плейерах и мобильных телефонах простых моделей не предполагается. Скорее, это аккумуляторы для ноутбуков и подобных устройств, где замена батареи- процедура нечастая, но и недешевая.

Рис. 5.

5. Camiolo Jean, Scuderi Giuseppe. Reducing the Total No-Load Power Consumption of Battery Chargers and Adapter Applications Polymer//Материал компании STMicroelectronics. Размещение в Интернете:

Изобретения и использование инструмента с источниками автономного питания стало одним из визитных карточек нашего времени. Разрабатывается и внедряются всё новые активные компоненты, улучшающие работу батарейных сборок. К сожалению аккумуляторы не могут работать без подзарядки. И если на устройствах, имеющих постоянный доступ электросети вопрос решается встроенными источниками, то для мощных источников питания, например, шуруповерта, необходимо отдельные зарядные устройства для литиевых аккумуляторов с учетом особенности различных типов аккумуляторов.

Последние годы всё активнее используются изделия на литий-ионном активном компоненте. И это вполне понятно, так — как эти источники питания зарекомендовали себя с очень хорошей стороны:

  • у них отсутствует эффект памяти;
  • практически полностью ликвидирован саморазряд;
  • могут работать при минусовых температурах;
  • хорошо удерживают разряд.
  • количество доведен до 700 циклов.

Но, каждый тип батарей имеет свои особенности. Так, литий — ионный компонент требует конструкцию элементарных батареек с напряжением 3, 6В, что требует некоторые индивидуальные особенности для подобных изделий.

Особенности восстановления

При всех достоинствах литий-ионных аккумуляторах у них есть свои недостатки — это возможность внутреннего замыкания элементов при перенапряжении зарядки из — за активные кристаллизации лития в активном компоненте. Также имеется ограничение по минимальному значению напряжения, которое приводит к невозможности приема электронов активным компонентом. Чтобы исключить последствия, батарея оснащается внутренними контроллером, которое разрывает цепь элементов с нагрузкой при достижении критических значений. Хранятся такие элементы лучше всего при зарядке 50 % при +5 — 15° С. Еще одно из особенностей литий-ионных аккумуляторов является то, что время эксплуатации батарейки зависит от времени ее изготовления, вне зависимости от того была ли она в эксплуатации или нет, или другими словами подвержена «эффекту старения», который ограничивает сроком эксплуатации — пять лет.

Зарядка литий — ионных аккумуляторов

Простейшее устройство зарядки одного элемента

Для того чтобы понять более сложные схемы зарядки литий — ионных аккумуляторов, рассмотрим простое зарядное устройство для литиевых аккумуляторов, точнее для одной батарейки.

Основа схемы оставляет управление: микросхема TL 431 (выполняет роль регулируемого стабилитрона) и одном транзисторе обратной проводимости.
Как видно из схемы управляющий электрод TL431 включен в базу транзистора. Настройка аппарата сводится к следующему: нужно на выходе устройства установить напряжение 4,2В — это устанавливается регулировкой стабилитрона подключением на первую ножку сопротивления R4 — R3 номиналом 2,2 кОм и 3 кОм. Эта цепочка отвечает за регулировку выходного напряжения, регулировка напряжения устанавливается только один раз и является стабильной.

Далее регулируется ток заряда, регулировка производится сопротивлением R1 (на схеме номиналом 3Ом) в случае, если эмиттер транзистора будет включён без сопротивления, тогда входное напряжение будет и на клеммах зарядки, то есть — это 5В, что может не соответствовать требованиям.

Так же, в этом случае не будет светиться светодиод, а он сигнализирует об протекании процесса насыщения током. Резистор может быт номиналом от 3 до 8 Ом.
Для быстрой подстройки напряжение на нагрузке, сопротивление R3 можно установить регулируемое (потенциометр). Напряжение настраивается без нагрузки, то есть, без сопротивления элемента, номиналом 4, 2 — 4,5В. После достижения необходимого значения достаточно замерить величину сопротивление переменного резистора и поставить основную деталь нужного номинала вместо него. Если нет необходимого номинала его можно собрать из нескольких штук параллельным или последовательным соединением.

