Установка и настройка        22.06.2019   

Спектральные и корреляционные свойства сигнала. Корреляционно-спектральный анализ детерминированных сигналов

Корреляция – математическая операция, схожа со свёрткой, позволяет получить из двух сигналов третий. Бывает: автокорреляция (автокорреляционная функция), взаимная корреляция (взаимнокорреляционная функция, кросскорреляционная функция). Пример:

[Взаимная корреляционная функция]

[Автокорреляционная функция]

Корреляция - это техника обнаружения заранее известных сигналов на фоне шумов, ещё называют оптимальной фильтрацией. Хотя корреляция очень похожа на свёртку, но вычисляются они по-разному. Области применения их также различные (c(t)=a(t)*b(t) - свертка двух функций, d(t)=a(t)*b(-t) - взаимная корреляция).

Корреляция – это та же свёртка, только один из сигналов инвертируется слева направо. Автокорреляция (автокорреляционная функция) характеризует степень связи между сигналом и его сдвинутой на τ копией. Взаимнокорреляционная функция характеризует степень связи между 2-мя разными сигналами.

Свойства автокорреляционной функции:

  • 1) R(τ)=R(-τ). Функция R(τ) – является чётной.
  • 2) Если х(t) – синусоидальная функция времени, то её автокорреляционная функция – косинусоидальная той же частоты. Информация о начальной фазе теряется. Если x(t)=A*sin(ωt+φ), то R(τ)=A 2 /2 * cos(ωτ).
  • 3) Функция автокорреляции и спектра мощности связаны преобразованием Фурье.
  • 4) Если х(t) – любая периодическая функция, то R(τ) для неё может быть представлена в виде суммы автокорреляционных функций от постоянной составляющей и от синусоидально изменяющейся составляющей.
  • 5) Функция R(τ) не несёт никакой информации о начальных фазах гармонических составляющих сигнала.
  • 6) Для случайной функции времени R(τ) быстро уменьшается с увеличением τ. Интервал времени, после которого R(τ) становится равным 0 называется интервалом автокорреляции.
  • 7) Заданной x(t) соответствует вполне определённое R(τ), но для одной и той же R(τ) могут соответствовать различные функции x(t)

Исходный сигнал с шумами:

Автокорреляционная функция исходного сигнала:

Свойства взаимной корреляционной функции (ВКФ):

  • 1) ВКФ не является ни чётной ни нечётной функ¬цией, т.е. R ху (τ) не равно R ху (-τ).
  • 2) ВКФ остаётся неизменной при перемене чередования функций и изменений знака аргумента, т.е. R ху (τ)=R ху (-τ).
  • 3) Если случайные функции x(t) и y(t) не содержат постоянных составляющих и создаются независимыми источниками, то для них R ху (τ) стремится к 0. Такие функции называются некоррелированными.

Исходный сигнал с шумами:

Меандр той же частоты:

Корреляция исходного сигнала и меандра:



Внимание! Каждый электронный конспект лекций является интеллектуальной собственностью своего автора и опубликован на сайте исключительно в ознакомительных целях.

Signals and linear systems. Correlation of signals

Тема 6. Корреляция сигналов

Предельный страх и предельный пыл храбрости одинаково расстраивают желудок и вызывают понос.

Мишель Монтень. Французский юрист-мыслитель, XVI в.

Вот это номер! Две функции имеют стопроцентную корреляцию с третьей и ортогональны друг другу. Ну и шуточки были у Всевышнего при сотворении Мира.

Анатолий Пышминцев. Новосибирский геофизик Уральской школы, ХХ в.

1. Автокорреляционные функции сигналов. Понятие автокорреляционных функций (АКФ). АКФ сигналов, ограниченных во времени. АКФ периодических сигналов. Функции автоковариации (ФАК). АКФ дискретных сигналов. АКФ зашумленных сигналов. АКФ кодовых сигналов.

