Установка и настройка        21.06.2019   

Принцип работы полевого транзистора p типа. Что такое МДП-транзистор

Полупроводниковых элементов постоянно растет. Каждое новое изобретение в этой области, по сути дела, меняет все представление об электронных системах. Меняются схемотехнические возможности в проектировании, появляются новые устройства на их основе. С момента изобретения (1948 г), прошло уже немало времени. Были изобретены структуры "p-n-p" и "n-p-n", Со временем появился и МДП-транзистор, работающий по принципу изменения электрической проводимости приповерхностного полупроводникового слоя под действием электрического поля. Отсюда и еще одно название этого элемента - полевой.

Сама аббревиатура МДП (металл-диэлектрик-полупроводник) характеризует внутреннее строение этого прибора. И действительно, затвор у него изолирован от стока и истока тонким непроводящим слоем. Современный МДП-транзистор имеет длину затвора, равную 0,6 мкм. Через него может проходить только электромагнитное поле - вот оно и влияет на электрическое состояние полупроводника.

Давайте рассмотрим, как работает и выясним, в чем же его основное отличие от биполярного “собрата”. При появлении необходимого потенциала на его затворе появляется электромагнитное поле. Оно влияет на сопротивление перехода сток-исток перехода. Вот некоторые преимущества, которые дает использование этого прибора.

При проектировании и работе с этими элементами, необходимо учитывать, что МДП-транзисторы очень чувствительны к перенапряжению в схеме и То есть прибор может выйти из строя при прикосновении к управляющим выводам. При монтаже или демонтаже используйте специальное заземление.

Перспективы в использовании этого прибора очень хорошие. Благодаря своим уникальным свойствам, он нашел широкое применение в различной электронной аппаратуре. Инновационным направлением в современной электронике является использование силовых IGBT-модулей для работы в различных цепях, в том числе, и индукционных.

Технология их производства постоянно совершенствуется. Ведутся разработки по масштабированию (уменьшению) длины затвора. Это позволит улучшить и так уже неплохие эксплуатационные параметры прибора.

Полевой транзистор – электрический полупроводниковый прибор, выходной ток которого управляется полем, следовательно, напряжением, одного знака. Формирующий сигнал подается на затвор, регулирует проводимость канала n или p-типа. В отличие от биполярных транзисторов, где сигнал переменной полярности. Вторым признаком назовем формирование тока исключительно основными носителями (одного знака).

Классификация полевых транзисторов

Начнём классификацией. Разновидности полевых транзисторов многочисленны, каждая работает сообразно алгоритму:

Помимо общей классификации придумана специализированная, определяющая принципы работы. Различают:

  1. Полевые транзисторы с управляющим p-n-переходом.
  2. Полевые транзисторы с барьером Шоттки.
  3. Полевые транзисторы с изолированным затвором:
  • С встроенным каналом.
  • С индуцированным каналом.

В литературе дополнительно упорядочивают структуры следующим образом: применять обозначение МОП нецелесообразно, конструкции на оксидах считают частным случаем МДП (металл, диэлектрик, полупроводник). Барьер Шоттки (МеП) следует отдельно выделять, поскольку это иная структура. Напоминает свойствами p-n-переход. Добавим, что конструктивно в состав транзистора способны входить одновременно диэлектрик (нитрид кремния), оксид (четырехвалентный кремния), как это случилось с КП305. Такие технические решения используются людьми, ищущими методы получения уникальных свойств изделия, удешевления.

Среди зарубежных аббревиатур для полевых транзисторов зарезервировано сочетание FET, иногда обозначает тип управления – с p-n-переходом. В последнем случае наравне с этим встретим JFET. Слова-синонимы. За рубежом принято отделять оксидные (MOSFET, MOS, MOST – синонимы), нитридные (MNS, MNSFET) полевые транзисторы. Наличие барьера Шоттки маркируется SBGT. По-видимому, материал значение, отечественная литература значение факта замалчивает.

Электроды полевых транзисторов на схемах обозначаются: D (drain) – сток, S (source) – исток, G (gate) – затвор. Подложку принято именовать substrate.

Устройство полевого транзистора

Управляющий электрод полевого транзистора называется затвором. Канал образован полупроводником произвольного типа проводимости. Сообразно полярность управляющего напряжения положительная или отрицательная. Поле соответствующего знака вытесняет свободные носители, пока перешеек под электродом затвора не опустеет вовсе. Достигается путем воздействия поля либо на p-n-переход, либо на однородный полупроводник. Ток становится равным нулю. Так работает полевой транзистор.