Сопротивление R4 предназначено для открывания базы транзистора, его номинал должен быть 220Ом.При увеличении заряда аккумулятора напряжение будет повышаться, управляющий электрод базы транзистора будет увеличивать переходное сопротивление эмиттер — коллектор, уменьшая ток зарядки.

Транзистор можно использовать КТ819, КТ817 или КТ815, но тогда придется ставить радиатор для охлаждения. Также радиатор будет необходим если токи будут превышать 1000мА. В общем, эта классическая схема простейшая зарядки.

Усовершенствование зарядного устройства для литиевых li — ion аккумуляторов

Когда появляется необходимость зарядить литий ионных батарей, соединенных из нескольких спаянных элементарных ячеек, то лучше всего заряжать ячейки отдельно с применением контрольной схемы, которая будет следить за зарядкой индивидуально каждой отдельной батарейкой. Без этой схемы значительное отклонение характеристик одного элемента в последовательно спаянной батареи приведет к неисправности все аккумуляторы, а сам блок будет даже опасным по причине его возможного перегрева или даже воспламенения.

Зарядное устройство для литиевых аккумуляторов 12 вольт. Устройство балансира

Термин балансировка в электротехнике означает режим зарядки, который производит контроль за каждым отдельным элементом, участвующим в процессе, не допуская увеличения или снижения напряжения менее необходимого уровня. Необходимость подобных решений вытекает из особенностей сборок с li — ion. Если из за внутренней конструкции один из элементов зарядиться быстрее остальных, что очень опасно для состояния остальных элементов, и как следствие всей батареи. Схемное решение балансира выполнена таким образом, что элементы схемы берут на себя избыток энергии, тем самым регулируя процесс зарядки отдельной ячейки.

Если сравнивать принципы зарядки никель-кадмиевых аккумуляторов, то они имеют отличия от литий-ионного, прежде всего у Ca — Ni окончание процесса свидетельствует повышение напряжения полярных электродов и уменьшение тока до 0, 01мА. Также перед зарядкой этот источник должен быть разряжен не менее 30% от первоначальной емкости, если не выдержать это условия в батарее возникает «эффект памяти», который снижает емкость батареи.

С Li-Ion активным компонентом все наоборот. Полная разрядка этих элементов может привести к необратимым последствиям и резко понизить способность заряжаться. Нередко некачественные контроллеры могут не обеспечить контроль за уровнем разрядки батареи, что может привести неисправности всей сборки из-за одной ячейки.

Выходом из ситуации может стать применение выше рассмотренной схемы на регулируемом стабилитроне TL431. Нагрузку 1000 мА или больше может обеспечить установка более мощным транзистором. Такие ячейки подключается к непосредственно к каждой ячейке предохранит от неправильной зарядки.

Выбирать транзистор следует от мощности. Мощность подсчитывается по формуле P = U*I, где U — напряжение, I – зарядный ток.

Например, при токовой зарядки 0,45 А транзистор должен иметь рассеиваемую мощность не менее 3,65 В*0,45А = 1,8 Вт. а это для внутренних переходов большая токовая нагрузка, поэтому выходные транзисторы лучше установить в радиаторы.

Ниже приведен примерный расчет величины резисторов R1 и R2 на различное напряжение заряда:

22,1к + 33к => 4,16 В

15,1к + 22к => 4,20 В

47,1к + 68к => 4,22 В

27,1к + 39к => 4,23 В

39,1к + 56к => 4,24 В

33к + 47к => 4,25 В

Сопротивление R3 – нагрузка на базе транзистора. Его сопротивление может быть 471Ом — 1, 1 кОм.

