Установка и настройка        31.05.2019   

Пропускная способность каналов связи. Пропускная способность систем передачи информации

В любой системе связи через канал передается информация. Ее скорость передачи была определена в § 4.2. Как видно из (4.25), эта скорость зависит не только от самого канала, но и от свойств подаваемого на его вход сигнала и поэтому не может характеризовать канал как средство передачи информации. Попытаемся найти способ оценки способности канала передавать информацию. Рассмотрим вначале дискретный канал, через который передаются в единицу времени v символов из алфавита объемом m. При передаче каждого символа в среднем по каналу проходит количество информации

I(A, В) = Н(А) - Н(А|В) = Н(В) - Н(В|А), (4.35)

где А и В - случайные символы на входе и выходе канала. Из четырех фигурирующих здесь энтропий H(A) - собственная информация передаваемого символа определяется источником дискретного сигнала * и не зависит от свойств канала. Остальные три энтропии в общем случае зависят как от источника сигнала, так и от канала.

* (Источником дискретного сигнала в системе связи (см. рис. 1.5) является совокупность источника сообщения и кодера. )

Представим себе, что на вход канала можно подавать символы от разных источников, характеризуемых различными распределениями вероятностей Р(А) (но, конечно, при тех же значениях m и v). Для каждого такого источника количество информации, переданной по каналу, принимает свое значение. Максимальное количество переданной информации, взятое по всевозможным источникам входного сигнала, характеризует сам канал и называется пропускной способностью канала в расчете на один символ

где максимизация * производится по всем многомерным распределениям вероятностей Р(A). Можно также определить пропускную способность С канала в расчете на единицу времени (например, секунду):

* (Если такого максимума не существует (что может быть при бесконечном числе возможных источников), то пропускная способность определяется как наименьшая верхняя грань sup I(А, В), т. е. такая величина, к которой I(А, B) может сколь угодно приблизиться, но не может ее превзойти. )

Равенство (4.37) следует из аддитивности энтропии. В дальнейшем везде, где это особо не оговорено, под пропускной способностью понимать будем пропускную способность в расчете на секунду.

В качестве примера вычислим пропускную способность симметричного канала без памяти, для которого переходные вероятности заданы (3.36). Согласно (4.36)

Величина


в данном случае легко вычисляется, поскольку условная (переходная) вероятность P(b j |a i) принимает только два значения: p/(m-1), если b j ≠a i и 1-р, если b j = a i . Первое из этих значений возникает с вероятностью р, а второе - с вероятностью 1-р. К тому же, поскольку рассматривается канал без памяти, результаты приема отдельных символов независимы друг от друга. Поэтому

Следовательно, Н(В|А) не зависит от распределения вероятности в ансамбле А, а определяется только переходными вероятностями канала. Это свойство сохраняется для всех моделей канала с аддитивным шумом.

Подставив (4.38) в (4.37), получим

Поскольку в правой части только член Н (В) зависит от распределения вероятностей Р(А), то максимизировать необходимо его. Максимальное значение Н (В) согласно (4.6) равно log m и реализуется оно тогда, когда все принятые символы b j равновероятны и независимы друг от друга. Легко убедиться, что это условие удовлетворяется, если входные символы равновероятны и независимы, поскольку в этом случае

При этом Н(В) = log m и

Отсюда пропускная способность в расчете на единицу времени

Для двоичного симметричного канала (m = 2) пропускная способность в двоичных единицах в единицу времени

С = v (4.42)

Зависимость C/v от р согласно (4.42) показана на рис. 4.3.

При р = 1/2 пропускная способность двоичного канала С = 0, поскольку при такой вероятности ошибки последовательность выходных двоичных символов можно получить совсем не передавая сигналы по каналу, а выбирая их наугад (например, по результатам бросания монеты), т. е. при р=1/2 последовательности на выходе и входе канала независимы. Случай С = 0 называют обрывом канала. То, что пропускная способность при р = 1 в двоичном канале такая же, как при р=0 (канал без шумов), объясняется тем, что при р = 1 достаточно все выходные символы инвертировать (т. е. заменить 0 на 1 и 1 на 0), чтобы правильно восстановить входной сигнал.

Пропускная способность непрерывного к а н а- л а вычисляется аналогично. Пусть, например, канал имеет ограниченную полосу пропускания шириной F. Тогда сигналы U(t) и Z{t) соответственно на входе и выходе канала по теореме Котельникова определяются своими отсчетами, взятыми через интервал 1/(2F), и поэтому информация, проходящая по каналу за некоторое время Т, равна сумме количества информации, переданной за каждый такой отсчет * . Пропускная способность канала на один такой отсчет

Здесь U и Z - случайные величины - сечения процессов U(t) и Z(t) на входе и выходе канала соответственно и максимум берется по всем допустимым входным сигналам, т. е. по всем распределениям U.

