Установка и настройка        07.05.2019   

Теория радиоволн: аналоговая модуляция. Амплитудно-модулированные сигналы и их спектры

Сравним указанные виды модуляции по их двум основным характеристикам: средней за период высокой частоты мощности и ширине спектра.

Для АМ-сигналов средняя за период высокой частоты мощность изменяется, так как изменяется амплитуда сигнала. Эта мощность в максимальном режиме в (1+m АМ ) 2 раз больше мощности молчания. Ширина спектра АМ сигнала зависит от величины максимальной частоты модуляции и равна 2 max .

Для ЧМ-сигналов средняя за период высокой частоты мощность постоянна, так как амплитуда колебаний неизменна (U ω 1 =const ). Ширина спектра ЧМ-сигнала, равна2 ω g , зависит только от амплитуды модулирующего сигнала и не зависит от его частоты.

Для ФМ-колебаний средняя за период высокой частоты мощность также неизменна, ибо U ω 1 =const . Ширина спектра равна2m =2 ω g , и зависит как от амплитуды модулирующего сигнала, так и от его частоты.

Таким образом, практическая ширина спектра колебаний с угловой модуляцией в m раз больше ширины спектра АМ-колебаний.

2.6 Одновременная модуляция по амплитуде и по частоте

В ряде случаев возникает необходимость в передаче двух сообщений с помощью одного носителя. Тогда одним сообщением носитель модулируют по частоте, а другим – по амплитуде. Наиболее простой по составу спектр сигнала с двойной модуляцией получится при гармоническом законе изменения, как частоты, так и амплитуды. Пусть по частоте носитель модулируется сообщением с частотой  1 , а по амплитуде – с частотой 2 . Тогда частота и амплитуда носителя будут изменяться в соответствии с выражениями

Модулированное по частоте напряжение было получено выше при постоянной амплитуде U ω 1 (2.32). При изменении амплитуды в этом выражении следует заменить постоянную амплитудуU ω1 изменяющейся в соответствии с (2.39). Тогда получим:

По сравнению с напряжением, модулированным только по частоте, здесь появляются дополнительные составляющие двух видов:

Чтобы яснее выявить спектральный состав сигнала, предположим сначала, что  1 >> 2 , т.е. изменение амплитуды происходит значительно медленнее, чем изменение частоты. Тогда можно считать, что в спектре частотно-модулированного сигнала около несущего колебания с частотойω 1 и боковых составляющих с частотамиω 1 n  1 появилось дополнительно по два спутника с частотами, отличающимися на 2 . Спектр такого сигнала показан на рисунке 2.14.

Рисунок 2.14 – Спектр сигнала при одновременной модуляции

по частоте и амплитуде при  1 >> 2

Для систем телемеханики интерес представляет второй случай, а именно спектр сигнала при  1 << 2 . Тогда можно считать, что у каждой из трех спектральных линий АМ сигнала (несущей с частотойω 1 , нижней (ω 1 - 2) и верхней (ω 1 + 2) боковых составляющих) появились дополнительно по две боковые дискретные полосы: верхняя с частотами +n 1 и нижняя с частотами -n 1 . Спектр сигнала для этого случая двойной модуляции показан на рисунке 2.15.

Рисунок 2.15 – Спектр сигнала при одновременной модуляции

по частоте и амплитуде при  1 << 2

Практически необходимая ширина спектра сигнала примерно равна сумме необходимых спектров только при амплитудной модуляции ω АМ и только при частотной модуляцииω ЧМ (рисунки 2.14, 2.15). При малом индексе частотной модуляции (m ЧМ <1) необходимая ширина спектра сигнала лишь немногим больше, чем при амплитудной модуляции.

Общие сведения о модуляции

Модуляция это процесс преобразования одного или нескольких информационных параметров несущего сигнала в соответствии с мгновенными значениями информационного сигнала.

В результате модуляции сигналы переносятся в область более высоких частот.

Использование модуляции позволяет:

  • согласовать параметры сигнала с параметрами линии;
  • повысить помехоустойчивость сигналов;
  • увеличить дальность передачи сигналов;
  • организовать многоканальные системы передачи (МСП с ЧРК).

Модуляция осуществляется в устройствах модуляторах . Условное графическое обозначение модулятора имеет вид:

Рисунок 1 - Условное графическое обозначение модулятора

При модуляции на вход модулятора подаются сигналы:

u(t) — модулирующий , данный сигнал является информационным и низкочастотным (его частоту обозначают W или F);

S(t) — модулируемый (несущий) , данный сигнал является неинформационным и высокочастотным (его частота обозначается w 0 или f 0);

Sм(t) — модулированный сигнал , данный сигнал является информационным и высокочастотным.

В качестве несущего сигнала может использоваться:

  • гармоническое колебание, при этом модуляция называется аналоговой или непрерывной ;
  • периодическая последовательность импульсов, при этом модуляция называется импульсной ;
  • постоянный ток, при этом модуляция называется шумоподобной .

Так как в процессе модуляции изменяются информационные параметры несущего колебания, то название вида модуляции зависит от изменяемого параметра этого колебания.

1. Виды аналоговой модуляции:

  • амплитудная модуляция (АМ), происходит изменение амплитуды несущего колебания;
  • частотная модуляция (ЧМ), происходит изменение частоты несущего колебания;
  • фазовая модуляция (ФМ), происходит изменение фазы несущего колебания.

2. Виды импульсной модуляции:

  • амплитудно-импульсная модуляция (АИМ) , происходит изменение амплитуды импульсов несущего сигнала;
  • частотно-импульсная модуляция (ЧИМ) , происходит изменение частоты следования импульсов несущего сигнала;
  • Фазо-импульсная модуляция (ФИМ) , происходит изменение фазы импульсов несущего сигнала;
  • Широтно-импульсная модуляция (ШИМ) , происходит изменение длительности импульсов несущего сигнала.

Амплитудная модуляция

Амплитудная модуляция — процесс изменения амплитуды несущего сигнала в соответствии с мгновенными значениями модулирующего сигнала.