Ток протекает от истока к стоку, новичков традиционно мучает вопрос различения двух указанных электродов. Отсутствует разница, в каком направлении движутся заряды. Полевой транзистор обратим. Униполярность носителей заряда объясняет малый уровень шумов. Поэтому в технике полевые транзисторы занимают доминирующую позицию.

Ключевой особенностью приборов назовем большое входное сопротивление, в особенности, переменному току. Очевидный факт, проистекающий из управления обратно смещённым p-n-переходом (переходом Шоттки), либо емкости технологического конденсатора в районе изолированного затвора.

Подложки часто выступает нелегированный полупроводник. Для полевых транзисторов с затвором Шоттки — арсенид галлия. В чистом виде неплохой изолятор, к которому в составе изделия предъявляются требования:

Сложно создать значительной толщины слой, отвечающий перечню условий. Поэтому добавляется пятое требование, заключающееся в возможности постепенного наращивания подложки до нужных размеров.

Полевые транзисторы с управляющим p-n-переходом и МеП

В этом случае тип проводимости материала затвора отличается от используемого каналом. На практике встретите разные улучшения. Затвор составлен пятью областями, утопленными в канале. Меньшим напряжением удается управлять протеканием тока. Означая увеличение коэффициента усиления.

Биполярный транзистор

В схемах используется обратное смещение p-n-перехода, чем сильнее, тем уже канал для протекания тока. При некотором значении напряжения транзистор запирается. Прямое смещение опасно использовать по той причине, что мощная управляемая цепь может повлиять на контур затвора. Если переход открыт, потечет большой ток, либо приложится высокое напряжение. Нормальный режим обеспечивается правильным подбором полярности и других характеристик источника питания, выбором рабочей точки транзистора.

Однако в некоторых случаях намеренно используются прямые токи затвора. Примечательно, что этот режим могут использовать те МДП-транзисторы, где подложка образует с каналом p-n-переход. Движущийся заряд истока делится между затвором и стоком. Можно найти область, где получается значительный коэффициент усиления по току. Управляется режим затвором. При росте тока iз (до 100 мкА) параметры схемы резко ухудшаются.

Аналогичное включение используется схемой так называемого затворного частотного детектора. Конструкция эксплуатирует выпрямительные свойства p-n-перехода между затвором и каналом. Прямое смещение мало или вовсе нулевое. Прибор по-прежнему управляется током затвора. В цепи стока получается значительное усиление сигнала. Выпрямленное напряжение для затвора является запирающим, изменяется по входному закону. Одновременно с детектированием достигается усиление сигнала. Напряжение цепи стока содержит компоненты:

  • Постоянная составляющая. Никак не используется.
  • Сигнал с частотой несущей. Заводится на землю путем использования фильтрующих емкостей.
  • Сигнал с частотой модулирующего сигнала. Обрабатывается для извлечения заложенной информации.

Недостатком затворного частотного детектора считают большой коэффициент нелинейных искажений. Причем результаты одинаково плохи для слабых (квадратичная зависимость рабочей характеристики) и сильных (выход в режим отсечки) сигналов. Несколько лучшие демонстрирует фазовый детектор на двухзатворном транзисторе. На один управляющий электрод подают опорный сигнал, на стоке образуется информационная составляющая, усиленная полевым транзистором.

Несмотря на большие линейные искажения эффект находит применение. Например, в избирательных усилителях мощности, дозировано пропускающих узкий спектр частот. Гармоники фильтруются, не оказывают большого влияния на итоговое качество работы схемы.

Транзисторы металл-полупроводник (МеП) с барьером Шоттки почти не отличаются от имеющих p-n-переход. По крайней мере, когда дело касается принципов работы. Но благодаря особым качествам перехода металл-полупроводник, изделия способны работать на повышенной частоте (десятки ГГц, граничные частоты в районе 100 ГГц). Одновременно МеП структура проще в реализации, когда дело касается производства и технологических процессов. Частотные характеристики определяются временем заряда затвора и подвижностью носителей (для GaAs свыше 10000 кв. см/В с).

МДП-транзисторы

В МДП-структурах затвор надежно изолирован от канала, управление происходит полностью за счет воздействия поля. Изоляция ведётся за счет оксида кремния или нитрида. Именно эти покрытия проще нанести на поверхности кристалла. Примечательно, что в этом случае также имеются переходы металл-полупроводник в районе истока и стока, как и в любом полярном транзисторе. Об этом факте забывают многие авторы, либо упоминают вскользь путем применения загадочного словосочетания омические контакты.