* (Можно вместо ряда Котельникова использовать разложение сигналов по- любому ортогональному базису и рассмотреть количество передаваемой информации на каждый член ряда. )

Пропускная способность С определяется как сумма значений Сотсч, взятая по всем отсчетам за секунду. При этом, разумеется, дифференциальные энтропии в (4.43) должны вычисляться с учетом вероятностных связей между отсчетами.

Вычислим, например, пропускную способность непрерывного канала без памяти с аддитивным белым гауссовским шумом, имеющим полосу пропускания шириной F, если средняя мощность сигнала (дисперсия U) не превышает заданной величины Р с. Мощность (дисперсию) шума в полосе F обозначим Р ш. Отсчеты входного и выходного сигналов, а также шума N связаны равенством

Z = U + N. (4.44)

Так как N имеет нормальное распределение с нулевым математическим ожиданием, то и условная плотность вероятности w(z|u) при фиксированном и будет также нормальной - с математическим ожиданием и и дисперсией Р ш.

Найдем пропускную способность на один отсчет (4.43):

Согласно (4.34) дифференциальная энтропия h(Z|U) нормального распределения w(Z|U) не зависит от математического ожидания и равна


Поэтому для нахождения С отсч следует найти такую плотность распределения w(U), при которой максимизируется h(Z). Из (4.44) учитывая, что U и N - независимые случайные величины, имеем для дисперсий:

D(Z) = D(U) + D(N) = P c + P ш. (4.45)

Таким образом, дисперсия Z фиксирована, так как Р с и Р ш заданы. Как было отмечено (см. стр. 114), при фиксированной дисперсии максимальная дифференциальная энтропия обеспечивается нормальным распределением. Из (4.44) видно, что при нормальном одномерном распределении U распределение Z будет также нормальным и, следовательно, обеспечивается максимум дифференциальной энтропии (4.34):

Переходя к пропускной способности С в расчете на секунду, заметим, что информация, переданная за несколько отсчетов, максимальна в том случае, когда отсчеты сигналов независимы. Этого можно достичь, если сигнал U(t) выбрать так, чтобы его спектральная плотность была равномерной в полосе F. Как было показано в § 2.2 [см. (2.48)], отсчеты, разделенные интервалами, кратными 1/(2F), взаимно некоррелированы, а для гауссовских величин некоррелированность означает независимость.

Поэтому пропускную способность С (за секунду) можно найти, сложив пропускные способности (4.46) для 2F независимых отсчетов:

С = 2FC отсч = F log (1 +Р с /Р ш). (4.47)

Она реализуется, если U(t) - гауссовский процесс с равномерной спектральной плотностью в полосе частот F (квазибелый шум).

Из (4.47) видно, что если бы мощность сигнала Р с не была ограничена, то пропускная способность была бы сколь угодно большой. Пропускная способность равна нулю, если отношение сигнал-шум Р с /Р ш в канале равно нулю. С ростом этого отношения пропускная способность увеличивается неограниченно, однако медленно, вследствие логарифмической зависимости.

Соотношение (4.47) часто называют формулой Шеннона. Эта формула имеет важное значение в теории информации, так как определяет зависимость пропускной способности рассматриваемого непрерывного канала от таких его технических характеристик, как ширина полосы пропускания и отношение сигнал-шум. Формула Шеннона указывает на возможность обмена полосы пропускания на мощность сигнала, и наоборот. Однако поскольку С зависит от F линейно, а от Р с /Р ш - по логарифмическому закону, компенсировать возможное сокращение полосы пропускания увеличением мощности сигнала, как правило, не выгодно. Более эффективным является обратный обмен мощности сигнала на полосу пропускания.

Заметим, что при Р c /P ш >>1 выражение (4.50) совпадает с характеристикой (1.2), названной в § 1.2 емкостью (объемом) канала.

Следует подчеркнуть, что формула Шеннона (4.47) справедлива только для канала с постоянными параметрами и аддитивным гауссовским белым (или квазибелым) шумом. Если распределение аддитивной помехи не является нормальным или же ее спектр неравномерен в полосе пропускания канала, то его пропускная способность больше, чем вычисленная по формуле (4.47). Мультипликативные помехи (замирания сигнала) обычно снижают пропускную способность канала.

На рис. 4.5 показаны зависимости С/F от среднего отношения Р с /Р ш для канала с постоянными параметрами (1) и канала с рэлеевскими замираниями (2). Из анализа кривых следует, что медленные рэлеевские замирания уменьшают пропускную способность канала не более чем на 17%.

С течением технического прогресса расширились и возможности интернета. Однако для того, чтобы пользователь мог ими воспользоваться в полной мере, необходимо стабильное и высокоскоростное соединение. В первую очередь оно зависит от пропускной способности каналов связи. Поэтому необходимо выяснить, как измерить скорость передачи данных и какие факторы на нее влияют.

Что такое пропускная способность каналов связи?