амплитудно-модулированного (АМ) сигнала при гармоническом модулирующем сигнале. При воздействии модулирующего сигнала

u (t )= Um u sin ? t (1)

на несущее колебание

S (t )= Um sin (? 0 t + ? ) (2)

происходит изменение амплитуды несущего сигнала по закону:

Uам(t)=Um+ а ам Um u sin ? t (3)

где а ам — коэффициент пропорциональности амплитудной модуляции.

Подставив (3) в математическую модель (2) получим:

Sам(t)=(Um+ а ам Um u sin ? t) sin(? 0 t+ ? ). (4)

Вынесем Um за скобки:

Sам(t)=Um(1+ а ам Um u /Um sin ? t) sin (? 0 t+ ? ) (5)

Отношение а ам Um u /Um = m ам называется коэффициентом амплитудной модуляции . Данный коэффициент не должен превышать единицу, т. к. в этом случае появляются искажения огибающей модулированного сигнала называемые перемодуляцией . С учетом m ам математическая модель АМ сигнала при гармоническом модулирующем сигнале будет иметь вид:

Sам(t)=Um(1+m ам sin ? t) sin(? 0 t+ ? ). (6)

Если модулирующий сигнал u(t) является негармоническим, то математическая модель АМ сигнала в этом случае будет иметь вид:

Sам(t)=(Um+ а ам u(t)) sin (? 0 t+ ? ) . (7)

Рассмотрим спектр АМ сигнала для гармонического модулирующего сигнала. Для этого раскроем скобки математической модели модулированного сигнала, т. е. представим его в виде суммы гармонических составляющих.

Sам(t)=Um(1+m ам sin ? t) sin (? 0 t+ ? ) = Um sin (? 0 t+ ? ) +

+m ам Um/2 sin((? 0 ? ) t+ j ) m ам Um/2 sin((? 0 + ? )t+ j ). (8)

Как видно из выражения в спектре АМ сигнала присутствует три составляющих: составляющая несущего сигнала и две составляющих на комбинационных частотах. Причем составляющая на частоте ? 0 —? называется нижней боковой составляющей , а на частоте ? 0 + ? верхней боковой составляющей. Спектральные и временные диаграммы модулирующего, несущего и амплитудно-модулированного сигналов имеют вид (рисунок 2).

Рисунок 2 - Временные и спектральные диаграммы модулирующего (а), несущего (б) и ампдтудно-модулированного (в) сигналов

D? ам =(? 0 + ? ) (? 0 ? )=2 ? (9)

Если же модулирующий сигнал является случайным, то в этом случае в спектре составляющие модулирующего сигнала обозначают символически треугольниками (рисунок 3).

Составляющие в диапазоне частот (? 0 — ? max) ? (? 0 — ? min) образуют нижнюю боковую полосу (НБП), а составляющие в диапазоне частот (? 0 + ? min) ? (? 0 + ? max) образуют верхнюю боковую полосу (ВБП)

Рисунок 3 - Временные и спектральные диаграммы сигналов при случайном модулирующем сигнале

Ширина спектра для данного сигнала будет определятся

D ? ам =(? 0 + ? max ) (? 0 ? min )=2 ? max (10)

На рисунке 4 приведены временные и спектральные диаграммы АМ сигналов при различных индексах m ам. Как видно при m ам =0 модуляция отсутствует, сигнал представляет собой немодулированную несущую, соответственно и спектр этого сигнала имеет только составляющую несущего сигнала (рисунок 4,

Рисунок 4 - Временные и спектральные диаграммы АМ сигналов при различных mам: а) при mам=0, б) при mам=0,5, в) при mам=1, г) при mам>1

а), при индексе модуляции m ам =1 происходит глубокая модуляция, в спектре АМ сигнала амплитуды боковых составляющих равны половине амплитуды составляющей несущего сигнала (рисунок 4в), данный вариант является оптимальным, т. к. энергия в большей степени приходится на информационные составляющие. На практике добиться коэффициента равного едините тяжело, поэтому добиваются соотношения 01 происходит перемодуляция, что, как отмечалось выше, приводит к искажению огибающей АМ сигнала, в спектре такого сигнала амплитуды боковых составляющих превышают половину амплитуды составляющей несущего сигнала (рисунок 4г).

Основными достоинствами амплитудной модуляции являются:

  • узкая ширина спектра АМ сигнала;
  • простота получения модулированных сигналов.

Недостатками этой модуляции являются:

  • низкая помехоустойчивость (т. к. при воздействии помехи на сигнал искажается его форма — огибающая, которая и содержит передаваемое сообщение);
  • неэффективное использование мощности передатчика (т. к. наибольшая часть энергии модулированного сигнала содержится в составляющей несущего сигнала до 64%, а на информационные боковые полосы приходится по 18%).

Амплитудная модуляция нашла широкое применение:

  • в системах телевизионного вещания (для передачи телевизионных сигналов);
  • в системах звукового радиовещания и радиосвязи на длинных и средних волнах;
  • в системе трехпрограммного проводного вещания.

Балансная и однополосная модуляция

Как отмечалось выше, одним из недостатков амплитудной модуляции является наличие составляющей несущего сигнала в спектре модулированного сигнала. Для устранения этого недостатка применяют балансную модуляцию. При балансной модуляции происходит формирование модулированного сигнала без составляющей несущего сигнала. В основном это осуществляется путем использования специальных модуляторов: балансного или кольцевого. Временная диаграмма и спектр балансно-модулированного (БМ) сигнала представлен на рисунке 5.

Рисунок 5 - Временные и спектральные диаграммы модулирующего (а), несущего (б) и балансно-модулированного (в) сигналов

Также особенностью модулированного сигнала является наличие в спектре двух боковых полос несущих одинаковую информацию. Подавление одной из полос позволяет уменьшить спектр модулированного сигнала и, соответственно, увеличить число каналов в линии связи. Модуляция при которой формируется модулированный сигнал с одной боковой полосой (верхней или нижней) называется однополосной. Формирование однополосно-модулированного (ОМ) сигнала осуществляется из БМ сигнала специальными методами, которые рассматриваются ниже. Спектры ОМ сигнала представлены на рисунке 6.