2. Взаимнокорреляционные функции сигналов (ВКФ). Взаимная корреляционная функция (ВКФ). Взаимная корреляция зашумленных сигналов. ВКФ дискретных сигналов.Оценка периодических сигналов в шуме. Функция взаимных корреляционных коэффициентов.

3. Спектральные плотности корреляционных функций. Спектральная плотность АКФ. Интервал корреляции сигнала. Спектральная плотность ВКФ. Вычисление корреляционных функций при помощи БПФ.

Введение

Корреляция (correlation), и ее частный случай для центрированных сигналов – ковариация, является методом анализа сигналов. Приведем один из вариантов использования метода. Допустим, что имеется сигнал s(t), в котором может быть (а может и не быть) некоторая последовательность x(t) конечной длины Т, временное положение которой нас интересует. Для поиска этой последовательности в скользящем по сигналу s(t) временном окне длиной Т вычисляются скалярные произведения сигналов s(t) и x(t). Тем самым мы "прикладываем" искомый сигнал x(t) к сигналу s(t), скользя по его аргументу, и по величине скалярного произведения оцениваем степень сходства сигналов в точках сравнения.

Корреляционный анализ дает возможность установить в сигналах (или в рядах цифровых данных сигналов) наличие определенной связи изменения значений сигналов по независимой переменной, то есть, когда большие значения одного сигнала (относительно средних значений сигнала) связаны с большими значениями другого сигнала (положительная корреляция), или, наоборот, малые значения одного сигнала связаны с большими значениями другого (отрицательная корреляция), или данные двух сигналов никак не связаны (нулевая корреляция).

В функциональном пространстве сигналов эта степень связи может выражаться в нормированных единицах коэффициента корреляции, т.е. в косинусе угла между векторами сигналов, и, соответственно, будет принимать значения от 1 (полное совпадение сигналов) до -1 (полная противоположность) и не зависит от значения (масштаба) единиц измерений.

В варианте автокорреляции (autocorrelation) по аналогичной методике производится определение скалярного произведения сигнала s(t) с собственной копией, скользящей по аргументу. Автокорреляция позволяет оценить среднестатистическую зависимость текущих отсчетов сигнала от своих предыдущих и последующих значений (так называемый радиус корреляции значений сигнала), а также выявить в сигнале наличие периодически повторяющихся элементов.

Особое значение методы корреляции имеют при анализе случайных процессов для выявления неслучайных составляющих и оценки неслучайных параметров этих процессов.

Заметим, что в терминах "корреляция" и "ковариация" существует некоторая путаница. В математической литературе термин "ковариация" применяется к центрированным функциям, а "корреляция" – к произвольным. В технической литературе, и особенно в литературе по сигналам и методам их обработки, часто применяется прямо противоположная терминология. Принципиального значения это не имеет, но при знакомстве с литературными источниками стоит обращать внимание на принятое назначение данных терминов.

Понятие “корреляция” отражает степень сходства некоторых объектов или явлений. Применительно к сигналам корреляционная функция есть количественная мера сходства двух копий сигнала сдвинутых друг относительно друга по времени на некоторую величину t - чем больше значение корреляционной функции, тем больше похожи сигналы друг на друга.

Корреляционная функция задается следующим выражением:

R ss (t) = s(t) s(t - t)dt (1.24)

- ∞

Здесь индекс R ss означает, что вычисляется автокорреляционная функция (АКФ) корреляция сигнала s(t) с его сдвинутой копией.

Корреляционная функция (АКФ) сигнала обладает следующими свойствами:

1. Значение АКФ при t = 0 равно энергии сигнала:

R ss (0) = s(t) 2 dt. (1.25)

2. АКФ является четной и невозрастающей функцией

R ss (t) = R ss (-t), R ss (t) ≤ R ss (0). (1.26)

3. АКФ сигнала с конечной энергией при t → стримится к нулю.

4. АКФ периодического сигнала периодична с периодом, равным периоду самого сигнала.