Для того чтобы ознакомиться и понять новый термин, нужно знать, что представляет собой канал связи. Если говорить простым языком, каналы связи - это устройства и средства, благодаря которым осуществляется передача на расстоянии. К примеру, связь между компьютерами осуществляется благодаря оптоволоконным и кабельным сетям. Кроме того, распространен способ связи по радиоканалу (компьютер, подключенный к модему или же сети Wi-Fi).

Пропускной же способностью называют максимальную скорость передачи информации за одну определенную единицу времени.

Обычно для обозначения пропускной способности используют следующие единицы:

Измерение пропускной способности

Измерение пропускной способности - достаточно важная операция. Она осуществляется для того, чтобы узнать точную скорость интернет-соединения. Измерение можно осуществить с помощью следующих действий:

  • Наиболее простое - загрузка объемного файла и отправление его на другой конец. Недостатком является то, что невозможно определить точность измерения.
  • Кроме того, можно воспользоваться ресурсом speedtest.net. Сервис позволяет измерить ширину интернет-канала, «ведущего» к серверу. Однако для целостного измерения этот способ также не подходит, сервис дает данные обо всей линии до сервера, а не о конкретном канале связи. Кроме того, подвергаемый измерению объект не имеет выхода в глобальную сеть Интернет.
  • Оптимальным решением для измерения станет клиент-серверная утилита Iperf. Она позволяет измерить время, количество переданных данных. После завершения операции программа предоставляет пользователю отчет.

Благодаря вышеперечисленным способам, можно без особых проблем измерить реальную скорость интернет-соединения. Если показания не удовлетворяют текущие потребности, то, возможно, нужно задуматься о смене провайдера.

Расчет пропускной способности

Для того чтобы найти и рассчитать пропускную способность линии связи, необходимо воспользоваться теоремой Шеннона-Хартли. Она гласит: найти пропускную способность канала (линии) связи можно, рассчитав взаимную связь между потенциальной пропускной способностью, а также полосой пропускания линии связи. Формула для расчета пропускной способности выглядит следующим образом:

I=Glog 2 (1+A s /A n).

В данной формуле каждый элемент имеет свое значение:

  • I - обозначает параметр максимальной пропускной способности.
  • G - параметр ширины полосы, предназначенной для пропускания сигнала.
  • A s / A n - соотношение шума и сигнала.

Теорема Шеннона-Хартли позволяет сказать, что для уменьшения внешних шумов или же увеличения силы сигнала лучше всего использовать широкий кабель для передачи данных.

Способы передачи сигнала

На сегодняшний день существует три основных способа передачи сигнала между компьютерами:

  • Передача по радиосетям.
  • Передача данных по кабелю.
  • Передача данных через оптоволоконные соединения.

Каждый из этих способов имеет индивидуальные характеристики каналов связи, речь о которых пойдет ниже.

К преимуществам передачи информации через радиоканалы можно отнести: универсальность использования, простоту монтажа и настройки такого оборудования. Как правило, для получения и способом используется радиопередатчик. Он может представлять собой модем для компьютера или же Wi-Fi адаптер.

Недостатками такого способа передачи можно назвать нестабильную и сравнительно низкую скорость, большую зависимость от наличия радиовышек, а также дороговизну использования (мобильный интернет практически в два раза дороже «стационарного»).

Плюсами передачи данных по кабелю являются: надежность, простота эксплуатации и обслуживания. Информация передается посредством электрического тока. Условно говоря, ток под определенным напряжением перемещается из пункта А в пункт Б. А позже преобразуется в информацию. Провода отлично выдерживают перепады температур, сгибания и механическое воздействие. К минусам можно отнести нестабильную скорость, а также ухудшение соединения из-за дождя или грозы.

Пожалуй, самой совершенной на данный момент технологией по передаче данных является использование оптоволоконного кабеля. В конструкции каналов связи сети каналов связи применяются миллионы мельчайших стеклянных трубок. А сигнал, передаваемый по ним, представляет собой световой импульс. Так как скорость света в несколько раз выше скорости тока, данная технология позволила в несколько сотен раз ускорить интернет-соединение.

К недостаткам же можно отнести хрупкость оптоволоконных кабелей. Во-первых, они не выдерживают механические повреждения: разбившиеся трубки не могут пропускать через себя световой сигнал, также резкие перепады температур приводят к их растрескиванию. Ну а повышенный радиационный фон делает трубки мутными - из-за этого сигнал может ухудшаться. Кроме того, оптоволоконный кабель тяжело восстановить в случае разрыва, поэтому приходится полностью его менять.

Вышесказанное наводит на мысль о том, что с течением времени каналы связи и сети каналов связи совершенствуются, что приводит к увеличению скорости передачи данных.