Рисунок 6 - Спектральные диаграммы однополосно-модулированных сигналов: а) с верхней боковой полосой (ВБП), б) с нижней боковой полосой (НБП)

Частотная модуляция

Частотная модуляция — процесс изменения частоты несущего сигнала в соответствии с мгновенными значениями модулирующего сигнала.

Рассмотрим математическую модель частотно-модулированного (ЧМ) сигнала при гармоническом модулирующем сигнале. При воздействии модулирующего сигнала

u (t ) = Um u sin ? t

на несущее колебание

S (t ) = Um sin (? 0 t + ? )

происходит изменение частоты несущего сигнала по закону:

w чм (t) = ? 0 + а чм Um u sin ? t (9)

где а чм — коэффициент пропорциональности частотной модуляции.

Поскольку значение sin ? t может изменятся в диапазоне от -1 до 1, то наибольшее отклонение частоты ЧМ сигнала от частоты несущего сигнала составляет

? ? m = а чм Um u (10)

Величина Dw m называется девиацией частоты. Следовательно, девиация частоты показывает наибольшее отклонение частоты модулированного сигнала от частоты несущего сигнала.

Значение ? чм (t) непосредственно подставить в S(t) нельзя, т. к. аргумент синуса ? t+j является мгновенной фазой сигнала?(t) которая связана с частотой выражением

? = d ? (t )/ dt (11)

Отсюда следует что, чтобы определить? чм (t) необходимо проинтегрировать ? чм (t)

Причем в выражении (12) ? является начальной фазой несущего сигнала.

Отношение

Мчм = ?? m / ? (13)

называется индексом частотной модуляции .

Учитывая (12) и (13) математическая модель ЧМ сигнала при гармоническом модулирующем сигнале будет иметь вид:

S чм (t)=Um sin(? 0 t Мчм cos ? t+ ? ) (14)

Временные диаграммы, поясняющие процесс формирования частотно-модулированного сигнала приведены на рисунке 7. На первых диаграммах а) и б) представлены соответственно несущий и модулирующий сигналы, на рисунке в) представлена диаграмма показывающая закон изменения частоты ЧМ сигнала. На диаграмме г) представлен частогтно-модулированный сигнал соответствующий заданному модулирующему сигналу, как видно из диаграммы любое изменение амплитуды модулирующего сигнала вызывает пропорциональное изменение частоты несущего сигнала.

Рисунок 7 - Формирование ЧМ сигнала

Для построения спектра ЧМ сигнала необходимо разложить его математическую модель на гармонические составляющие. В результате разложения получим

S чм (t)= Um J 0 (M чм ) sin(? 0 t+ ? )

Um J 1 (M чм ) {cos[(? 0 ? )t+ j ]+ cos[(? 0 + ? )t+ ? ]}

Um J 2 (M чм ) {sin[(? 0 2 ? )t+ j ]+ sin[(? 0 +2 ? )t+ ? ]}+

+ Um J 3 (M чм ) {cos[(? 0 — 3 ? )t+ j ]+ cos[(? 0 +3 ? )t+ ? ]}

Um J 4 (M чм ) {sin[(? 0 4 ? )t+ j ]+ sin[(? 0 +4 ? )t+ ? ]} (15)

где J k (Mчм) — коэффициенты пропорциональности.

J k (Mчм) определяются по функциям Бесселя и зависят от индекса частотной модуляции. На рисунке 8 представлен график содержащий восемь функций Бесселя. Для определения амплитуд составляющих спектра ЧМ сигнала необходимо определить значение функций Бесселя для заданного индекса. Причем как

Рисунок 8 - Функции Бесселя

видно из рисунка различные функции имеют начало в различных значениях Мчм, а следовательно, количество составляющих в спектре будет определятся Мчм (с увеличивается индекса увеличивается и количество составляющих спектра). Например необходимо определить коэффициенты J k (Мчм) при Мчм=2. По графику видно, что при заданном индексе можно определить коэффициенты для пяти функций (J 0 , J 1 , J 2 , J 3 , J 4) Их значение при заданном индексе будет равно: J 0 =0,21; J 1 =0,58; J 2 =0,36; J 3 =0,12; J 4 =0,02. Все остальные функции начинаются после значения Мчм=2 и равны, соответственно, нулю. Для приведенного примера количество составляющих в спектре ЧМ сигнала будет равно 9: одна составляющая несущего сигнала (Um J 0) и по четыре составляющих в каждой боковой полосе (Um J 1 ; Um J 2 ; Um J 3 ; Um J 4).

Еще одной важной особенностью спектра ЧМ сигнала является то, что можно добиться отсутствия составляющей несущего сигнала или сделать ее амплитуду значительно меньше амплитуд информационных составляющих без дополнительных технических усложнений модулятора. Для этого необходимо подобрать такой индекс модуляции Мчм, при котором J 0 (Мчм) будет равно нулю (в месте пересечения функции J 0 с осью Мчм), например Мчм=2,4.

Поскольку увеличение составляющих приводит к увеличению ширины спектра ЧМ сигнала, то значит, ширина спектра зависит от Мчм (рисунок 9). Как видно из рисунка, при Мчм?0,5 ширина спектра ЧМ сигнала соответствует ширине спектра АМ сигнала и в этом случае частотная модуляция является узкополосной , при увеличении Мчм ширина спектра увеличивается, и модуляция в этом случае является широкополосной . Для ЧМ сигнала ширина спектра определяется

D ? чм =2(1+Мчм) ? (16)

Достоинством частотной модуляции являются:

  • высокая помехоустойчивость;
  • более эффективное использование мощности передатчика;
  • сравнительная простота получения модулированных сигналов.