Если АКФ показывает степень сходства между сдвинутыми копиями одного и того же сигнала, то аналогичная ей взаимная корреляционная функция (ВКФ) позволяет оценить степень подобия двух различных сигналов

R 12 (t) = s 1 (t) s 2 (t - t)dt (1.27)

Вычисление АКФ и ВКФ сигналов является одними из основных алгоритмов обработки сигналов при их приеме на фоне помех. В связи с этим понимание физического смысла “корреляции ” и знание свойств корреляционных функций различных сигналов является важным элементом образования специалиста в области передачи информации и связи.


Целью данной работы является изучение простейших радиотехнических сигналов, разложение их в ряд Фурье, создание в среде программирования Matlab соответствующих программ.

Ход работы:

1 . Создать программу построения следующих простейших радиотехнических сигналов и представить их графики:

1.1. прямоугольный импульс;

1.2. сумма синусов;

1.3. радиоимпульс с прямоугольной огибающей;

1.5. радиоимпульс с гауссовской огибающей;

1.6. последовательность импульсов типа «меандр»;

1.7. фазоманипулированная последовательность;

1.8. радиоимпульс с экспоненциальной огибающей.

2 . Создать подпрограмму разложения сигнала в ряд Фурье.

3. Определить автокорреляционную функцию Rxx(k) для сформированных моделей сигналов.

5. Оценить коэффициент корреляции исходного сигнала и его разложения в ряд Фурье.

Отчет о выполненной работе должен содержать:

Краткое описание цели работы;

Тексты *.mat программ моделирования;

Графическое представление сформированных полезных сигналов;

Выводы о проделанной работе.

Контрольные вопросы :

1. Что такое “детерминированный сигнал”? Приведите примеры.

2. Что такое “система ортогональных функций”. Как определяются коэффициенты ряда Фурье.

3. Что такое “спектр сигнала”?

4. Запишите выражения для ряда Фурье на основе тригонометрических и комплексных экспоненциальных функций.

5. Что такое “преобразование Фурье”?

6. Запишите выражения для прямого и обратного преобразований Фурье.

7. Как выглядит спектр одиночного прямоугольного импульса?

8. Как выглядит спектр функции вида sin(x)/x?

9. Как изменится форма спектра прямоугольного (гауссовского) импульса при изменении (увеличении, уменьшении) его длительности?

Распределения Релея и Райса характеризуют замирания сигнала не в полной мере. В частности, они не дают представление о том, как протекает процесс замирания сигнала во времени. Допустим, что процесс рассматривается в два момента времени t и t +t, где t - задержка. Тогда статистическая связь замираний дается функцией корреляции, которая определяется следующим образом.

Предположим, что рассматриваемый процесс является стационарным. Это значит, что его статистические параметры, такие как среднее, дисперсия и взаимная корреляция, не зависят от времени t . Для узкополосного процесса (2.3.37) получаем функцию корреляции в виде

Введем функции корреляции квадратурных сигналов:

Теперь выражение (2.3.61) преобразуем к виду

Для дальнейшего преобразования (2.3.63) воспользуемся тригонометрическими соотношениями.

(2.3.64)

В результате получим, что

Поскольку процесс является стационарным, функция корреляции не должна зависеть от времени. Это требование может быть выполнено, если второе и четвертое слагаемые в (2.3.65) равны нулю, что, в свою очередь, возможно, если функции корреляции квадратурных сигналов удовлетворяют следующим соотношениям:

Таким образом, функция корреляции стационарного нормального узкополосного сигнала равна

Покажем, что функция корреляции является нечетной функцией t. Для этого учтем, что

Подставим (2.3.68) во вторую формулу в (2.3.66) и находим, что

. (2.3.69)

Таким образом, функция взаимной корреляции квадратурных сигналов является нечетной. Отсюда следует важный результат, что в совпадающий момент времени квадратурные сигналы не коррелированны, то есть .

Рассмотрим теперь корреляцию комплексной амплитуды

По определению функции корреляции можно записать, что

. (2.3.71)

Функция комплексная и обладает свойством симметрии, т.е.