В теме про диод Шоттки поднимался этот вопрос. Не всегда на стыке металла и полупроводника возникает барьер. В некоторых случаях контакт омический. Это зависит по большей части от особенностей технологической обработки и геометрических размеров. Технические характеристики реальных приборов сильно зависят от различных дефектов оксидного (нитридного) слоя. Вот некоторые:

  1. Несовершенство кристаллической решетки в поверхностной области обусловлено разорванными связями на границе смены материалов. Влияние оказывают как свободные атомы полупроводника, там и примесей наподобие кислорода, который имеется в любом случае. Например, при использовании методов эпитаксии. В результате появляются энергетические уровни, лежащие в глубине запрещенной зоны.
  2. На границе оксида и полупроводника (толщиной 3 нм) образуется избыточный заряд, природа которого на сегодняшний день еще не объяснена. Предположительно, роль играют положительные свободные места (дырки) дефектных атомов самого полупроводника и кислорода.
  3. Дрейф ионизированных атомов натрия, калия и других щелочных металлов происходит при низких напряжениях на электроде. Это увеличивает заряд, скопившийся на границе слоев. Для блокировки этого эффекта в оксиде кремния используют окись фосфора (ангидрид).
А теперь давайте поговорим о полевых транзисторах. Что можно предположить уже по одному их названию? Во-первых, поскольку они транзисторы, то с их помощью можно как-то управлять выходным током. Во-вторых, у них предполагается наличие трех контактов. И в-третьих, в основе их работы лежит p-n переход. Что нам на это скажут официальные источники?
Полевыми транзисторами называют активные полупроводниковые приборы, обычно с тремя выводами, в которых выходным током управляют с помощью электрического поля. (electrono.ru)

Определение не только подтвердило наши предположения, но и продемонстрировало особенность полевых транзисторов - управление выходным током происходит посредством изменения приложенного электрического поля, т.е. напряжения. А вот у биполярных транзисторов , как мы помним, выходным током управляет входной ток базы.

Еще один факт о полевых транзисторах можно узнать, обратив внимание на их другое название - униполярные . Это значит, что в процессе протекания тока у них участвует только один вид носителей заряда (или электроны, или дырки).

Три контакта полевых транзисторов называются исток (источник носителей тока), затвор (управляющий электрод) и сток (электрод, куда стекают носители). Структура кажется простой и очень похожей на устройство биполярного транзистора. Но реализовать ее можно как минимум двумя способами. Поэтому различают полевые транзисторы с управляющим p-n переходом и с изолированным затвором .

Вообще, идея последних появилась еще в 20-х годах XX века, задолго до изобретения биполярных транзисторов. Но уровень технологии позволили реализовать ее лишь в 1960 году. В 50-х же был сначала теоретически описан, а затем получил воплощение полевой транзистор с управляющим p-n переходом. И, как и их биполярные «собратья», полевые транзисторы до сих пор играют в электронике огромную роль.

Перед тем, как перейти к рассказу о физике работы униполярных транзисторов, хочу напомнить ссылки, по которым можно освежить свои знания о p-n переходе: раз и два .

Полевой транзистор с управляющим p-n-переходом

Итак, как же устроен первый тип полевых транзисторов? В основе устройства лежит пластинка из полупроводника с проводимостью (например) p-типа. На противополжных концах она имеет электроды, подав напряжение на которые мы получим ток от истока к стоку. Сверху на этой пластинке есть область с противоположным типом проводимости, к которой подключен третий электрод - затвор. Естественно, что между затвором и p-областью под ним (каналом ) возникает p-n переход. А поскольку n-слой значительно у же канала, то большая часть обедненной подвижными носителями заряда области перехода будет приходиться на p-слой. Соответственно, если мы подадим на переход напряжение обратного смещения, то, закрываясь, он значительно увеличит сопротивление канала и уменьшит ток между истоком и стоком. Таким образом, происходит регулирование выходного тока транзистора с помощью напряжения (электрического поля) затвора.

Можно провести следующую аналогию: p-n переход - это плотина, перекрывающая поток носителей заряда от истока к стоку. Увеличивая или уменьшая на нем обратное напряжение, мы открываем/закрываем на ней шлюзы, регулируя «подачу воды» (выходной ток).

Итак, в рабочем режиме полевого транзистора с управляющим p-n переходом напряжение на затворе должно быть либо нулевым (канал открыт полностью), либо обратным.
Если величина обратного напряжения станет настолько большой, что запирающий слой закроет канал, то транзистор перейдет в режим отсечки .

Даже при нулевом напряжении на затворе, между затвором и стоком существует обратное напряжение, равное напряжению исток-сток. Вот почему p-n переход имеет такую неровную форму, расширяясь к области стока.

Само собой разумеется, что можно сделать транзистор с каналом n-типа и затвором p-типа. Сущность его работы при этом не изменится.