Основным недостатком данной модуляции является большая ширина спектра модулированного сигнала.

Частотная модуляция используется:

  • в системах телевизионного вещания (для передачи сигналов звукового сопровождения);
  • системах спутникового теле- и радиовещания;
  • системах высококачественного стереофонического вещания (FM диапазон);
  • радиорелейных линиях (РРЛ);
  • сотовой телефонной связи.

Рисунок 9 - Спектры ЧМ сигнала при гармоническом модулирующем сигнале и при различных индексах Мчм: а) при Мчм=0,5, б) при Мчм=1, в) при Мчм=5

Фазовая модуляция

Фазовая модуляция — процесс изменения фазы несущего сигнала в соответствии с мгновенными значениями модулирующего сигнала.

Рассмотрим математическую модель фазо-модулированного (ФМ) сигнала при гармоническом модулирующем сигнале. При воздействии модулирующего сигнала

u (t ) = Um u sin ? t

на несущее колебание

S (t ) = Um sin (? 0 t + ? )

происходит изменение мгновенной фазы несущего сигнала по закону:

? фм(t) = ? 0 t+ ? + а фм Um u sin ? t (17)

где а фм — коэффициент пропорциональности частотной модуляции.

Подставляя ? фм(t) в S(t) получаем математическую модель ФМ сигнала при гармоническом модулирующем сигнале:

Sфм(t) = Um sin(? 0 t+ а фм Um u sin ? t+ ? ) (18)

Произведение а фм Um u =Dj m называется индексом фазовой модуляции или девиацией фазы .

Поскольку изменение фазы вызывает изменение частоты, то используя (11) определяем закон изменения частоты ФМ сигнала:

? фм (t )= d ? фм(t )/ dt = w 0 +а фм Um u ? cos ? t (19)

Произведение а фм Um u ? =?? m является девиацией частоты фазовой модуляции. Сравнивая девиацию частоты при частотной и фазовой модуляциях можно сделать вывод, что и при ЧМ и при ФМ девиация частоты зависит от коэффициента пропорциональности и амплитуды модулирующего сигнала, но при ФМ девиация частоты также зависит и от частоты модулирующего сигнала.

Временные диаграммы поясняющие процесс формирования ФМ сигнала приведены на рисунке 10.

При разложении математической модели ФМ сигнала на гармонические составляющие получится такой же ряд, как и при частотной модуляции (15), с той лишь разницей, что коэффициенты J k будут зависеть от индекса фазовой модуляции? ? m (J k (? ? m)). Определятся эти коэффициенты будут аналогично, как и при ЧМ, т. е. по функциям Бесселя, с той лишь разницей, что по оси абсцисс необходимо заменить Мчм на? ? m . Поскольку спектр ФМ сигнала строится аналогично спектру ЧМ сигнала, то для него характерны те же выводы что и для ЧМ сигнала (пункт 1.4).

Рисунок 10 - Формирование ФМ сигнала

Ширина спектра ФМ сигнала определяется выражением:

? ? фм =2(1+ ? j m ) ? (20).

Достоинствами фазовой модуляции являются:

  • высокая помехоустойчивость;
  • более эффективное использование мощности передатчика.
  • недостатками фазовой модуляции являются:
  • большая ширина спектра;
  • сравнительная трудность получения модулированных сигналов и их детектирование

Дискретная двоичная модуляция (манипуляция гармонической несущей)

Дискретная двоичная модуляция (манипуляция) — частный случай аналоговой модуляции, при которой в качестве несущего сигнала используется гармоническая несущая, а в качестве модулирующего сигнала используется дискретный, двоичный сигнал.

Различают четыре вида манипуляции:

  • амплитудную манипуляцию (АМн или АМТ);
  • частотную манипуляцию (ЧМн или ЧМТ);
  • фазовую манипуляцию (ФМн или ФМТ);
  • относительно-фазовую манипуляцию (ОФМн или ОФМ).

Временные и спектральные диаграммы модулированных сигналов при различных видах манипуляции представлены на рисунке 11.

При амплитудной манипуляции , также как и при любом другом модулирующем сигнале огибающая S АМн (t) повторяет форму модулирующего сигнала (рисунок 11, в).

При частотной манипуляции используются две частоты? 1 и? 2 . При наличии импульса в модулирующем сигнале (посылке) используется более высокая частота? 2 , при отсутствии импульса (активной паузе) используется более низкая частота w 1 соответствующая немодулированной несущей (рисунок 11, г)). Спектр частотно-манипулированного сигнала S ЧМн (t) имеет две полосы возле частот? 1 и? 2 .

При фазовой манипуляции фаза несущего сигнала изменяется на 180° в момент изменения амплитуды модулирующего сигнала. Если следует серия из нескольких импульсов, то фаза несущего сигнала на этом интервале не изменяется (рисунок 11, д).

Рисунок 11 - Временные и спектральные диаграммы модулированных сигналов различных видов дискретной двоичной модуляции

При относительно-фазовой манипуляции фаза несущего сигнала изменяется на 180° лишь в момент подачи импульса, т. е. при переходе от активной паузы к посылке (0?1) или от посылке к посылке (1?1). При уменьшении амплитуды модулирующего сигнала фаза несущего сигнала не изменяется (рисунок 11, е). Спектры сигналов при ФМн и ОФМн имеют одинаковый вид (рисунок 9, е).

Сравнивая спектры всех модулированных сигналов можно отметить, что наибольшую ширину имеет спектр ЧМн сигнала, наименьшую — АМн, ФМн, ОФМн, но в спектрах ФМн и ОФМн сигналов отсутствует составляющая несущего сигнала.

В виду большей помехоустойчивости наибольшее распространение получили частотная, фазовая и относительно-фазовая манипуляции. Различные их виды используются в телеграфии, при передаче данных, в системах подвижной радиосвязи (телефонной, транкинговой, пейджинговой).

Импульсная модуляция

Импульсная модуляция — это модуляция, при которой в качестве несущего сигнала используется периодическая последовательность импульсов, а в качестве модулирующего может использоваться аналоговый или дискретный сигнал.