. (2.3.72)

Подставим (2.3.70) в (2.3.71) и учтем (2.3.62). Тогда (2.3.71) принимает вид

Если учесть (2.3.66), то эта формула существенно упрощается:

Функция корреляции (2.3.67) узкополосного сигнала и функция корреляции (2.3.74) его комплексной амплитуды взаимосвязаны. Эта связь легко выявляется из сравнения (2.3.67) и (2.3.74). В результате будем иметь



Корреляционные свойства сигнала тесно связаны с его спектральными свойствами. В частности, спектральная плотность мощности находится с помощью преобразования Фурье от корреляционной функции и равна

. (2.3.76)

Покажем, что - действительная функция, в то время как корреляционная функция является комплексной. Для этого возьмем комплексное сопряжение от выражения (2.3.76) и учтем свойство симметрии (2.3.72) функции корреляции. В результате получим, что

Сравнивая (2.3.77) с (2.3.76) имеем, что . Это доказывает, что спектр комплексной амплитуды является действительной функцией.

Далее будет показано, что спектр комплексной амплитуды сигнала, описывающего замирания в многолучевом канале, является четной действительной функцией частоты, т.е. . Тогда функция корреляции становится действительной. Чтобы это доказать, запишем функцию корреляции в виде обратного преобразования Фурье от спектральной плотности мощности в виде

. (2.3.78)

Возьмем комплексное сопряжение выражения (2.3.78) и учтем четность функции . Получим, что

Сравнивая (2.3.79) с (2.3.78) имеем, что . Это доказывает, что функция корреляции комплексной амплитуды с действительным спектром в виде четной функции является действительной функцией.

Учитывая действительность функции корреляции, из (2.3.74) находим, что

. (2.3.80)

С помощью (2.3.75) получим функцию корреляции узкополосного сигнала в виде

Теперь поставим задачу, найти в явном виде спектр и функцию корреляции, которые описывают замирания сигнала в многолучевом канале. Снова рассмотрим два момента времени t и t +t. Если за время t передатчик, приемник и переотражатели не изменяют свое местоположение и сохраняют свои параметры, то суммарный сигнал в приемнике не изменяется. Чтобы происходили замирания сигнала, необходимо взаимное перемещение передатчика, приемника и (или) переотражателей. Только в этом случае наблюдается изменение амплитуд и фаз сигналов, суммирующихся на входе приемной антенны. Чем быстрее происходит это движение, тем с большей скоростью происходят замирания сигнала и, следовательно, более широким должен быть его спектр.

Будем считать, что приемник движется со скоростью v , а передатчик остается неподвижным. Если антенна передатчика излучает гармонический сигнал некоторой частоты f , то из-за эффекта Доплера приемник регистрирует сигнал другой частоты. Разница между этими частотами называется доплеровским смещением частоты. Чтобы найти величину смещения частоты, рассмотрим рис. 2.16, где изображены передатчик, приемник, волновой вектор k плоской волны и вектор v скорости приемника.

Рис. 2.16. К определению доплеровского смещения частоты

Уравнение равномерного движения приемника запишем в виде

Тогда фаза принимаемого сигнала будет функцией времени

где q - угол между вектором скорости и волновым вектором.

Мгновенная частота определяется как производная от фазы. Поэтому, дифференцируя (2.3.83) и учитывая, что волновое число , будем иметь

. (2.3.84)

При равномерном движении приемника, как следует из (2.3.84), наблюдается смещение частоты, равное

Для примера предположим, что скорость v =72 км/ч = 20 м/с, частота передатчика f =900 МГц, а угол q=0. Длина волны l и частота f связаны через скорость света с соотношением с =fl . Отсюда имеем, что l=c /f =0.33 м. Теперь из (2.3.85) находим, что доплеровское смещение частоты f d =60 Гц.

