Установка и настройка        21.06.2019   

Определить волновое сопротивление. Волновое сопротивление

Рассмотрим обтекание профиля при числах Маха . В этом диапазоне чисел возникают зоны местных сверхзвуковых скоростей, замыкающиеся скачками уплотнения, необратимые потери механической энергии в которых вызывают дополнительное волновое сопротивление.

Физическая природа волнового сопротивления. Рассмотрим схему обтекания профиля закритическим потоком (рис. 8.8). На верхней поверхности симметричного профиля при нулевом угле атаки приведена схема течения, а на нижней – соответствующая ей эпюра давления.

В передней критической точке скорость течения , а давление . При удалении от передней критической точки давление уменьшается, а скорость течения увеличивается. В точке А профиля и . Далее вниз по потоку скорость течения становится сверхзвуковой и продолжает расти, а давление уменьшается. Непосредственно перед скачком и . За скачком уплотнения скорость течения становится дозвуковой, давление , и при приближении к задней кромке скорость течения продолжает изоэнтропически уменьшаться до нуля, а давление возрастает до давления заторможенного за скачком уплотнения потока.

Если бы в рассмотренном диапазоне скоростей было возможно только изоэнтропическое обтекание (без скачков), то давление в кормовой части профиля было бы выше и равно . Скачок уплотнения приводит к понижению давления в кормовой части, что и обусловливает появление дополнительного, так называемого волнового, сопротивления.

Волновое сопротивление тем больше, чем больше потери полного давления в скачке. Величина коэффициента волнового сопротивления зависит от числа Маха перед скачком уплотнения. Чем больше , тем меньше коэффициент восстановления полного давления , т. е. больше потери и больше коэффициент волнового сопротивления.

Приближенный метод определения волнового сопротивления. Рассмотрим профиль со скачком на верхней поверхности (рис. 8.9). Выделим элементарную струйку, проходящую через скачок уплотнения. Проведем на расстоянии, достаточно удаленном от профиля, две контрольные поверхности I–I и II–II.

Параметры течения на поверхности I–I – , а на II–II – .

Из условия постоянства расхода следует: = , где dy – элемент длины вдоль контрольной поверхности. Применяя теорему о количестве движения к массе газа, заключенной между контрольными поверхностями, получаем следующее:

где – волновое сопротивление. С учетом уравнения неразрывности и принимая во внимание, что , выражение для запишем как

Во всех струйках, не пересекающих скачок уплотнения, и . Тогда для определения величины силы сопротивления интегрирование можно производить только по длине скачка. Считая , получаем: . Но так как , а также учитывая, что и , получаем . Поскольку , то , и при уменьшении величины коэффициента восстановления полного давления (с увеличением числа Маха и интенсивности скачка) сила волнового сопротивления возрастает.


После некоторых преобразований можно получить выражение для коэффициента волнового сопротивления профиля:

(8.2)

где А – постоянный коэффициент, который в общем случае зависит от формы профиля (для большинства современных профилей А ).

Формулой (8.2) можно пользоваться до . Из нее следует, что при заданном уменьшение возможно путем увеличения .

Особенности обтекания крыла конечного размаха

дозвуковым потоком

Аэродинамические характеристики крыла конечного размаха зависят как от формы сечения (профиля), так и от формы крыла в плане.

Рассмотрим крыло конечного размаха. Заметим, что характеристики сечений крыла различны из-за влияния перетекания воздуха через боковые кромки крыла. Профиль, а значит и крыло, создает подъемную силу только тогда, когда циркуляция вектора скорости вокруг профиля . То есть, по своему действию можно заменить систему профилей, составляющих крыло, присоединенным вихрем. Заменим крыло простейшей вихревой системой – одним П-об-разным присоединенным вихрем (рис. 8.10).

Циркуляцию скорости Г присоединенного вихря в данной задаче определим исходя из условия равенства подъемной силы крыла силе, создаваемой П-образным вихрем: , т. е.

где – расстояние между свободными полубесконечными вихрями, сбегающими с концов крыла. Это расстояние больше размаха крыла на некоторую величину: . Можно принять, что .