Условные графические изображения полевых транзисторов приведены на рисунке (а - с каналом p-типа, б - с каналом n-типа). Стрелка здесь указывает направление от p-слоя к n-слою.

Статические характеристики полевого транзистора с управляющим p-n-переходом
Поскольку в рабочем режиме ток затвора обычно невелик или вообще равен нулю, то графики входных характеристик полевых транзисторов мы рассматривать не будем. Перейдем сразу к выходным или стоковым. Кстати, статическими их называют потому, что на затвор подается постоянное напряжение. Т.е. нет необходимости учитывать частотные моменты, переходные процессы и т.п.


Выходной (стоковой ) называется зависимость тока стока от напряжения исток-сток при константном напряжении затвор-исток. На рисунке - график слева.

На графике можно четко выделить три зоны. Первая из них - зона резкого возрастания тока стока. Это так называемая «омическая» область . Канал «исток-сток» ведет себя как резистор, чье сопротивление управляется напряжением на затворе транзистора.

Вторая зона - область насыщения . Она имеет почти линейный вид. Здесь происходит перекрытие канала в области стока, которое увеличивается при дальнейшем росте напряжения исток-сток. Соответственно, растет и сопротивление канала, а стоковый ток меняется очень слабо (закон Ома, однако). Именно этот участок характеристики используют в усилительной технике, поскольку здесь наименьшие нелинейные искажения сигналов и оптимальные значения малосигнальных параметров, существенных для усиления. К таким параметрам относятся крутизна характеристики, внутреннее сопротивление и коэффициент усиления. Значения всех этих непонятных словосочетаний будут раскрыты ниже.

Третья зона графика - область пробоя , чье название говорит само за себя.

С правой стороны рисунка показан график еще одной важной зависимости - стоко-затворной характеристики . Она показывает то, как зависит ток стока от напряжения затвор-исток при постоянном напряжении между истоком и стоком. И именно ее крутизна является одним из основных параметров полевого транзистора.

Полевой транзистор с изолированным затвором

Такие транзисторы также часто называют МДП (металл-диэлектрик-полупроводник)- или МОП (металл-оксид-полупроводник)-транзисторами (англ. metall-oxide-semiconductor field effect transistor, MOSFET). У таких устройств затвор отделен от канала тонким слоем диэлектрика. Физической основой их работы является эффект изменения проводимости приповерхностного слоя полупроводника на границе с диэлектриком под воздействием поперечного электрического поля.
Устройство транзисторов такого вида следующее. Есть подложка из полупроводника с p-проводимостью, в которой сделаны две сильно легированные области с n-проводимостью (исток и сток). Между ними пролегает узкая приповерхностнаяя перемычка, проводимость которой также n-типа. Над ней на поверхности пластины имеется тонкий слой диэлектрика (чаще всего из диоксида кремния - отсюда, кстати, аббревиатура МОП). А уже на этом слое и расположен затвор - тонкая металлическая пленка. Сам кристалл обычно соединен с истоком, хотя бывает, что его подключают и отдельно.

Если при нулевом напряжении на затворе подать напряжение исток-сток, то по каналу между ними потечет ток. Почему не через кристалл? Потому что один из p-n переходов будет закрыт.

А теперь подадим на затвор отрицательное относительно истока напряжение. Возникшее поперечное электрическое поле «вытолкнет» электроны из канала в подложку. Соответственно, возрастет сопротивление канала и уменьшится текущий через него ток. Такой режим, при котором с возрастанием напряжения на затворе выходной ток падает, называют режимом обеднения .
Если же мы подадим на затвор напряжение, которое будет способствовать возникновению «помогающего» электронам поля «приходить» в канал из подложки, то транзистор будет работать в режиме обогащения . При этом сопротивление канала будет падать, а ток через него расти.

Рассмотренная выше конструкция транзистора с изолированным затвором похожа на конструкцию с управляющим p-n переходом тем, что даже при нулевом токе на затворе при ненулевом напряжении исток-сток между ними существует так называемый начальный ток стока . В обоих случаях это происходит из-за того, что канал для этого тока встроен в конструкцию транзистора. Т.е., строго говоря, только что мы рассматривали такой подтип МДП-транзисторов, как транзисторы с встроенным каналом .

Однако, есть еще одна разновидность полевых транзисторов с изолированным затвором - транзистор с индуцированным (инверсным) каналом . Из названия уже понятно его отличие от предыдущего - у него канал между сильнолегированными областями стока и истока появляется только при подаче на затвор напряжения определенной полярности.