Доплеровское смещение частоты (2.3.85) принимает как положительные, так и отрицательные значения, в зависимости от угла q между вектором скорости и волновым вектором. Величина доплеровского смещения не превышает максимального значения, равного f max =v /l. Формулу (2.3.85) удобно представить в виде

. (2.3.86)

Когда имеется много переотражателей, то естественно предположить, что они располагаются вокруг приемника равномерно, например, по окружности, как показано на рис. 2.17. Такая модель переотражателей называется моделью Кларка.

Рис. 2.17. Расположение переотражателей в моделе Кларка

Спектральная плотность мощности в случае модели Кларка определяется следующим путем. Выделим интервал частот df d вблизи частоты f d . Заключенная в этом интервале принимаемая мощность равна . Эта мощность обусловлена доплеровским смещением частоты (2.3.86). Рассеянная мощность, связанная с угловым интервалом d q, равна , где - угловая плотность рассеянной мощности. Заметим, что одинаковое доплеровское смещение f d наблюдается для переотражетелей с угловыми координатами ±q. Отсюда вытекает следующее равенство мощностей

Будем полагать, что полная рассеянная мощность равна единице и равномерно распределена в интервале .

Рис. 2.18. Доплеровским спектр Джейкса для f max =10 Гц

Чтобы определить функцию корреляции (2.3.71) комплексной амплитуды, необходимо полученное для спектральной плотности мощности выражение (2.3.90) подставить в (2.3.78). В результате получим, что

Модуль функции корреляции (2.3.91) комплексной амплитуды для двух максимальных частот Доплера f max =10 Гц (сплошная кривая) и f max =30 Гц (пунктирная кривая) показаны на рис. 2.19. Если оценить время корреляции замираний сигнала в канале по уровню 0.5, то оно равно . Это дает 24 мсек для f max =10 Гц и 8 мсек для f max =30 Гц.

Рис. 2.19. Модуль функции корреляции для f max =10 и 30 Гц (сплошная и пунктирная кривые,
соответственно).

В общем случае доплеровский спектр может отличаться от спектра Джейкса (2.3.90). Область значений Df d , в которой существенно отличается от нуля, называют допплеровским рассеянием в канале. Поскольку связана с преобразованием Фурье, то временем когерентности t coh канала является величина t coh »1/Df d , которая характеризует скорость изменения свойств канала.

При выводе (2.3.90) и (2.3.91) предполагалось, что средняя мощность рассеянного сигнала равна единице. Это следует также из (2.3.91) и (2.3.71), так как

Коэффициент корреляции равен отношению функции корреляции к средней мощности . Поэтому в данном случае выражение (2.3.91) дает также коэффициент корреляции .

Из (2.3.81) найдем функцию корреляции узкополосного сигнала равную

На практике могут представлять интерес корреляционные свойства таких случайных величин, как амплитуда А и мгновенная мощность P =А 2 . Эти величины обычно являются регистрируемыми, например, на выходе линейного или квадратичного детектора. Их корреляционные свойства определенным образом связаны с корреляционными свойствами комплексной амплитуды Z (t ).

Коэффициент корреляции мгновенной мощности связан с коэффициентом корреляции комплексной амплитуды простым соотношением вида:

. (2.3.94)

Приведем доказательство этой формулы. Исходя из определения коэффициента корреляции, можем записать, что

, (2.3.95)

где - функция корреляции мощности.

Предположим, что детерминированной компоненты сигнала нет и амплитуда А имеет релеевское распределение. Тогда <P >=<A 2 >=2σ 2 . Входящая в (2.3.95) величина . Используя релеевский закон распределения, находим, что

. (2.3.96)

Учитывая (2.3.96), найдем функцию корреляции мощности из (2.3.95) с помощью простых алгебраических преобразований. Получим, что

. (2.3.97)

Функцию корреляции мощности выразим также через квадратурные компоненты в виде

Выполняя перемножение и усреднение в правой части равенства (2.3.98), получаем слагаемые, которые представляют собой следующие моменты четвертого порядка:

Таким образом, нам необходимо вычислить моменты четвертого порядка. Учтем, что квадратурные компоненты I и Q являются гауссовскими случайными величинами с нулевым средним и одинаковой дисперсией σ 2 и воспользуемся известным правилом размыкания моментов четвертого порядка . В соответствии с ним, если имеются четыре случайные величины a , b , c , и d , то справедлива следующая формула:

Применяя это правило, вычислим моменты четвертого порядка в (2.3.99). В результате будем иметь

(2.3.101)

Если принять во внимание (2.3.96), (2.3.66) и (2.3.74), то (2.3.98) можно записать в виде

Теперь необходимо учесть, что . В результате получим следующее выражение для функции корреляции мощности:

Сравнивая полученную формулу с (2.3.97), убеждаемся в справедливости (2.3.94).

Для канальной модели Кларка мы нашли, что коэффициент корреляции определяется (2.3.91). С учетом (2.3.94), коэффициент корреляции мощности в случае модели Кларка будет равен

. (2.3.104)

Корреляционные свойства амплитуды А исследуются с привлечением значительно более сложного математического аппарата и здесь не рассматриваются. Однако следует отметить, что коэффициент корреляции амплитуды А удовлетворяет следующему приближенному равенству .

Функции корреляции сигналов применяются для интегральных количественных оценок формы сигналов и степени их сходства друг с другом.

Автокорреляционные функции (АКФ) сигналов (correlation function, CF). Применительно к детерминированным сигналам с конечной энергией АКФ является количественной интегральной характеристикой формы сигнала, и представляет собой интеграл от произведения двух копий сигнала s(t), сдвинутых относительно друг друга на время t:

B s (t) = s(t) s(t+t) dt. (2.25)

Как следует из этого выражения, АКФ является скалярным произведением сигнала и его копии в функциональной зависимости от переменной величины значения сдвига t. Соответственно, АКФ имеет физическую размерность энергии, а при t = 0 значение АКФ непосредственно равно энергии сигнала:

B s (0) =s(t) 2 dt = E s .

Функция АКФ является непрерывной и четной. В последнем нетрудно убедиться заменой переменной t = t-t в выражении (2.25):

B s (t) =s(t-t) s(t) dt = s(t) s(t-t) dt = B s (-t). (2.25")

С учетом четности, графическое представление АКФ производится только для положительных значений t. На практике сигналы обычно задаются на интервале положительных значений аргументов от 0-Т. Знак +t в выражении (2.25) означает, что при увеличении значений t копия сигнала s(t+t) сдвигается влево по оси t и уходит за 0, что требует соответствующего продления сигнала в область отрицательных значений аргумента. А так как при вычислениях интервал задания t, как правило, много меньше интервала задания сигнала, то более практичным является сдвиг копии сигнала влево по оси аргументов, т.е. применение в выражении (2.25) функции s(t-t) вместо s(t+t).

По мере увеличения значения величины сдвига t для финитных сигналов временное перекрытие сигнала с его копией уменьшается и скалярное произведение стремятся к нулю.

Пример. На интервале (0,Т) задан прямоугольный импульс с амплитудным значением, равным А. Вычислить автокорреляционную функцию импульса.

При сдвиге копии импульса по оси t вправо, при 0≤t≤T сигналы перекрываются на интервале от t до Т. Скалярное произведение:

B s (t) =A 2 dt = A 2 (T-t).

При сдвиге копии импульса влево, при -T≤t<0 сигналы перекрываются на интервале от 0 до Т-t. Скалярное произведение:

B s (t) = A 2 dt = A 2 (T+t).

При |t| > T сигнал и его копия не имеют точек пересечения и скалярное произведение сигналов равно нулю (сигнал и его сдвинутая копия становятся ортогональными).

Обобщая вычисления, можем записать:

B s (t) = .

В случае периодических сигналов АКФ вычисляется по одному периоду Т, с усреднением скалярного произведения и его сдвинутой копии в пределах периода:



B s (t) = (1/Т)s(t) s(t-t) dt.