Каждый свободный концевой вихрь индуцирует вокруг себя поле скоростей. Профили скорости для левого и правого концевых вихрей, а также эпюра суммарной скорости приведены на рис. 8.10. При начале координат в центре крыла величина скорости, индуцируемой обоими вихрями и направленной вниз, может быть определена по формуле Био–Савара для полубесконечного вихря как

. (8.4)

Средняя по размаху крыла скорость или с учетом выражения (8.4) после интегрирования получим

. (8.5)

Подставив значение циркуляции из уравнения (8.3), учтем, что , и проведем замену (удлинение крыла). Тогда при получим , и из формулы (8.5) следует, что

Анализ формулы (8.6) показывает, что за появление индуцированной скорости ответственны подъемная сила и конечность крыла (для реального крыла ). Индуктивная скорость изменяет действительный угол атаки крыла (рис. 8.11), поскольку вблизи поверхности крыла скорость течения .

Скорость перпендикулярна вектору , и ее называют скоростью скоса потока . Действительный вектор скорости отклоняется от вектора скорости набегающего потока на угол скоса .

Ввиду малости угла скоса, . С учетом формулы (8.6)

Допустим, что крыло установлено под углом к вектору скорости набегающего потока (установочный угол атаки). Вследствие скоса потока истинный угол атаки крыла равен . Чем больше удлинение крыла , тем меньше скос потока и меньше различие между истинным и установочным углами атаки.

Создаваемая крылом подъемная сила , перпендикулярная вектору местной скорости , дает составляющую на направление скорости набегающего потока. Поскольку появление этой составляющей спровоцировано скосом потока за счет индуцированных концевыми вихрями скоростей, то ее принято называть силой индуктивного сопротивления . В соответствии с рис. 8.11 можно записать выражения для коэффициентов подъемной силы и индуктивного сопротивления: .

Ввиду малости и . С учетом выражения (8.7) для угла скоса потока, получим

Формула (8.8) показывает, что индуктивное сопротивление обязано своим появлением подъемной силе – главной цели создания крыльев – и конечности размаха крыла. Индуктивное сопротивление и коэффициент индуктивного сопротивления равны нулю при нулевой подъемной силе () или при .

Линеаризованная теория обтекания плоской пластинки

сверхзвуковым потоком

Рассмотренная ранее схема линеаризации течений разрежения и уплотнения (см. гл. 5) позволяет просто решить задачу обтекания плоской пластинки при малых углах атаки a.

Рассмотрим обтекание плоской пластинки, расположенной под малым углом атаки к вектору скорости набегающего потока (жидкость идеальная). В сверхзвуковом потоке малые возмущения против вектора скорости не распространяются, поэтому на плоскую пластинку набегает невозмущенный поток и обтекание ее верхней и нижней поверхностей можно рассматривать независимо друг от друга (рис. 8.12).

Линия тока, направленная вдоль верхней поверхности, испытывает в носовой части возмущение в виде разрежения , а в кормовой части – в виде сжатия . Для нижней поверхности порядок следования возмущений противоположный .

Так как между передней и задней кромками обеих поверхностей нет источников возмущения, то скорости потока и давления на этих поверхностях постоянны и равны и . Для нахождения давлений и коэффициентов давлений воспользуемся полученными ранее формулами (5.10) и (5.10а) для линеаризованного течения, подставляя в них и учитывая, что для верхней поверхности , а для нижней . Тогда

Кабели на 50 и 75 Ом стали настолько привычными, что многим даже не приходит в голову задуматься, почему они имеют именно такое волное сопротивление . По мнению некоторых специалистов, такие значения используются для упрощения производства согласующих устройств для антенн, другие говорят, что такие кабели имеют меньшее затухание в волноводе, а еще некоторые - о дешевизне такого кабеля.

Коаксиальные волноводы используются для передачи к приемному устройству энергии от антенны, или же в обратном направлении.

Для расчёта сопротивления проводника вы можете воспользоваться калькулятором расчета сопротивления проводника .