Средняя пропускная способность линий связи

Из вышесказанного можно сделать вывод о том, что каналы связи различны по своим свойствам, которые влияют на скорость передачи информации. Как говорилось ранее, каналы связи могут быть проводными, беспроводными и основанными на использовании оптоволоконных кабелей. Последний тип создания сетей передачи данных наиболее эффективен. И его средняя пропускная способность канала связи - 100 мбит/c.

Что такое бит? Как измеряется скорость в битах?

Битовая скорость - показатель измерения скорости соединения. Рассчитывается в битах, мельчайших единицах хранения информации, на 1 секунду. Она была присуща каналам связи в эпоху «раннего развития» интернета: на тот момент в глобальной паутине в основном передавались текстовые файлы.

Сейчас базовой единицей измерения признается 1 байт. Он, в свою очередь, равен 8 битам. Начинающие пользователи очень часто совершают грубую ошибку: путают килобиты и килобайты. Отсюда возникает и недоумение, когда канал с пропускной способностью 512 кбит/с не оправдывает ожиданий и выдает скорость всего лишь 64 КБ/с. Чтобы не путать, нужно запомнить, что если для обозначения скорости используются биты, то запись будет сделана без сокращений: бит/с, кбит/с, kbit/s или kbps.

Факторы, влияющие на скорость интернета

Как известно, от пропускной способности канала связи зависит и конечная скорость интернета. Также на скорость передачи информации влияют:

  • Способы соединения.

Радиоволны, кабели и оптоволоконные кабели. О свойствах, преимуществах и недостатках этих способов соединения говорилось выше.

  • Загруженность серверов.

Чем больше загружен сервер, тем медленнее он принимает или передает файлы и сигналы.

  • Внешние помехи.

Наиболее сильно помехи оказывают влияние на соединение, созданное с помощью радиоволн. Это вызвано сотовыми телефонами, радиоприемниками и прочими приемниками и передатчиками радиосигнала.

Безусловно, способы соединения, состояние серверов и наличие помех играют важную роль в обеспечении скоростного интернета. Однако даже если вышеперечисленные показатели в норме, а интернет имеет низкую скорость, то дело скрывается в сетевом оборудовании компьютера. Современные сетевые карты способны поддерживать интернет-соединение со скоростью до 100 Мбит в секунду. Раньше карты могли максимально обеспечивать пропускную способность в 30 и 50 Мбит в секунду соответственно.

Как увеличить скорость интернета?

Как было сказано ранее, пропускная способность канала связи зависит от многих факторов: способа соединения, работоспособности сервера, наличия шумов и помех, а также состояния сетевого оборудования. Для увеличения скорости соединения в бытовых условиях можно заменить сетевое оборудование на более совершенное, а также перейти на другой способ соединения (с радиоволн на кабель или оптоволокно).

В заключение

В качестве подведения итогов стоит сказать о том, что пропускная способность канала связи и скорость интернета - это не одно и то же. Для расчета первой величины необходимо воспользоваться законом Шеннона-Хартли. Согласно ему, шумы можно уменьшить, а также увеличить силу сигнала посредством замены канала передачи на более широкий.

Увеличение скорости интернет-соединения тоже возможно. Но оно осуществляется путем смены провайдера, замены способа подключения, усовершенствования сетевого оборудования, а также ограждения устройств для передачи и приема информации от источников, вызывающих помехи.

В любой системе связи через канал передается информация. Скорость передачи информации зависит не только от самого канала, но и от свойств подаваемого на его вход сигнала и поэтому не может характеризовать канал как средство передачи информации. Характеристики системы связи в значительной мере зависят от параметров канала связи, который используется для передачи сообщений. Большинство реальных каналов обладают переменными параметрами, которые, как правило, изменяются во времени случайным образом. Однородный симметричный канал связи полностью определяется алфавитом передаваемого сообщения, скоростью передачи элементов сообщения и вероятностью ошибочного приема элемента сообщения Р ош (вероятностью ошибки).

Пропускной способностью канала называют максимальное значение скорости передачи информации по этому каналу. То есть, пропускная способность характеризует потенциальные возможности передачи информации.

Пропускная способность рассчитывается по формуле:

Для двоичного симметричного канала (m=2) пропускная способность в двоичных единицах на секунду (Бодах):

При пропускная способность двоичного канала С=0, поскольку при такой вероятности ошибки последовательность выходных двоичных символов можно получить, совсем не передавая сигналы по каналу, а выбирая их наугад (например, по результатам бросания монеты), т.е. последовательности на выходе и входе канала независимы. Случай С=0 называют обрывом канала. То, что пропускная способность при в двоичном канале такая же, как при (канал без шумов), объясняется тем, что при достаточно все выходные символы инвертировать (т.е. заменить 0 на 1 и 1 на 0), чтобы правильно восстановить входной сигнал.