Итак, мы подаем напряжение только на исток и сток. Ток между ними течь не будет, поскольку один из p-n переходов между ними и подложкой закрыт.
Подадим на затвор (прямое относительно истока) напряжение. Возникшее электрическое поле «потянет» электроны из сильнолегированных областей в подложку в направлении затвора. И по достижении напряжением на затворе определенного значения в приповерхностной зоне произойдет так называемая инверсия типа проводимости. Т.е. концентрация электронов превысит концентрацию дырок, и между стоком и истоком возникнет тонкий канал n-типа. Транзистор начнет проводить ток, тем сильнее, чем выше напряжение на затворе.
Из такой его конструкции понятно, что работать транзистор с индуцированным каналом может только находясь в режиме обогащения. Поэтому они часто встречаются в устройствах переключения.

Условные обозначения транзисторов с изолированным затвором следующие:


Здесь
а − со встроенным каналом n- типа;
б − со встроенным каналом р- типа;
в − с выводом от подложки;
г − с индуцированным каналом n- типа;
д − с индуцированным каналом р- типа;
е − с выводом от подложки.

Статические характеристики МДП-транзисторов
Семейство стоковых и стоко-затворная характеристики транзистора с встроенным каналом предсталены на следующем рисунке:


Те же характеристики для транзистора с идуцированным каналом:
Экзотические МДП-структуры
Чтобы не запутывать изложение, хочу просто посоветовать ссылки, по которым о них можно почитать. В первую очередь, это всеми любимая википедия , раздел «МДП-структуры специального назначения». А здесь теория и формулы: учебное пособие по твердотельной электронике, глава 6 , подглавы 6.12-6.15. Почитайте, это интересно!

Общие параметры полевых транзисторов

  1. Максимальный ток стока при фиксированном напряжении затвор-исток.
  2. Максимальное напряжение сток-исток , после которого уже наступает пробой.
  3. Внутреннее (выходное) сопротивление . Оно представляет собой сопротивление канала для переменного тока (напряжение затвор-исток - константа).
  4. Крутизна стоко-затворной характеристики . Чем она больше, тем «острее» реакция транзистора на изменение напряжения на затворе.
  5. Входное сопротивление . Оно определяется сопротивлением обратно смещенного p-n перехода и обычно достигает единиц и десятков МОм (что выгодно отличает полевые транзисторы от биполярных «родственников»). А среди самих полевых транзисторов пальма первенства принадлежит устройствам с изолированным затвором.
  6. Коэффициент усиления - отношение изменения напряжения исток-сток к изменению напряжения затвор-исток при постоянном токе стока.

Схемы включения


Как и биполярный, полевой транзистор можно рассматривать как четырехполюсник, у которого два из четырех контактов совпадают. Таким образом, можно выделить три вида схем включения: с общим истоком, с общим затвором и с общим стоком. По характеристикам они очень похожи на схемы с общим эмиттером, общей базой и общим коллектором для биполярных транзисторов.
Чаще всего применяется схема с общим истоком (а ), как дающая большее усиление по току и мощности.
Схема с общим затвором (б ) усиления тока почти не дает и имеет маленькое входное сопротивление. Из-за этого такая схема включения имеет ограниченное практическое применение.
Схему с общим стоком (в ) также называют истоковым повторителем . Ее коэффициент усиления по напряжению близок к единице, входное сопротивление велико, а выходное мало.

Отличия полевых транзисторов от биполярных. Области применения

Как уже было сказано выше, первое и главное отличие этих двух видов транзисторов в том, что вторые управляются с помощью изменения тока, а первые - напряжения. И из этого следуют прочие преимущества полевых транзисторов по сравнению с биполярными:
  • высокое входное сопротивление по постоянному току и на высокой частоте, отсюда и малые потери на управление;
  • высокое быстродействие (благодаря отсутствию накопления и рассасывания неосновных носителей);
  • поскольку усилительные свойства полевых транзисторов обусловлены переносом основных носителей заряда, их верхняя граница эффективного усиления выше, чем у биполярных;
  • высокая температурная стабильность;
  • малый уровень шумов, так как в полевых транзисторах не используется явление инжекции неосновных носителей заряда, которое и делает биполярные транзисторы «шумными»;
  • малое потребление мощности.
Однако, привсем при этом у полевых транзисторов есть и недостаток - они «боятся» статического электричества, поэтому при работе с ними предъявляют особо жесткие требования по защите от этой напасти.

Где применяются полевые транзисторы? Да практически везде. Цифровые и аналоговые интегральные схемы, следящие и логические устройства, энергосберегающие схемы, флеш-память… Да что там, даже кварцевые часы и пульт управления телевизором работают на полевых транзисторах. Они повсюду, %хабраюзер %. Но теперь ты знаешь, как они работают!