Но, при реализации этих схемных решений, возникла проблема, как заряжать отдельную ячейку в аккумуляторном блоке? И такое решение нашлось. Если посмотреть на контакты на зарядной ножке, то на выпускаемых в последнее время корпусах с литий-ионными батареями находится такое количество контактов, сколько отдельных ячеек в батарее, естественно, на зарядном устройстве каждый такой элемент подключается отдельный схеме контроллера.

По стоимости подобное зарядное изделие несколько дороже чем линейное устройство с двумя контактами, но это стоит того, особенно если учесть, что сборки с высококачественными литий-ионными компонентами с доходят да половины стоимости самого изделия.

Импульсное зарядное устройство для литиевых li — ion аккумуляторов

Последнее время многие ведущие — фирмы производители ручного инструмента с автономным питанием, широко рекламирует быстро зарядные устройства. Для этих целей были разработаны импульсные преобразователи на основе широтно-импульсно модулированных сигналов (ШИМ) для восстановления блоков питания шуруповертов на основе ШИМ генератора на микросхеме UC3842 собран обратноходовой AS — DS преобразователь c нагрузкой на импульсный трансформатор.

Далее будет рассмотрена работа схема наиболее распространённых источника (см прилагаемую схему) : сетевое напряжение 220В поступает на диодную сборку D1- D4, для этих целей используются любые диоды мощностью до 2A. Сглаживание пульсаций происходит на конденсаторе C1, где концентрируется напряжение порядка 300В. Это напряжение является питанием для импульсного генератора с трансформатором T1 на выходе.

Первоначальное питание для запуска интегральная микросхемы A1 поступает через резистор R1, после чего включается генератор импульсов микросхемы, которая выдает их на вывод 6. Далее импульсы подаются на затвор мощного полевого транзистора VT1 открывая его. Стоковая цепь транзистора подает питание к первичной обмотке импульсного трансформатора Т1. После чего включатся в работу трансформатор и начинается передача импульсов на вторичную обмотку. Импульсы вторичной обмотки 7 — 11 после выпрямления диодом VT6 используется для стабилизации работы микросхемы A1, которая в режиме полной генерации потребляют гораздо больший ток, чем получает по цепи от резистора R1.

В случае неисправности диодов Д6, источник переходит у режиму пульсации, поочередно запуская работу трансформатор и прекращая его, при этом слышен характерный пульсирующий «писк» посмотрим работу схемы в этом режиме.

Питание через R1 и конденсатор C4 запускают генератор микросхемы. После запуска, для нормальной работы требуется более повышенный ток. При неисправности Д6 дополнительного питания на микросхему не поступает, и генерация прекращается, затем процесс повторяется. Если диод Д6 исправен, сразу включает в работу импульсный трансформатор под полную нагрузку. При нормальном запуске генератора на обмотке 14- 18 появляется импульсный ток 12 — 14В (на холостом ходу 15В). После выпрямления диодом V7 и сглаживания импульсов конденсатором C7 и импульсный ток поступает на зажимы батареи.

Ток 100 мА, не вредит активному компоненту, но повышает время восстановления в 3-4 раза, снижая ее время от 30 мин до1 часа. (источник — журнал интернет издание Радиоконструктор 03-2013 )

Быстрозарядное устройство G4-1H RYOBI ONE+ BCL14181H

Импульсное устройство для литиевых аккумуляторов 18 вольт производства немецкой компании Ryobi, производитель народная республика Китай. Импульсное устройство подходит для литий-ионных, никель кадмиевых 18В. Рассчитана на нормальную эксплуатацию при температуре от 0 до 50 С. Схемное решение обеспечивает два режима питания по напряжению и стабилизации по току. Импульсная подача тока обеспечивает оптимальную подпитку каждой отдельной батарейки.

Устройство выполнено в оригинальном корпусе из ударопрочной пластмассы. Применено принудительное охлаждение от встроенного вентилятора, с автоматическим включением при достижении 40° С.