При этом волновод должен иметь как можно меньший показатель затухания, что очень важно для работы приемника. А передатчик должен обладать максимальным коэффициентом передачи по мощности. Эти условия позволяют провести некоторые расчеты и убедиться в итоговом результате.

Как было упомянуто выше, приемник должен обладать наименьшим коэффициентом затухание в волноводе. Это значит, что амплитуда напряженности должны быть как можно большей. Для ее определения используются следующее выражение:

Где указывает на амплитуду без учета затухания, служит показателем коэффициента затухания волн в волноводе, а r указывает на длину линии.

Где R указывает на показатель погонного активного сопротивления, а Z 0 - показатель волнового сопротивления кабеля , который рассчитывается по следующей формуле:

Где уровень магнитной постоянной составляет , уровень в большинстве случаев равен примерно 1, уровень электрической постоянной ? 0 составляет , а уровень относительной диэлектрической проницаемости ? для воздуха составляет примерно 1.

Необходимо учитывать, что уровень активного сопротивления кабеля обратно пропорционален диаметру проводников и проводимости материала, из которого они сделаны, а также толщине оболочки.

Где σ указывает на уровень проводимости материала, из которого сделан проводник, а δ - на толщину оболочки.

Если с использованием полученных выражений составить формулу, можно будет рассчитать коэффициент затухания:

При этом затухание будет наименьшим в том случае, если коэффициент проводимости материала проводника будет наименьшим. Чтобы рассчитать максимум функции, следует руководствоваться следующим правилом: при экстремуме дифференцируемой функции в точке Х с индексом 0, производная функции в этой точке будет обращена в ноль, а если при прохождении точки знак будет меняться с положительного отрицательный, то точку можно считать максимумом, если наоборот - то минимумом. Теперь можно продифференцировать функцию:

После приравнивания производной к нулю можно решить уравнение:

Такое соотношение диаметров центральной жилы и оплетки позволяет понять, что уровень волнового сопротивления кабеля будет составлять примерно 77 Ом. Данное волновое сопротивление будет способствовать наименьшему ослаблению сигнала в кабеле. Значение, считающееся сейчас стандартным, было округлено до 75 Ом. Если говорить о передатчике, которому важен уровень коэффициента передачи по мощности и должна учитываться напряженность пробоя линии, имеет дело с формулой, знакомой со школы:Получается, что уровень волнового сопротивления кабеля при таком соотношении диаметров будет составлять примерно 30 Ом. Теперь, зная оптимальное волновое сопротивление приемника и передатчика, можно определить, что для приемопередатчика оптимальным будет сопротивление волновода, равное 50 Ом. На практике такой кабель наиболее распространен, поскольку совмещает возможность небольших потерь при передаче радиосигнала, а также имеет предельно достижимые показатели передаваемой мощности и электрической прочности.

При решении различного рода прикладных задач акустики, важное значение приобретают величины различных акустических сопротивлений - акустического, удельного акустического и механического.

Все эти сопротивления имеют активную и реактивную (управляемую гибкостью или массой)·составляющие.

Акустическое сопротивление

, (1)

где Ρ - звуковое давление;

- колебательная скорость в системе;

S - площадь, для которой определяют сопротивление.

Акустическое сопротивление используют при исследовании вопросов распространения звуковых волн в звукопроводах переменного сечения с поперечными размерами меньше длины волны. В этом случае сопротивление остается постоянным, так как давление вдоль канала не изменяется, а колебательная скорость изменяется обратно пропорционально площади поперечного сечения.

Удельное акустическое сопротивление, называемое иногда также волновым, определяется отношением величины звукового давления в определенной точке среды к величине колебательной скорости в этой же точке:

. (2)

Удельное акустическое сопротивление безграничной среды определяется произведением плотности на величину скорости распространения звука в среде:

. (3)

Таким образом, измерение удельного акустического сопротивления для безграничной однородной среды (практически это соответствует случаю, когда размеры образцов исследуемого материала значительно превышают длину звуковой волны) сводится κ измерению плотности среды и скорости распространения в ней звука.