Поскольку периодическая последовательность характеризуется четырьмя информационными параметрами (амплитудой, частотой, фазой и длительностью импульса), то различают четыре основных вида импульсной модуляции:

  • амплитудно-импульсная модуляция (АИМ); происходит изменение амплитуды импульсов несущего сигнала;
  • частотно-импульсная модуляция (ЧИМ), происходит изменение частоты следования импульсов несущего сигнала;
  • фазо-импульсная модуляция (ФИМ), происходит изменение фазы импульсов несущего сигнала;
  • широтно-импульсная модуляция (ШИМ), происходит изменение длительности импульсов несущего сигнала.

Временные диаграммы импульсно-модулированных сигналов представлены на рисунке 12.

При АИМ происходит изменение амплитуды несущего сигнала S(t) в соответствии с мгновенными значениями модулирующего сигнала u(t), т. е. огибающая импульсов повторяет форму модулирующего сигнала (рисунок 12, в).

При ШИМ происходит изменение длительности импульсов S(t) в соответствии с мгновенными значениями u(t) (рисунок 12, г).

Рисунок 12 - Временные диаграммы сигналов при импульсной модуляции

При ЧИМ происходит изменение периода, а соответственно и частоты, несущего сигнала S(t) в соответствии с мгновенными значениями u(t) (рисунок 12, д).

При ФИМ происходит смещение импульсов несущего сигнала относительно их тактового (временного) положения в немодулированной несущей (тактовые моменты обозначены на диаграммах точками Т, 2Т, 3Т и т. д.). ФИМ сигнал представлен на рисунке 12, е.

Поскольку при импульсной модуляции переносчиком сообщения является периодическая последовательность импульсов, то спектр импульсно-модулированных сигналов является дискретным и содержит множество спектральных составляющих. Этот спектр представляет собой спектр периодической последовательности импульсов в котором возле каждой гармонической составляющей несущего сигнала находятся составляющие модулирующего сигнала (рисунок 13). Структура боковых полос возле каждой составляющей несущего сигнала зависит от вида модуляции.

Рисунок 13 - Спектр импульсно-модулированного сигнала

Также важной особенностью спектра импульсно-модулированных сигналов является то, что ширина спектра модулированного сигнала, кроме ШИМ, не зависит от модулирующего сигнала. Она полностью определяется длительностью импульса несущего сигнала. Поскольку при ШИМ длительность импульса изменяется и зависит от модулирующего сигнала, то при этом виде модуляции и ширина спектра также зависти от модулирующего сигнала.

Частоту следования импульсов несущего сигнала может быть определена по теореме В. А. Котельникова как f 0 =2Fmax. При этом Fmax это верхняя частота спектра модулирующего сигнала.

Передача импульсно модулированных сигналов по высокочастотным линиям связи невозможна, т. к. спектр этих сигналов содержит низкочастотные составляющий. Поэтому для передачи осуществляют повторную модуляцию . Это модуляция, при которой в качестве модулирующего сигнала используют импульсно-модулированный сигнал, а в качестве несущего гармоническое колебание. При повторной модуляции спектр импульсно-модулированного сигнала переносится в область несущей частоты. Для повторной модуляции может использоваться любой из видов аналоговой модуляции: АМ, ЧС, ФМ. Полученная модуляция обозначается двумя аббревиатурами: первая указывает на вид импульсной модуляции а вторая — на вид аналоговой модуляции, например АИМ-АМ (рисунок 14, а) или ШИМ-ФМ (рисунок 14, б) и т. д.

Рисунок 14 - Временные диаграммы сигналов при импульсной повторной модуляции

Лекция № 6 Модулированные сигналы

Под модуляцией понимают процесс (медленный по сравнению с периодом несущего колебания), при котором один или несколько параметров несущего колебания изменяют по закону передаваемого сообщения. Получаемые в процессе модуляции колебания называют радиосигналами.В зависимости от того, какой из названных параметров несущего колебания подвергается изменению, различают два основных вида аналоговой модуляции: амплитудную и угловую. Последний вид модуляции, в свою очередь, разделяется на частотную и фазовую.В современных цифровых системах передачи информации широкое распространение получила квадратурная (амплитудно-фазовая, или фазоамплитуд- ная - ФАМ; amplitude phase modulation) модуляция, при которой одновременно изменяются и амплитуда и фаза сигнала. Этот тип модуляции относят как к аналоговым, так и цифровым видам.

В радиосистемах часто применяются и будут применяться различные виды импульсной и цифровой модуляции, при которой радиосигналы представляются в виде так называемых радиоимульсов.

Радиосигналы с аналоговыми видами модуляции В процессе амплитудной модуляции несущего колебания (1)

его амплитуда должна изменяться по закону: (2)

где U H - амплитуда несущей в отсутствие модуляции; ω 0 - угловая частота; φ 0 - начальная фаза; ψ(t) = ω 0 + φ 0 - полная (текущая или мгновенная) фаза несущей; k А - безразмерный коэффициент пропорциональности; e(t) - модулирующий сигнал. U H (t) в радиотехнике принято называть огибающей амплитудно-модулированного сигнала (АМ-сигнала).

Подставив (2) в (1) получим общую формулу АМ- сигнала (3)

Однотональная амплитудная модуляция если модулирующий сигнал - гармоническое колебание (4)

где Е 0 - амплитуда; Ω = 2π/Т 1 = 2πF - угловая частота модуляции; F -

циклическая частота модуляции; Т 1 - период модуляции; θ 0 - начальная фаза.

Подставив формулу (4) в соотношение (3), получим выражение для АМ-сигнала (5)

Обозначив через ∆U = k A E 0 - максимальное отклонение амплитуды АМ- сигнала от амплитуды несущей U H и проведя несложные выкладки, получим (6)

Коэффициент или глубина амплитудной модуляции.