Характеристики:

  • Минимальное время заряда 18В при 1,5 А /ч — 60 минут, вес 0,9 кг, габариты: 210 x 86 x 174 мм. Индикация процесса зарядки подсвечивается синим светодиодом, по окончании загорается красный. Имеется диагностика неисправности, которая загорается при неисправности сборки отдельной подсветкой на корпусе.
  • Питание однофазное 50Гц. 220В. Длина сетевого провода 1,5 метра.

Ремонт зарядной станции

Если случилось так, что изделие перестало выполнять свои функции, лучше всего обратиться в специализированные мастерские, но элементарные неисправности можно устранить своими руками. Что делать если не горит индикатор питания, разберем некоторые простые неисправности на примере станции .

Это изделие предназначено для работы с литий-ионными батареями 12В, 1,8А. Изделие выполнено с понижающим трансформатором, преобразование пониженного переменного тока выполняется четырех диодные мостовую схему. Для сглаживания пульсации установлен электролитический конденсатор. Из индикации имеется светодиоды сетевого питания, начала и окончание насыщения.

Итак, если не горит сетевой индикатор. Прежде всего необходимо через сетевую вилку убедится в целостности цепи первичной обмотки трансформатора. Для этого через штыри вилки подключения сетевого питания нужно прозвонить омметром целостность первичной обмотки трансформатора коснувшись щупами прибора за штыри сетевой вилки, если цепь показывает обрыв, тогда нужно осмотреть детали внутри корпуса.

Возможен обрыв предохранителя, обычно это тоненькая проволочка, протянутая в фарфоровом или стеклянном корпусе, сгорающая при перегрузках. Но некоторые фирмы, например, «Интерскол», для того чтобы предохранить обмотки трансформатора от перегрева устанавливают между витками первичной обмотки тепловой предохранитель, цель которого при достижении температуры 120 — 130° С, разрывать цепь питания сети и, к сожалению, ее уже после разрыва не восстанавливает.

Обычно предохранитель находится под покровной бумажной изоляцией первичной обмотки, после вскрытия которой, можно легко обнаружить эту деталь. Чтобы снова привести схему в рабочее состояние, можно, просто спаять концы обмотки в одно целое, но нужно помнить — трансформатор остается без защиты от короткого замыкания и лучше всего вместо теплового установить обычный сетевой предохранитель.

Если цепь первичной обмотки целая, прозванивается вторичная обмотка и диоды моста. Для прозвонки диодов лучше выпаять один конец из схемы и проверить диод омметром. При подсоединении концов к выводам поочередно щупов в одну сторону, диод должен показывать обрыв, в другую, короткое замыкание.

Таким образом необходимо проверить все четыре диода. И, если, уж, мы залезли в схему, тогда лучше всего сразу поменять конденсатор, потому, что диоды обычно перегружаются по причине высовшего электролита в конденсаторе.

Купить блоки питания для шуруповерта

Любой ручной инструмент и аккумуляторы можно приобрести у нас на сайте. Для этого необходимо пройти простую процедуру регистрации и далее следовать по несложный навигации. Простая навигации сайта легко выведет на необходимый для вас инструмент. На сайте можно посмотреть цены и сравнить их с конкурирующими магазинами. Любой возникший вопрос можно решить с помощью менеджера, позвонив по указанному телефону или оставить вопрос дежурному специалисту. Заходите к нам, и вы не останетесь без выбора необходимого вам инструмента.

Зарядное устройство для li ion аккумуляторов , схема которого приведенная в данной статье, было разработано на основе опыта конструирования подобных зарядников, усилиях по ликвидации ошибок и достижения максимальной простоты. Зарядное устройство отличается высокой стабильностью выходного напряжения.

Описание зарядки для литий ионных аккумуляторов

Основным элементом конструкции является (IO1) — источник опорного напряжения. Его стабильность значительно лучше, чем допустим , а, как известно для литий-ионных аккумуляторов это является очень важной характеристикой при зарядке.