Производительность источника информации равна:

кбит/с (7.3)

Рассчитаем пропускную способность канала с оптимальным приёмником по формуле

кбит/с(7.2):

В данном случае пропускная способность канала больше производительности источника. Это позволяет сделать вывод, что рассчитанный канал удовлетворяет условию Шеннона и может использоваться на практике для передачи аналоговых и цифровых сигналов.

Помехоустойчивое кодирование

приемник кодирование аналоговый сигнал

При передаче цифровых данных по каналу с шумом всегда существует вероятность того, что принятые данные будут содержать некоторый уровень частоты появления ошибок. Получатель, как правило, устанавливает некоторый уровень частоты появления ошибок, при превышении которого принятые данные использовать нельзя. Если частота ошибок в принимаемых данных превышает допустимый уровень, то можно использовать кодирование с исправлением ошибок., которое позволяет уменьшить частоту ошибок до приемлемой. В каналах с помехами эффективным средством повышения достоверности передачи сообщений является помехоустойчивое кодирование. Оно основано на применении специальных кодов, которые корректируют ошибки, вызванные действием помех. Код называется корректирующим, если он позволяет обнаруживать или обнаруживать и исправлять ошибки при приеме сообщений. Код, посредством которого только обнаруживаются ошибки, носит название обнаруживающего кода. Исправление ошибки при таком кодировании обычно производится путем повторения искаженных сообщений. Запрос о повторении передается по каналу обратной связи. Код, исправляющий обнаруженные ошибки, называется исправляющим кодом. В этом случае фиксируется не только сам факт наличия ошибок, но и устанавливается, какие кодовые символы приняты ошибочно, что позволяет их исправить без повторной передачи. Известны также коды, в которых исправляется только часть обнаруженных ошибок, а остальные ошибочные комбинации передаются повторно.

Для того чтобы код обладал корректирующими способностями, в кодовой последовательности должны содержаться дополнительные (избыточные) символы, предназначенные для корректирования ошибок. Чем больше избыточность кода, тем выше его корректирующая способность, но и тем ниже скорость передачи информации по каналу.

Корректирующие коды строятся так, чтобы количество комбинаций k превышало число сообщений n источника. Однако в этом случае используется лишь n комбинаций источника из общего числа для передачи информации. Такие комбинации называются разрешенными, а остальные - запрещенными. Приемнику известны все разрешенные и запрещенные комбинации. Если при приеме некоторого разрешенного сообщения, в результате ошибки, оно попадает в разряд запрещенных, то такая ошибка будет обнаружена, а также, при определенных условиях, исправлена. Следует заметить, что при ошибке, приводящей к появлению другого разрешенного сигнала, такая ошибка не обнаружима.

Таким образом, если комбинация на выходе оказывается запрещенной, то это указывает на то, что при передаче возникла ошибка. Отсюда видно, что избыточный код позволяет обнаружить, в каких принятых кодовых комбинациях имеются ошибочные символы. Безусловно, не все ошибки могут быть обнаружены. Существует вероятность того, что, несмотря на возникшие ошибки, принятая последовательность кодовых символов окажется разрешенной комбинацией (но не той, которая передавалась). Однако при разумном выборе кода вероятность необнаруженной ошибки (т.е. ошибки, которая переводит разрешенную комбинацию в другую разрешенную комбинацию) может быть сделана очень малой.

Эффективность помехоустойчивого кода возрастает при увеличении его длины, так как вероятность ошибочного декодирования уменьшается при увеличении длины кодируемого сообщения.

Все известные в настоящее время коды могут быть разделены на две большие группы: блочные и непрерывные. Блочные коды характеризуются тем, что последовательность передаваемых символов разделена на блоки. Операции кодирования и декодирования в каждом блоке производится отдельно. Непрерывные коды характеризуются тем, что первичная последовательность символов, несущих информацию, непрерывно преобразуется по определенному закону в другую последовательность, содержащую избыточное число символов. При этом процессы кодирования и декодирования не требует деления кодовых символов на блоки.

Разновидностями как блочных, так и непрерывных кодов являются разделимые (с возможностью выделения информационных и контрольных символов) и неразделимые коды. Наиболее многочисленным классом разделимых кодов составляют линейные коды. Их особенность состоит в том, что контрольные символы образуются как линейные комбинации информационных символов.

Расстоянием Хэмминга d между двумя последовательностями называется число позиций, в которых две последовательности отличаются друг от друга.

Ошибка обнаруживается всегда, если её кратность, т.е. число искаженных символов в кодовой комбинации: qd, то некоторые ошибки также обнаруживаются. Однако полной гарантии обнаружения ошибок нет, т.к. ошибочная комбинация может совпадать с какой-либо разрешенной комбинацией. Минимальное кодовое расстояние, при котором обнаруживаются любые одиночные ошибки: d=2.

Чаще всего применяются систематические линейные коды, которые строятся следующим образом. Сначала строится простой код длиной n, т.е. множество всех n-последовательностей двоичных символов, называемых информационными. Затем к каждой из этих последовательностей приписывается r=p-n проверочных символов, которые получаются в результате некоторых линейных операций над информационными символами.