Спектр АМ-сигнала . Применив в выражении (5) тригонометрическую формулу произведения косинусов, после несложных выкладок получим (7)

Из формулы (7) видно, что при однотональной амплитудной модуляции спектр АМ-сигнала состоит из трех высокочастотных составляющих. Первая из них представляет собой исходное несущее колебание с постоянной амплитудой U H и частотой с ω 0 . Вторая и третья составляющие характеризуют новые гармонические колебания, появляющиеся в процессе амплитудной модуляции и отражающие передаваемый сигнал. Колебания с частотами ω 0 + Ω и ω 0 - Ω называются соответственно верхней (upper sideband - USB) и нижней (lower sideband - LSB) боковыми составляющими.

Реальная ширина спектра АМ-сигнала при однотональной модуляции (8)

На практике однотональные АМ-сигналы используются либо для учебных, либо для исследовательских целей. Реальный же модулирующий сигнал имеет сложный спектральный состав. Математически такой сигнал, состоящий из N гармоник, можно представить тригонометрическим рядом N (10)

Здесь амплитуды гармоник сложного модулирующего сигнала E i произвольны, а их частоты образуют упорядоченный спектр Ω 1 < Ω 2 < ...< Ω i < ...< Ω N . В отличие от ряда Фурье частоты Ω i не обязательно кратны друг другу. Подставляя (10) в (3), после несложных преобразований, получим выражение АМ-сигнала с начальной фазой несущего ф0 = О (11)

(12)

Совокупность парциальных (частичных) коэффициентов модуляции.Эти коэффициенты характеризуют влияние гармонических составляющих модулирующего сигнала на общее изменение амплитуды высокочастотного колебания. Воспользовавшись тригонометрической формулой произведения двух косинусов и проделав несложные преобразования, запишем (11) в виде (13)

Рис. 2. Спектральные диаграммы при модуляции сложным сигналом:

а - модулирующего сигнала; б - АМ-сигнала

Ширина спектра сложного АМ-сигнала равна удвоенному значению наивысшей частоты в спектре модулирующего сигнала Ω N , т. е. (14)

Частотная модуляция

При частотной модуляции (frequency modulation; FM) мгновенное значение несущей частоты ω(t) связано с модулирующим сигналом e(t) зависимостью (15)

здесь k Ч - размерный коэффициент пропорциональности между частотой и напряжением, рад/(В-с).

Полную фазу ЧМ-сигнала в любой момент времени t определим путем интегрирования мгновенной частоты, выраженной через формулу (15),

Рис. 3. Частотная однотональная модуляция:

а - несущее колебание; б - модулирующий сигнал; в - ЧМ-сигнал

Максимальное отклонение частоты от значения ω 0 , или девиация частоты (frequency deviation) при частотной модуляции;

Максимальное отклонение от текущей фазы ω 0 t или девиация фазы несущего колебания называется индексом частотной модуляции (index of frequency modulation). Данный парамер определяет интенсивность колебаний начальной фазы радиосигнала.

С учетом полученных соотношений (1) и (16) частотно-модулированный сигнал запишется в следующем виде:

Спектр ЧМ-сигнала при однотональной модуляции. Преобразуем полученное выражение (17)

Спектр ЧМ-сигнала при m«1 (такую угловую модуляцию называют узкополосной). В этом случае имеют место приближенные равенства: (18)

Подставив формулы (18) в выражение (17), после несложных математических преобразований получим (при начальных фазах модулирующего и несущего колебаний θ 0 = 0 и φ 0 = 0): (19)

Видим, что по аналитической записи спектр ЧМ-сигнала при однотональной модуляции напоминает спектр АМ- сигнала и также состоит из несущего колебания и двух боковых составляющих с частотами (ω 0 + Ω) и (ω 0 - Ω) причем и амплитуды их рассчитываются аналогично (только вместо коэффициента амплитудной модуляции М в формуле для ЧМ-сигнала фигурирует индекс угловой модуляции m). Но есть и принципиальное отличие, превращающее амплитудную модуляцию в частотную, знак минус перед одной из боковых составляющих.

Спектр ЧМ-сигнала при m > 1 . Из математики известно (20) (21)

где J n (m) - функция Бесселя 1 -го рода n-го порядка.

В
теории функций Бесселя доказывается, что функции с положительными и отрицательными индексами связаны между собой формулой (22)

Ряды (20) и (21) подставим в формулу (17), а затем заменим произведение косинусов и синусов полусуммами косинусов соответствующих аргументов. Тогда, с учетом (22), получим следующее выражение для ЧМ-сигнала (23)

Итак, спектр ЧМ-сигнала с однотональной модуляцией при индексе

модуляции m > 1 состоит из множества высокочастотных гармоник: несущего колебания и бесконечного числа боковых составляющих с частотами ω 0 + nΩ. и ω 0 -nΩ, расположенными попарно и симметрично относительно несущей частоты ω 0 .

При этом, исходя из (22), можно отметить, что начальные фазы боковых колебаний с частотами ω 0 + nΩ. и ω 0 -nΩ совпадают, если m - четное число, и отличаются на 180°, если m - нечетное. Теоретически спектр ЧМ- сигнала (так же и ФМ-сигнала) бесконечен, однако в реальных случаях он ограничен. Практическая ширина спектра сигналов с угловой модуляцией

ЧМ- и ФМ-сигналы, применяемые на практике в радиотехнике и связи, имеют индекс модуляции m>> 1, поэтому

Полоса частот ЧМ-сигнала с однотональной модуляцией равна удвоенной девиации частоты и не зависит от частоты модуляции.

Сравнение помехоустойчивости радиосистем с амплитудной и угловой модуляцией. Следует отметить, что радиосигналы с угловой модуляцией имеют ряд важных преимуществ перед амплитудно-модулированными колебаниями.

1. Поскольку при угловой модуляции амплитуда модулированных колебаний не несет в себе никакой информации и не требуется ее постоянства (в отличие от амплитудной модуляции), то практически любые вредные нелинейные изменения амплитуды радиосигнала в процессе осуществления связи не приводят к заметному искажению передаваемого сообщения.