Элемент TL431 используется в данной схеме в качестве стабилизатора тока в работе транзисторов Т1 и Т2. Зарядный ток протекает через R1. Если падение напряжения на этом резисторе превышает примерно 0,6 вольт, происходит ограничение тока проходящего через транзисторы Т1 и Т2. Значение резистора R1 эквивалентно току зарядки.

Выходное напряжение управляется вышеупомянутым элементом TL431. Значение определяется делителем выходного напряжения (R5, R7, P1).

Компоненты R4, С1 для подавления помех. Очень удобным является индикация величины зарядного тока, при помощи светодиода LED1. Свечение показывает какой ток протекает в базовой цепи транзистора T2, который пропорционален выходному току. По мере зарядки литий-ионного аккумулятора, яркость светодиода постепенно снижается.

Диод D1 предназначен для предотвращения разряда литий-ионного аккумулятора при отсутствии напряжения на входе зарядного устройства. Схема зарядки аккумулятора не нуждается в защите от неправильного подключения полярности li-ion аккумулятора.

Все компоненты размещены на односторонней печатной плате.

Датчик тока — резистор R1 состоит из нескольких резисторов соединенных параллельно. Транзистор Т2 необходимо разместить на теплоотводе. Его размер зависит от тока зарядки и разности напряжений между входом и выходом зарядного устройства.

Схема зарядного устройства литий-ионного аккумулятора настолько проста, что при правильном монтаже радиодеталей должна заработать с первого раза. Единственно, что может потребоваться, так это установка выходного напряжения. Для литий-ионного аккумулятора это примерно 4,2 вольт. При холостом ходе транзистор Т2 не должен быть горячим. Входное напряжение должно быть хотя бы на 2 вольт выше, чем необходимое напряжение на выходе.

Схема предназначена для зарядного тока до 1 ампер. Если нужно повысить ток заряда li-ion аккумулятора, то необходимо уменьшить сопротивление резистора R6 и выходной транзистор Т2 должен быть повышенной мощности.

В конце процесса зарядки светодиод все же немного светится, что бы это устранить, можно просто подключить параллельно со светодиодом резистор сопротивлением 10…56 кОм. Так при снижении тока заряда ниже 10 мА светодиод перестанет светиться.

http://web.quick.cz/PetrLBC/zajic.htm


В предыдущей статье я рассматривал вопрос о замене никель-кадмиевых (никель-марганцевых) NiСd(NiMn) аккумуляторов шуруповерта на литиевые. Надо рассмотреть несколько правил по зарядке аккумуляторов.

Литий ионные аккумуляторы размера 18650 в основном могут заряжаться до напряжения 4,20В на ячейку с допустимым отклонением не больше 50 мВ потому, что увеличение напряжения может привести повреждению структуры батареи. Ток заряда аккумулятора может составлять 0,1хС до 1хС (здесь С-емкость). Лучше выбрать эти значение по даташиту. Я применил в переделке шуруповерта аккумуляторы марки . Смотрим даташит-ток зарядки -1,5А.


Наиболее правильным будет провести заряд литиевых аккумуляторов в два приема по методике CCCV (ток постоянный, постоянное напряжение).

Первый этап- должен обеспечить постоянный ток заряда. Величина тока равна 0.2-0.5С. Я применил аккумулятор емкостью 3000 мА/ч, значит номинальный ток заряда будет 600-1500мА. После зарядка банки идет на неизменном напряжении, ток постоянно уменьшается.

Поддерживается напряжение на аккумуляторе в пределах 4.15-4.25В. Аккумулятор зарядился если ток уменьшится до 0.05-0.01С. Принимая во внимание вышесказанное используем электронные платы с Алиэкспресс. Понижающая плата CC/CV с ограничением по току на микросхеме XL4015E1 или на LM2596. Предпочтительней плата на так, как она более удобна в настройках.




Характеристики XL4015E1.
Максимальный выходной ток до 5 А.
Напряжение на выходе: 0.8 В-30 В.
Напряжение на входе 5 В-32 В.
имеет аналогичные параметры, только ток до 3 А.