Простейший систематический код (n, n-1) строится путём добавления к комбинации из n-1 информационных символов одного проверочного, равного сумме всех информационных символов по модулю 2. Легко видеть, что эта сумма равна нулю, если среди информационных символов содержится чётное число единиц, и равна единице, если число единиц среди информационных символов нечётное. После добавления проверочного символа образуются кодовые комбинации, содержащие только чётное количество единиц. Такой код имеет, поскольку две различные кодовые комбинации, содержащие по четному числу единиц, не могут различаться в одном разряде. Следовательно, он позволяет обнаружить одиночные ошибки. Легко убедиться, что, применяя этот код в схеме декодирования с обнаружением ошибок, можно обнаруживать все ошибки нечетной кратности. Для этого достаточно подсчитать число единиц в принятой комбинации и проверить, является ли оно четным. Если при передаче комбинации произойдут ошибки в нечетном числе разрядов q, то принятая комбинация будет иметь нечетный вес и, следовательно, окажется запрещенной. Такой код называют кодом с одной проверкой на четность.

Простейшим примером кода с проверкой на четность является код Бодо, в котором к пятизначным комбинациям информационных символов добавляется шестой контрольный символ. Вероятность необнаруженной кодом ошибки при независимых ошибках определяется биномиальным законом:

где - число ошибочных комбинаций:

Таким образом, учитывая, что, используя формулы (8.1) и (8.2), найдём вероятность необнаружения ошибки:

Определим избыточность рассчитанного канала связи, используя результаты расчётов, произведённых в параграфе 7, используя результаты формул (7.2) и (7.3):

Избыточность кода Бодо (6,5)

Избыточность кода Хэмминга (7,4)

При сравнении (8.3), (8.4) и (8.5) заметно, что избыточность канала позволяет применить только обнаруживающий код Бодо (6,5) с проверкой на чётность.

Рассчитаем вероятность ошибки корректирующего кода, учитывая оставшееся свободное время (см. п. 3):

Как следует из выражения (8.6), нет смысла применять помехоустойчивое кодирование, потому что высока вероятность ошибки корректирующего кода.


На рис. 1 приняты следующие обозначения: X, Y, Z, W – сигналы, сообщения; f – помеха; ЛС – линия связи; ИИ, ПИ – источник и приемник информации; П – преобразователи (кодирование, модуляция, декодирование, демодуляция).

Существуют различные типы каналов, которые можно классифицировать по различным признакам:

1.По типу линий связи: проводные; кабельные; оптико-волоконные;

линии электропередачи; радиоканалы и т.д.

2. По характеру сигналов: непрерывные; дискретные; дискретно-непрерывные (сигналы на входе системы дискретные, а на выходе непрерывные, и наоборот).

3. По помехозащищенности: каналы без помех; с помехами.

Каналы связи характеризуются:

1. Емкость канала определяется как произведениевремени использования канала T к, ширины спектра частот, пропускаемых каналом F к и динамического диапазона D к . , который характеризует способность канала передавать различные уровни сигналов


V к = T к F к D к. (1)

Условие согласования сигнала с каналом:

V c £ V k ; T c £ T k ; F c £ F k ; V c £ V k ; D c £ D k .

2.Скорость передачи информации – среднее количество информации, передаваемое в единицу времени.

3.

4. Избыточность – обеспечивает достоверность передаваемой информации (R = 0¸1).

Одной из задач теории информации является определение зависимости скорости передачи информации и пропускной способности канала связи от параметров канала и характеристик сигналов и помех.

Канал связи образно можно сравнивать с дорогами. Узкие дороги – малая пропускная способность, но дешево. Широкие дороги – хорошая пропускная способность, но дорого. Пропускная способность определяется самым «узким» местом.

Скорость передачи данных в значительной мере зависит от передающей среды в каналах связи, в качестве которых используются различные типы линий связи.

Проводные:

1. Проводные витая пара (что частично подавляет электромагнитное излучение других источников). Скорость передачи до 1 Мбит/с. Используется в телефонных сетях и для передачи данных.

2. Коаксиальный кабель. Скорость передачи 10–100 Мбит/с – используется в локальных сетях, кабельном телевидении и т.д.

3. Оптико-волоконная. Скорость передачи 1 Гбит/с.

В средах 1–3 затухание в дБ линейно зависит от расстояния, т.е. мощность падает по экспоненте. Поэтому через определенное расстояние необходимо ставить регенераторы (усилители).

Радиолинии:

1.Радиоканал. Скорость передачи 100–400 Кбит/с. Использует радиочастоты до 1000 МГц. До 30 МГц за счет отражения от ионосферы возможно распространение электромагнитных волн за пределы прямой видимости. Но этот диапазон сильно зашумлен (например, любительской радиосвязью). От 30 до 1000 МГц – ионосфера прозрачна и необходима прямая видимость. Антенны устанавливаются на высоте (иногда устанавливаются регенераторы). Используются в радио и телевидении.