2. Постоянство амплитуды радиосигнала при угловой модуляции позволяет полностью использовать энергетические возможности генератора несущей частоты, который работает при неизменной средней мощности колебаний.

Амплитудно-модулированные сигналы и их спектры

При амплитудной модуляции (АМ) амплитуда несущего сигнала подвергается воздействию сигнала сообщения. Мгновенное значение АМ колебания с гармонической несущей может быть записано в виде

где U m (t) – «переменная амплитуда» или огибающая амплитуд;

– круговая частота несущего сигнала;

– начальная фаза несущего сигнала.

«Переменная амплитуда» U m (t) пропорциональна управляющему сигналу (сигналу сообщения) U с (t):

, (2.17)

где U m 0 – амплитуда несущего сигнала до амплитудной модуляции, то есть поступающего на модулятор;

– коэффициент пропорциональности.

При модуляции несущего сигнала сигналом сообщения необходимо обеспечить, чтобы U m (t) была величиной положительной. Это требование выполняется выбором коэффициента .

Для исключения влияния переходных процессов в радиоэлектронной цепи модулятора и других цепях преобразования модулированного сигнала на спектр сигнала сообщения необходимо выполнение следующего условия: наивысшая по частоте спектральная составляющая в ограниченном спектре сигнала сообщения должна иметь частоту , – что обеспечивается выбором частоты несущего сигнала.

На рис. 2.10 и 2.11 показаны два примера построения графиков АМ колебаний. На рисунках изображены следующие графики:

а – сигнал сообщения u c (t);

б – несущий сигнал u 0 (t);

в – огибающая амплитуд U m (t);

г – АМ сигнал u(t).

Для понимания образования спектра АМ сигнала рассмотрим простой случай: однотональное амплитудно-модулированное колебание. В этом случае модулирующий сигнал является гармоническим (однотональным):

с амплитудой U mc , частотой и начальной фазой .

Огибающая амплитуд однотонального АМ колебания имеет вид:

где – максимальное приращение амплитуды. Мгновенное значение однотонального АМ колебания

Отношение называется коэффициентом глубины модуляции или просто коэффициентом модуляции . Так как U m (t)> 0, то 0< m< 1. Часто m измеряют в процентах, тогда 0< m< 100%. С учетом введения коэффициента модуляции однотональное модулированное колебание запишем в виде:

Графики, поясняющие процесс однотональной амплитудной модуляции, приведены на рис. 2.12.

Рис. 2.12. Однотональная амплитудная модуляция

Для нахождения спектра однотонального амплитудно-модулированного сигнала необходимо сделать следующие преобразования:

(2.20)

При выводе выражения (2.20) использована тригонометрическая формула

Таким образом, при однотональной амплитудной модуляции несущего сигнала спектр содержит три составляющие: одна на несущей частоте имеет амплитуду U m 0 и две на боковых частотах с амплитудами mU m 0 /2, зависящими от коэффициента модуляции; при m< 1 их амплитуды составляют не более половины амплитуды несущей гармоники. Начальные фазы колебаний боковых спектральных составляющих отличаются от начальной фазы на величину . На рис. 2.13 показаны графики АЧС и ФЧС однотонального амплитудно-модулированного колебания.

Рис. 2.13. Спектр однотонального амплитудно-модулированного колебания

Из анализа спектра следует, что АЧС является четным относительно частоты , а ФЧС нечетным относительно точки с координатами ( , ).

При условии все составляющие спектра являются высокочастотными, следовательно, такой сигнал может эффективно передаваться с помощью ЭМВ.

Рассмотрим энергетические параметры однотонального АМ сигнала. Средняя за период несущего сигнала мощность, выделяемая на единичном сопротивлении,

В отсутствии модуляции эта мощность равна

а при модуляции изменяется в пределах от

.

Если m=100%, то , а P min = 0. Средняя мощность сигнала за период модуляции будет складываться из мощностей спектральных составляющих

В случае m=100% Р ср = 1,5Р 0 .

Перейдем к рассмотрению общего случая к так называемому многотональному АМ сигналу. Модулирующий сигнал, то есть сигнал сообщения, имеет спектр вида (1.22)

.

Огибающая амплитуд имеет вид:

где – максимальное приращение амплитуды n-ой гармоники модулирующего сигнала.

Выражение для многотонального АМ сигнала примет следующий вид:

(2.23)

где – коэффициент модуляции n-ой гармоники модулирующего сигнала. Применяя аналогичные, как это было сделано для однотональной амплитудной модуляции, тригонометрические преобразования, получим

(2.24)

Выражение (2.24) представляет спектр амплитудно-модулированного сигнала. Относительно колебания с частотой имеют место два ряда составляющих с верхними и нижними боковыми частотами. Эти составляющие образуют так называемые верхнюю и нижнюю боковые полосы спектра.

Передать весь спектр АМ сигнала по каналу информации невозможно по следующим причинам. Во-первых, нельзя создать идеальную линейную цепь в области частот , см. п.1.4. Во-вторых, при увеличении полосы пропускания линейной цепи может уменьшиться отношение мощности сигнала к мощности шумов (см. п.1.5). В-третьих, полоса пропускания, по возможности, должна быть минимальной, чтобы в заданном частотном диапазоне работало как можно больше радиолиний (радиоканалов), не влияющих друг на друга, то есть не создающих друг другу помех. Следовательно, спектр сигнал ограничивается частотой , наиболее удаленной от частоты несущего сигнала. На рис. 2.14 приведенный амплитудный спектр АМ сигнала. Ширина спектра определяется максимальной частотой в спектре модулирующего сигнала и составляет 2 . Примерные значения ширины спектра для некоторых АМ сигналов представлены в табл. 1.1.