МДП-транзисторы с индуцированным каналом

Принцип действия . При напряжении на затворе относительно истока равном нулю и при наличии напряжения на стоке ток стока оказывается ничтожно малым. Он представляет собой обратный ток р-n -перехода между подложкой и сильнолегированной областью стока. При отрицательном потенциале на затворе (для структуры, показанной на рис. 4.12) в результате проникновения электрического поля через диэлектрический слой в полупроводник при малых напряжениях на затворе у поверхности полупроводника под затвором возникает обедненный основными носителями слой и область объемного заряда, состоящая из ионизированных нескомпенсированных примесных атомов.

При напряжениях на затворе, больших U зи пор, у поверхности полупроводника под затвором возникает инверсный слой, который и является каналом, соединяющим исток со стоком. Толщина и поперечное сечение канала будут изменяться с изменением напряжения на затворе, соответственно будет изменяться и ток стока, т. е. ток в цепи нагрузки и относительно мощного источника питания (схема включения полевого транзистора с изолированным затвором аналогична схеме включения полевого транзистора с управляющим р-n -переходом, но полярности внешних источников питания различны для транзисторов с р - и n -каналом). Так происходит управление током стока в полевом транзисторе с изолированным затвором и с индуцированным каналом.

В связи с тем, что затвор отделен от подложки диэлектрическим слоем, ток в цепи затвора ничтожно мал, мала и мощность, потребляемая от источника сигнала в цепи затвора и необходимая для управления относительно большим током стока. Таким образом, МДП-транзистор с индуцированным каналом может производить усиление электромагнитных колебаний по напряжению и по мощности.

Принцип усиления мощности в МДП-транзисторах можно рассматривать с точки зрения передачи носителями заряда энергии постоянного электрического поля (энергии источника питания в выходной цепи) переменному электрическому полю. В МДП-транзисторе до возникновения канала почти все напряжение источника питания в цепи стока падало на полупроводнике между истоком и стоком, создавая относительно большую постоянную составляющую напряженности электрического поля. Под действием напряжения на затворе в полупроводнике под затвором возникает канал, по которому от истока к стоку движутся носители заряда – дырки. Дырки, двигаясь по направлению постоянной составляющей электрического поля, разгоняются этим полем, и их энергия увеличивается за счет энергии источника питания в цепи стока. Одновременно с возникновением канала и появлением в нем подвижных носителей заряда уменьшается напряжение на стоке, т. е. мгновенное значение переменной составляющей электрического поля в канале направлено противоположно постоянной составляющей. Поэтому дырки тормозятся переменным электрическим полем, отдавая ему часть своей энергии.

Выходные статические характеристики . Характер зависимостей I с = =(U си) при U зи = const для МДП-транзистора с индуцированным каналом аналогичен характеру таких же зависимостей для полевого транзистора с управляющим р-n -переходом. Сублинейность крутых частей характеристик (рис. 4.13, а ) объясняется уменьшением толщины канала около стока при

увеличении напряжения на стоке и неизменном напряжении на затворе, так как на сток и на затвор подаются потенциалы одного знака относительно истока. Следовательно, разность потенциалов между стоком и затвором или между затвором и прилегающей к стоку частью канала уменьшается. Другими словами, из-за прохождения по каналу тока стока получается неэквипотенциальность канала по его длине. Поэтому при увеличении тока стока происходит уменьшение поперечного сечения канала около стока. При напряжении насыщения U си нас происходит перекрытие канала около стока, и дальнейшее увеличение напряжения на стоке вызывает очень малое увеличение тока стока.

Сублинейный характер зависимостей I c = f (U си) вызван также эффектом насыщения дрейфовой скорости носителей заряда или уменьшением их подвижности в сильных полях, как и в полевых транзисторах с управляющим р-n - переходом.

При увеличении напряжения на затворе (по абсолютному значению) выходные статические характеристики смещаются в область больших токов стока (рис. 4.13, а), что легко понять на основе принципа действия МДП-транзистора с индуцированным каналом.

При больших напряжениях на стоке может произойти пробой МДП-транзистора, при этом может быть два вида пробоя – пробой р-n -перехода под стоком и пробой диэлектрика под затвором.

Пробой p-n -перехода обычно имеет лавинный характер, так как МДП-транзисторы изготовляют обычно на кремнии. При этом на пробивное напряжение U си проб может влиять напряжение на затворе: так как на сток и на затвор МДП-транзистора с индуцированным каналом подаются потенциалы одной полярности, то с увеличением напряжения на затворе будет увеличиваться U си.проб. Пробой диэлектрика под затвором может происходить при напряжении на затворе всего в несколько десятков вольт, так как толщина слоя двуокиси кремния – около 0,1 мкм. Пробой обычно имеет тепловой характер, происходит при шнуровании тока, и поэтому даже при небольших энергиях импульсов напряжения могут произойти необратимые изменения в диэлектрике. Этот вид пробоя может возникать в результате накопления статических зарядов, так как входное сопротивление МДП-транзисторов велико. Для исключения возможности такого вида пробоя вход МДП-транзистора часто защищают стабилитроном, ограничивающим напряжение на затворе.