2.Микроволновые линии. Скорости передачи до 1 Гбит/с. Используют радиочастоты выше 1000 МГц. При этом необходима прямая видимость и остронаправленные параболические антенны. Расстояние между регенераторами 10–200 км. Используются для телефонной связи, телевидения и передачи данных.

3. Спутниковая связь . Используются микроволновые частоты, а спутник служит регенератором (причем для многих станций). Характеристики те же, что у микроволновых линий.

2. Пропускная способность дискретного канала связи

Дискретный канал представляет собой совокупность средств, предназначенных для передачи дискретных сигналов .

Пропускная способность канала связи – наибольшая теоретически достижимая скорость передачи информации при условии, что погрешность не превосходит заданной величины.Скорость передачи информации – среднее количество информации, передаваемое в единицу времени. Определим выражения для расчета скорости передачи информации и пропускной способности дискретного канала связи.

При передаче каждого символа в среднем по каналу связи проходит количество информации, определяемое по формуле

I (Y, X) = I (X, Y) = H(X) – H (X/Y) = H(Y) – H (Y/X) , (2)

где: I (Y, X) – взаимная информация, т.е.количество информации, содержащееся в Y относительно X ; H(X) – энтропия источника сообщений; H (X/Y) – условная энтропия, определяющая потерю информации на один символ, связанную с наличием помех и искажений.

При передаче сообщения X T длительности T, состоящего из n элементарных символов, среднее количество передаваемой информации с учетом симметрии взаимного количества информации равно:

I(Y T , X T) = H(X T) – H(X T /Y T) = H(Y T) – H(Y T /X T) = n . (4)

Скорость передачи информации зависит от статистических свойств источника, метода кодирования и свойств канала.

Пропускная способность дискретного канала связи

. (5)

Максимально-возможное значение, т.е. максимум функционала ищется на всем множестве функций распределения вероятности p(x) .

Пропускная способность зависит от технических характеристик канала (быстродействия аппаратуры, вида модуляции, уровня помех и искажений и т.д.). Единицами измерения пропускной способности канала являются: , , , .

2.1 Дискретный канал связи без помех

Если помехи в канале связи отсутствуют, то входные и выходные сигналы канала связаны однозначной, функциональной зависимостью.

При этом условная энтропия равна нулю, а безусловные энтропии источника и приемника равны, т.е. среднее количество информации в принятом символе относительно переданного равно


I (X, Y) = H(X) = H(Y); H (X/Y) = 0.

Если Х Т – количество символов за время T , то скорость передачи информации для дискретного канала связи без помех равна

(6)

где V = 1/ – средняя скорость передачи одного символа.

Пропускная способность для дискретного канала связи без помех

(7)

Т.к. максимальная энтропия соответствует для равновероятных символов, то пропускная способность для равномерного распределения и статистической независимости передаваемых символов равна:

. (8)

Первая теорема Шеннона для канала:Если поток информации, вырабатываемый источником, достаточно близок к пропускной способности канала связи, т.е.

, где - сколь угодно малая величина,

то всегда можно найти такой способ кодирования, который обеспечит передачу всех сообщений источника, причем скорость передачи информации будет весьма близкой к пропускной способности канала.

Теорема не отвечает на вопрос, каким образом осуществлять кодирование.

Пример 1. Источник вырабатывает 3 сообщения с вероятностями:

p 1 = 0,1; p 2 = 0,2 и p 3 = 0,7.

Сообщения независимы и передаются равномерным двоичным кодом (m = 2 ) с длительностью символов, равной 1 мс. Определить скорость передачи информации по каналу связи без помех.

Решение: Энтропия источника равна

[бит/с].

Для передачи 3 сообщений равномерным кодом необходимо два разряда, при этом длительность кодовой комбинации равна 2t.

Средняя скорость передачи сигнала

V =1/2 t = 500 .

Скорость передачи информации

C = vH = 500 × 1,16 = 580 [бит/с].

2.2 Дискретный канал связи с помехами

Мы будем рассматривать дискретные каналы связи без памяти.

Каналом без памяти называется канал, в котором на каждый передаваемый символ сигнала, помехи воздействуют, не зависимо от того, какие сигналы передавались ранее. То есть помехи не создают дополнительные коррелятивные связи между символами. Название «без памяти» означает, что при очередной передаче канал как бы не помнит результатов предыдущих передач.

Лекция №2

Каналы передачи данных. Качество и эффективность ТВС.

Вопросы:

    Типы и сравнительные характеристики линий и каналов связи.

    Пропускная способность каналов связи.

    Качество и эффективность ТВС.

Цели и задачи изучения темы : получение представления о типах и сравнительных характеристиках линий и каналов связи, задачах физической передачи данных по линиям связи, основных качественных показателях систем передачи информации, пропускной способности, достоверности и надежности работы ТВС.