Перечень инструментов и материалов.

Адаптер 220\12 В, 3 А -1шт;
-штатное зарядное устройство шуруповерта (или источник питания);
-плата заряда CC/CV на или на -1шт;
-соединительные провода -паяльник;
-тестер;
-пластмассовая коробка для плата заряда -1шт;
-минивольтметр -1шт;
-переменный резистор (потенциометр) на 10-20 кОм -1шт;
-разъем питания для аккумуляторного отсека шуруповерта -1шт.

Шаг первый . Сборка ЗУ аккумуляторов шуруповерта на адаптере.

Плату cccv мы уже выбрали выше. В качестве источника питания можно применить любой с такими параметрами-выходное напряжение не ниже 18 В (для схемы 4S),ток 3 А. В первом примере изготовления зарядного устройства для литий-ионных аккумуляторов шуруповерта я использовал адаптер 12 В, 3 А.

Предварительно я проверил какой ток он может выдать пир номинальной нагрузке. Подключил к выходу автолампу и выждал полчаса. Выдает свободно без перегруза 1,9 А. Также измерил температуру на радиаторе транзистора-40°C. Вполне нормальный режим.

Но в этом случае не хватает напряжения. Это легко исправимо, с помощью всего одной копеечной радиодетали-переменного резистора (потенциометр) на 10-20 кОм. Рассмотрим типовую схему адаптера.



На схеме есть управляемый стабилитрон TL431, он находится в цепи обратной связи. Его задача поддерживать стабильное выходное напряжение в соответствие с нагрузкой. Через делитель из двух резисторов он подключен к плюсовому выходу адаптера. Нам нужно припаять к резистору(или выпаять его совсем и на его место припаять, тогда напряжение будет регулироваться и в меньшую сторону) который подключен к выводу 1 стабилитрона TL431 и к минусовой шине переменный резистор. Вращаем ось потенциометра и выставляем нужное напряжение. В моем случае я задал 18 В (небольшой запас от 16,8 В для падения на плате CC/CV). Если у вас напряжение указанное на корпусах электролитических конденсаторах стоящих на выходе схемы будет больше нового напряжения они могут взорваться. Тогда надо заменить их с запасом 30% по напряжению.

Далее подключаем к адаптеру плату для управление зарядом. Выставляем подстроечным резистором на плате напряжение 16,8 В. Другим подстроечным резистором выставляем ток 1,5 А, предварительно подключаем тестер в режиме амперметра к выходу платы. Теперь можно подсоединить литий-ионной сборку шуруповерта. Зарядка прошла нормально, ток к концу заряда упал до минимума, батарея зарядилась. Температура на адаптере была в пределах 40-43°C, что вполне нормально. В перспективе можно в корпусе адаптера для улучшения вентиляции (особенно в летнее время) насверлить отверстия.

Окончание заряда батареи можно увидеть по включению светодиода на плате на XL4015E1. В данном примере я использовал другую плату на LM2596 так, как случайно в ходе экспериментов сжег XL4015E1. Советую делать зарядку лучше на плате XL4015E1.

Шаг второй . Сборка схемы зарядного устройства аккумуляторов шуруповерта на штатном зарядном.

У меня было штатное зарядное от другого шуруповерта. Оно рассчитано на зарядку никель-марганцевых аккумуляторов. Задача стояла в том чтобы заряжать и никель-марганцевые аккумуляторы и литий-ионные.


Так с помощью маленькой коробочки, а вернее ее содержимым можно зарядить аккумуляторы нашего шуруповерта.

Если у вас штатное зарядное на трансформаторе то можно подключить плату CC/CV после диодного мостика выпрямителя.

Способ переделки адаптера под силу начинающим и может пригодиться в других целях, в результате получим бюджетный блок для питания различных устройств.

Подробнее в ролике:

Всем желаю здоровья и успехов в жизни и творчестве!