Статические характеристики передачи . Характер зависимостей I с = =f (U зи) при U си = const ясен из принципа действия МДП-транзистора с индуцированным каналом. Характеристики для разных напряжений на стоке выходят из точки на оси абсцисс, соответствующей пороговому напряжению U зи . пор (рис. 4.13, б). С увеличением напряжения на стоке при неизменном напряжении на затворе ток стока возрастает даже в пологой части статических выходных характеристик (рис. 4.13, а), что приводит к смещению характеристик передачи вверх в выбранной системе координат.

4.3. Дифференциальные параметры и их определение по статическим характеристикам

Параметры транзисторов можно определить по статическим характеристикам, как показано на рис. 4.14. Для рабочей точки A (U с / , I c / , U зи /) крутизна и дифференциальное сопротивление определяются следующими выражениями:



(4.10) (4.11)

Статический коэффициент усиления по напряжению:

Определяется при постоянстве тока стока.

Графически его не всегда можно найти.

Поэтому он рассчитывается по уравнению µ = SR i .

4.4. Основные параметры полевых транзисторов

и их ориентировочные значения

К основным параметрам полевых транзисторов относят:

1). Крутизну характеристики

(4.12)

2). Крутизну характеристики по подложке

(4.13)

3). Статический коэффициент усиления по напряжению µ – от нескольких единиц до сотен;

5). Пороговое напряжение U зи пор (U зи пор = 1…6 В).

6). Сопротивление сток-исток в открытом состоянии R отк (R отк = 2 …300 ОМ), дифференциальное сопротивление R i = dU/dI U СИ = const в пределах 5...100 кОМ.;

6). Постоянный ток стока I cмакс (десятки миллиампер – десятки ампер).

7). Остаточный ток стока I c ост – ток стока при напряжении U зи отс (I c ост = = 0,001…10мА);

8). Максимальную частоту усиления f p – частоту, на которой коэффициент усиления по мощности К р равен единице (f p – десятки, сотни мегагерц – до нескольких десятков гигагерц).

9). Начальный ток стока I с нач – ток стока при нулевом напряжении U зи; у транзисторов с управляющим р-n- переходом I с нач = 0,2 … 600 мА; с технологически встроенным каналом I с нач = 0,1… 100 мА; с индуцированным каналом I с нач = 0,01… 0,5 мкА.

Обозначения полевых транзисторов аналогичны обозначениям биполярных транзисторов, только вместо буквы Т ставится буква П, например, КП1ОЗА, 2П303В и т. д.

Широкое распространение получают полевые транзисторы с барьером Шотки. Перспективными транзисторами являются полевые транзисторы на арсениде галлия, работающие на частотах до десятков – сотен гигагерц, которые можно использовать в малошумящих усилителях СВЧ, усилителях мощности и генераторах.

В отличие от полевых транзисторов с p-n-переходом, в которых затвор имеет непосредственный электрический контакт с близлежащей областью токопроводящего канала, в МДП-транзисторах затвор изолирован от указанной области слоем диэлектрика.

По этой причине МДП-транзисторы относят к классу полевых транзисторов с изолированным затвором.

МДП-транзисторы (структура металл - диэлектрик - полупроводник) выполняют из кремния. В качестве диэлектрика используют окисел кремния SiO2. Отсюда другое название этих транзисторов - МОП-транзисторы (структура металл - окисел - полупроводник). Наличие диэлектрика обеспечивает высокое входное сопротивление рассматриваемых транзисторов (1012-1014 Ом).

Рис. 5.6. Условные обозначения МДП-транзисторов со встроенным каналом n-типа (а), р-типа (б) и выводом от подложки (в); с индуцированным каналом n-типа (г), р-типа (д) и выводом от подложки (е)

Принцип действия МДП-транзисторов основан на эффекте изменения проводимости приповерхностного слоя полупроводника на границе с диэлектриком под воздействием поперечного электрического поля. Приповерхностный слой полупроводника является токопроводящим каналом этих транзисторов. МДП-транзисторы выполняют двух типов - со встроенным и с индуцированным каналом.

МДП-транзисторы представляют собой в общем случае четырех- электродный прибор. Четвертым электродом (подложкой), выполняющим вспомогательную функцию, является вывод от подложки исходной полупроводниковой пластины. МДП-траизисторы могут быть как с каналом п- или р-типа. Условные обозначения МДП-транзистров показаны на рис. 5.6 а-е.