Изучив тему, студент должен:

    знать понятие классификации каналов связи, пропускной способности, достоверности и надежности работы ТВС

    иметь представление о каналах и линиях связи и их физической природе, их преимуществах и недостатках, пропускной способности и скорости передачи информации по каналу, надежности работы и достоверности передачи данных

Изучая тему, необходимо акцентировать внимание на следующих понятиях: линия связи, канал связи, канал передачи данных, симплексные, дуплексные, полудуплексные, коммутируемые, некоммутируемые каналы, коаксиальный кабель, волоконно-оптический кабель, витая пара, канал радиосвязи, пропускная способность канала связи, надежность ТКС, достоверность передачи данных

2.1. Типы и сравнительные характеристики линий и каналов связи.

Среда передачи данных совокупность линий передачи данных и блоков взаимодействия (т.е. сетевого оборудования, не входящего в абонентские системы).предназначенных для передачи данных между абонентскими станциями. Среды передачи данных могут быть общего пользования или выделенные для конкретного пользователя.

Линия и канал связи это не одно и то же.

Линия связи (ЛС) – это физическая среда, по которой передаются информационные сигналы.

Канал связи (КС) – средства односторонней передачи данных по линии связи.

Канал передачи данных – состоит из линий связи, по которым передается сигнал и аппаратуры передачи данных, преобразующие данные в сигналы, соответствующие типу линии связи.

Классификация каналов связи показана на рис. 2.1

Каналы связи

Механические

Физическая природа Акустические

Оптические

Электрические

Форма передаваемой Аналоговые

информации Цифровые

Направление Симплексные

передаваемой Полудуплексные

информации Дуплексные

Пропускная Низкоскоростные

способность Среднескоростные

Высокоскоростные

Наличие Коммутируемые

коммутации Выделенные

Рис 2.1. Классификация каналов связи

По физической природе ЛС и КС на их основе делятся на:

    механические – используются для передачи материальных носителей информации;

    акустические – передают звуковой сигал;

    оптические – передают световой сигнал;

    электрические – передают электрический сигнал.

Электрические и оптические КС могут быть:

    проводными , использующими для передачи сигналов проводниковые линии связи (электрические провода, кабели, световоды и т. д.);

    беспроводными (радиоканалы, инфракрасные каналы и т.д.), использующими для передачи сигналов электромагнитные волны, распространяющиеся по эфиру.

По форме представления передаваемой информации КС делятся на:

аналоговые - по аналоговым каналам передается информация, представленная в непрерывной форме, то есть в виде непрерывного ряда значений какой либо физической величины;

цифровые – по цифровым каналам передается информация, в виде цифровых сигналов.

В зависимости от возможных направлений передачи информации различают:

    симплексные КС - когда передатчик и приемник соединяются одной линией связи, по которой информация передается только в одном направлении (это характерно для телевизионных сетей связи);

    полудуплексные КС- когда два узла связи соединены так же одной линией, по которой информация передается попеременно то в одном направлении то в противоположном;

    дуплексные КС - когда два узла связи соединены двумя линиями, по которым информация одновременно передается в противоположных направлениях.

По пропускной способности каналы КС можно разделить на:

    низкоскоростные – скорость передачи информации в которых от 50 до 200 бит/сек; это телеграфные КС, как коммутируемые так и некоммутируемые;

    среднескоростные - – скорость передачи информации в которых от 300 до 9600 бит/сек; это аналоговые (телефонные) КС;

    высокоскоростные (широкополосные) КС, обеспечивают скорость передачи информации выше 56000 бит\сек.

Каналы связи могут быть:

    коммутируемые ;

    некоммутируемые .

Коммутируемые каналы создаются из отдельных участков только на время передачи по ним информации; по окончании передачи такой канал ликвидируется.

Некоммутируемые (выделенные) каналы создаются на длительное время и имеют постоянные характеристики по длине, пропускной способности, помехозащищенности.

Физической средой передачи информации в низкоскоростных и среднескоростных КС обычно являются проводные линии связи.

Для организации широкополосных КС используются различные кабели, в частности:

    неэкранированные витые пары;

    экранированные витые пары;

    коаксиальные;

    волоконно-оптические.

Неэкранированная витая пара – это изолированные проводники, попарно свитые между собой для уменьшения перекрестных наводок между проводниками.

Экранированная витая пара – это изолированные проводники, попарно свитые между собой и помещенные в экранированную проводящую оплетку, которую положено заземлять.

Коаксиальный кабель представляет собой медный проводник, покрытый диэлектриком и окруженный защитной экранирующей оболочкой.

Основу волоконно-оптического кабеля составляют стеклянные или пластиковые волокна диаметром от 5 до 100 микрон окруженные твердым заполнителем и помещенные в защитную оболочку.