Общие сведения о модуляции. Для передачи сигналов на большие расстояния необходимо, чтобы они обладали большой энергией. Известно, что энергия сигнала пропорциональна четвертой степени его частоты, то есть сигналы с большей частотой обладают большей энергией. В практике часто сигналы, несущие в себе информацию, например, речевые сигналы, имеют низкую частоту колебаний и поэтому, чтобы передать их на большое расстояние необходимо частоту информационных сигналов повышать. Добиваются этого путем “накладывания” информационного сигнала на другой сигнал, который имеет высокую частоту колебаний.

Рассмотрим гармоническое колебание, которое имеет частоту ω достаточную для распространения на большие расстояния и изменяется по закону:

Наложить информацию на это колебание можно путем медленного, по сравнению с периодом, изменения его амплитуды Um, частоты ω или фазы φ. Такой процесс называется модуляцией.

В зависимости от того, какой параметр изменяют, различают амплитудную, частотную и фазовую модуляцию.

Амплитудно-модулированный сигнал получается путем перемножения двух сигналов. Один содержит информацию, а другой является несущим. Пусть сигнал информации, (рис.2.14) и несущее колебание (рис. 2.15) изменяются в соответствии со следующими выражениями:

U1(t) = U0 + U1m cosΩt,

U2(t) = U2m cost,

где U0 - постоянная составляющая сигнала, U1mи U2m - амплитуды информационного сигнала и несущего колебания, Ω, ω – частота информационного сигнала и несущего колебания.

Рис. 2.14. Информационный сигнал.

Рис. 2.15. Несущее колебание.

Перемножим эти сигналы:

Введем обозначения:

где Um – амплитуда промодулированного сигнала, М - коэффициент модуляции.

С учетом введенных обозначений, получим выражение для амплитудно - модулированного сигнала в следующем виде:

Вид амплитудно-модулированного сигнала показан на рис. 2.16, а его спектр на рис. 2.17.

Рис. 2.16. Амплитудно-модулированный сигнал.

Таким образом, спектр радиочастотного колебания при амплитудной модуляции гармоническим колебанием состоит из трех составляющих: нижней боковой, несущей и верхней боковой гармоник. Видно, что амплитуды боковых составляющих зависят от коэффициента модуляцииМ.

Рис.2.17. Спектр амплитудно - модулированного сигнала.

На практике бывает случай, когда модулирующий низкочастотный сигнал имеет сложный спектральный состав:

. (2.55)

Здесь частоты Ωi образуют упорядоченную возрастающую последовательность Ω1 < Ω2 <…< ΩN, в то время, как амплитуды Ui и начальные фазы ϕi произвольны. Вид сигнала показан на рис. 2.18. В этом случае амплитудно - модулированный сигнал будет иметь вид:

Введем обозначение:

Тогда выражение (2.56) примет вид:

Выполним преобразования будем иметь:

(2.57)

Рис. 2.18. Спектр низкочастотного модулирующего сигнала.

Спектральная диаграмма многотонального АМ - сигнала приведена на рис. 2.19.

Рис. 2.19. Спектр многотонального АМ - сигнала.

Видно, что в спектре сложномодулированного АМ - сигнала, помимо несущего колебания, содержатся группы верхних и нижних боковых колебаний. Спектр верхних боковых колебаний является масштабной копией спектра модулирующего сигнала, сдвинутой в область высоких частот на величинуω0. Спектр нижних боковых колебаний располагается зеркально относительно несущей частоты ω0 и также повторяет спектральную диаграмму модулирующего сигнала. Ширина спектра АМ - сигнала равна удвоенному значению наивысшей частоты в спектре модулирующего низкочастотного сигнала.

Частотно- и фазомодулированные сигналы. Частотно-модулированный сигнал – это колебание, у которого мгновенная частота изменяется по закону модулирующего сигнала. Пусть модулирующий сигнал и несущее колебание изменяется, как показано на рис. 2.20, 2.21.

Рис.2.20. Модулирующий сигнал.

Рис.2.21. Несущий сигнал.

Тогда мгновенная частота при частотной модуляции равна:

здесь Δω – девиация (отклонение) частоты под действием модулирующего сигнала, это отклонение в принципе пропорционально амплитуде модулирующего колебания. Мгновенную фазу частотно-модулированного сигнала найдем, проинтегрировавω (t) по времени:

(2.59)

В соответствии с рис. 2.21 и выражением (2.59) частотно-модулированное колебание запишется в следующем виде:

где – есть индекс частотной модуляции. Вид частотно - модулированного сигнала показан на рис. 2.22.

Рис. 2.22. Частотно - модулированный сигнал.

Преобразуем выражение (2.60) по формуле косинуса суммы двух аргументов, получим:

Применим для выражений cos(m sin Ωt) и sin(m sin Ωt) преобразования по функциям Бесселя:

Тогда выражение (2.61) для частотно-модулированного сигнала будет иметь вид:

. (2.62)

Из (2.62) видно, что частотно - модулированный сигнал имеет дискретный спектр рис. 2.23. с гармониками на частотах (ω0± nΩ), где n=1, 2, 3, 4, 5…

Рис. 2.23. Спектр частотно - модулированного сигнала.

Вид спектра модулированного колебания зависит от индекса частотной модуляции m, теоретически спектр бесконечен, но на практике он ограничивается двумя – тремя составляющими, так как функции Бесселя высших порядков интенсивно убывают.

Фазомодулированным колебанием называется колебание, у которого фаза изменяется по закону модулирующего сигнала. Выражение, описывающее такое колебание, имеет вид:

Частотно-модулированное колебание является в то же время и фазомодулированным. Иногда оба вида модуляции называют угловой модуляцией. Однако при частотной модуляции изменение частоты, а не фазы совпадает с законом изменения модулирующего сигнала. Кроме того, при частотной модуляции индекс модуляции обратно пропорционален модулирующей частоте, тогда как при фазовой модуляции такой зависимости нет.

Когда колебание промодулировано гармоническим сигналом, отличить частотную модуляцию от фазовой можно, только сравнив изменения мгновенной фазы модулированного колебания с законом изменения модулирующего напряжения.