Рассмотрим особенности МДП-транзисторов со встроенным каналом. Конструкция такого транзистора с каналом п-типа показана на рис. 5.7, а. В исходной пластине кремния р-типа с помощью диффузионной технологии созданы области истока, стока и канала п-типа. Слой окисла SiO2 выполняет функции защиты поверхности, близлежащей к истоку и стоку, а также изоляции затвора от канала. Вывод подложки (если он имеется) иногда присоединяют к истоку.

Стоковые (выходные) характеристики полевого транзистора со встроенным каналом п-типа для случая соединения подложки с истоком показаны на рис. 5.7, б. По виду эти характеристики близки к характеристикам полевого транзистора с p-n-переходом. Рассмотрим характеристику при Uзи = 0, что соответствует соединению затвора с истоком. Внешнее напряжение приложено к участку исток - сток положительным полюсом к стоку. Поскольку Uзи = 0, через прибор протекает ток, определяемый исходной проводимостью канала. На начальном участке 0-а, когда падение напряжения в канале мало, зависимость Ic(Ucи) близка к линейной. По мере приближения к точке б падение напряжения в канале приводит ко все более существенному влиянию его сужения (пунктир на рис. 5.7, а) на проводимость канала, что уменьшает крутизну нарастания тока на участке а-б. После точки б токопроводящий канал сужается до минимума, что вызывает ограничение нарастания тока и появление на характеристике пологого участка II.

Рис. 5.7. Конструкция МДП-транзистора со встроенным каналом п-типа (а); стоко-затворная характеристика (б); стоко-затворная характеристика (в)

Покажем влияние напряжения затвор - исток на ход стоковых характеристик.

В случае приложения к затвору напряжения (Uзи При подаче на затвор напряжения Uзи > 0 поле затвора притягивает электроны в канал из р-слоя полупроводниковой пластины. Концентрация носителей заряда в канале увеличивается, что соответствует режиму обогащения канала носителями. Проводимость канала возрастает, ток Iс увеличивается. Стоковые характеристики при Uзи > 0 располагаются выше исходной кривой (Uзи = 0).

Для транзистора имеется предел повышения напряжения Uсз ввиду наступления пробоя прилежащего к стоку участка сток - затвор. На стоковых характеристиках пробою соответствует достижение некоторой величины Uси.пр. В случае Uзи 0 (режим обогащения).

Конструкция МДП-транзистора с индуцированным каналом п-типа показана на рис. 5.8, с. Канал проводимости тока здесь специально не создается, а образуется (индуцируется) благодаря притоку электронов из полупроводниковой пластины в случае приложения к затвору напряжения положительной полярности относительно истока. За счет притока электронов в приповерхностном слое происходит изменение электропроводности полупроводника, т.е. индуцируется токопроводящий канал п-типа, соединяющий области стока и истока. Проводимость канала возрастает с повышением приложенного к затвору напряжения положительной полярности. Таким образом, транзистор с индуцированным каналом работает только в режиме обогащения.

Стоковые (выходные) характеристики полевого транзистора с индуцированным каналом п-типа приведены на рис. 5.8, б. Они близки по виду аналогичным характеристикам транзистора со встроенным каналом и имеют тот же характер зависимости Iс = F(Uси). Отличие заключается в том, что управление током транзистора осуществляется напряжением одной полярности, совпадающей с полярностью напряжения Uси. Ток Iс равен нулю при Uзи = 0, в то время как в транзисторе со встроенным каналом для этого необходимо изменить полярность напряжения на затворе относительно истока. Вид стоко-затворной характеристики транзистора с индуцированным каналом показан на рис. 5.8, в.

МДП-транзисторы обоих типов выпускаются на тот же диапазон токов и напряжений, что и транзисторы с р-п-переходом. Примерно такой же порядок величин имеют крутизна S и внутреннее сопротивление ri. Что касается входного сопротивления и межэлектродных емкостей, то МДП-транзисторы имеют лучшие показатели, чем транзисторы с p-n-переходом. Как указывалось, входное сопротивление у них составляет 1012-1014 Ом. Значение межэлектродных емкостей не превышает: для Сзи, Сси - 10 пФ, для Сзс - 2 пФ. Схема замещения МДП-транзисторов аналогична схеме замещения полевых транзисторов с p-n-переходом (см. рис. 5.5).

МДП-транзисторы широко применяются в интегральном исполнении. Микросхемы на МДП-транзисторах обладают хорошей технологичностью, низкой стоимостью, способностью работы при более высоком напряжении питания, чем микросхемы на биполярных транзисторах.