При t=0 значение АКФ в этом случае равно не энергии, а средней мощности сигналов в пределах интервала Т. АКФ периодических сигналов также является периодической функцией с тем же периодом Т. Для однотонального гармонического сигнала это очевидно. Первое максимальное значение АКФ будет соответствовать t=0. При сдвиге копии сигнала на четверть периода относительно оригинала подынтегральные функции становятся ортогональными друг другу (cos w o (t-t) = cos (w o t-p/2) º sin w o t) и дают нулевое значение АКФ. При сдвиге на t=T/2 копия сигнала по направлению становится противоположной самому сигналу и скалярное произведение достигает минимального значения. При дальнейшем увеличении сдвига начинается обратный процесс увеличения значений скалярного произведения с пересечением нуля при t=3T/2 и повторением максимального значения при t=T=2p/w o (cos w o t-2p копии º cos w o t сигнала). Аналогичный процесс имеет место и для периодических сигналов произвольной формы (рис. 2.11).

Отметим, что полученный результат не зависит от начальной фазы гармонического сигнала, что характерно для любых периодических сигналов и является одним из свойств АКФ.

Для сигналов, заданных на определенном интервале , вычисление АКФ производится с нормировкой на длину интервала :

B s (t) =s(t) s(t+t) dt. (2.26)

Автокорреляция сигнала может оцениваться и функцией автокорреляционных коэффициентов, вычисление которых производится по формуле (по центрированным сигналам):

r s (t) = cos j(t) = ás(t), s(t+t)ñ /||s(t)|| 2 .

Взаимная корреляционная функция (ВКФ) сигналов (cross-correlation function, CCF) показывает как степень сходства формы двух сигналов, так и их взаимное расположение друг относительно друга по координате (независимой переменной), для чего используется та же формула (2.25), что и для АКФ, но под интегралом стоит произведение двух разных сигналов, один из которых сдвинут на время t:

B 12 (t) = s 1 (t) s 2 (t+t) dt. (2.27)

При замене переменной t = t-t в формуле (2.4.3), получаем:

B 12 (t) =s 1 (t-t) s 2 (t) dt =s 2 (t) s 1 (t-t) dt = B 21 (-t)

Рис. 2.12. Сигналы и ВКФ

Отсюда следует, что для ВКФ не выполняется условие четности, а значения ВКФ не обязаны иметь максимум при t = 0. Это можно наглядно видеть на рис. 2.12, где заданы два одинаковых сигнала с центрами на точках 0.5 и 1.5. Вычисление по формуле (2.27) с постепенным увеличением значений t означает последовательные сдвиги сигнала s2(t) влево по оси времени (для каждого значения s1(t) для подынтегрального умножения берутся значения s2(t+t)).

При t=0 сигналы ортогональны и значение B 12 (t)=0. Максимум В 12 (t) будет наблюдаться при сдвиге сигнала s2(t) влево на значение t=1, при котором происходит полное совмещение сигналов s1(t) и s2(t+t). При вычислении значений B 21 (-t) аналогичный процесс выполняется последовательным сдвигом сигнала s1(t) вправо по временной оси с постепенным увеличением отрицательных значений t, а соответственно значения B 21 (-t) являются зеркальным (относительно оси t=0) отображением значений B 12 (t), и наоборот. На рис. 2.13 это можно видеть наглядно.

Рис. 2.13. Сигналы и ВКФ

Таким образом, для вычисления полной формы ВКФ числовая ось t должна включать отрицательные значения, а изменение знака t в формуле (2.27) равносильно перестановке сигналов.

Для периодических сигналов понятие ВКФ обычно не применяется, за исключением сигналов с одинаковым периодом, например, сигналов входа и выхода систем при изучении характеристик систем.

Функция коэффициентов взаимной корреляции двух сигналов вычисляется по формуле (по центрированным сигналам):

r sv (t) = cos j(t) = ás(t), v(t+t)ñ /||s(t)|| ||v(t)||. (2.28)

Значение коэффициентов взаимной корреляции может изменяться от -1 до 1.