Для малых размеров вещества по сравнению с длиной волны, неоднородных, имеющих сложную форму, удельное акустическое сопротивление по формуле (3) определить нельзя, кроме того, оно имеет комплексный характер, что обусловлено наличием угла сдвига фаз между звуковым давлением и колебательной скоростью.

Механическое сопротивление

численно равно отношению силы F, действующей на входе колебательной системы, к вызываемой ею колебательной скорости: . (4)

Пусть плоская волна

падает нормально на плоскую границу z=0 между двумя однородными средами. В первой среде возникает отраженная волна , а во второй - прошедшая .

Мы увидим сейчас, непосредственно произведя расчет, что отражение и прохождение всегда правильные. Отраженную и прошедшую волны можно записать в виде

, , и определяются свойствами сред и не зависят от формы волны. Для гармонических волн падающую, отраженную и прошедшую волны можно записать в виде , , .

Величины коэффициента отражения

и коэффициента прохождения нужно подобрать так, чтобы были удовлетворены граничные условия. Граничных условий два: равенство давлений и равенство скоростей частиц по обе стороны границы. Со стороны первой среды берется суммарное поле падающей и отраженной волны, со стороны второй - поле прошедшей волны.

Условие равенства давлений по обе стороны границы, или, что то же, непрерывность давления при переходе через границу, реально выполняется всегда. Нарушение этого условия вызвало бы бесконечное ускорение границы, так как сколь угодно тонкий слой сколь угодно малой массы, включающий внутри себя границу, находился бы тогда под действием конечной разности давлений по обеим сторонам слоя. В результате разность давлений выровнялась бы мгновенно.

Условие равенства скоростей выражает неразрывность среды на границе: среды не должны отдаляться друг от друга или проникать взаимно друг в друга. Это требование может на практике оказаться нарушенным, например, при кавитации, когда внутри жидкости образуются разрывы (разрывы возникают легче на границе двух сред, чем внутри одной среды). Будем считать, что нарушения граничных условий не происходит. В противном случае нижеследующий расчет неприменим, а отражение и прохождение окажутся неправильными.

Скорости частиц в падающей, отраженной и прошедшей волнах даются формулами

, , .

Граничные условия можно написать так:

, , .

Подставляя сюда соответственные выражения для давлений и скоростей частиц, найдем, сокращая на p(t):

, (5)

Число граничных условий равно числу возникающих (помимо падающей) волн - отраженной и прошедшей, так что, подбирая соответственным образом оставшиеся пока неопределенными множители

и , всегда можно удовлетворить обоим граничным условиям, причем единственным образом. И это правило общее. В других акустических задачах число граничных условий может оказаться другим. Тогда возникнет и другое число волн, но оно снова равно числу граничных условий.

В исключительных случаях удается удовлетворить граничным условиям меньшим числом волн (например, коэффициент отражения может обратиться в нуль), но никогда не бывает, чтобы при данном числе граничных условий падающая волна вызывала бы возникновение большего числа различных волн: так как равным числом волн уже можно удовлетворять граничным условиям, то получилось бы, что при одной и той же падающей волне и одних тех же препятствиях могут возникнуть различные волновые поля, а это противоречит принципу причинности.

Система (5) имеет единственное решение:

, . (6)

Это - так называемые формулы Френеля (для нормального падения). Мы видим, что коэффициенты отражения и прохождения зависят только от волновых сопротивлений сред, и если эти сопротивления равны для обеих сред, то для нормального падения плоской волны среды акустически неразличимы: отражение от границы отсутствует и волна проходит во вторую среду целиком, как если бы все пространство было заполнено только первой средой. Для такого полного прохождения вовсе не требуется, чтобы плотности обеих сред и скорости звука в них равнялись друг другу в отдельности, т. е. чтобы совпадали механические свойства сред: достаточно равенства произведений плотности на скорость звука.

В вопросах статики более жесткой средой естественно называть среду с меньшей сжимаемостью. Поведение таких сред ближе к поведению абсолютно жесткого тела, чем поведение сред с большей сжимаемостью. В акустике сжимаемость еще не определяет того, ведет ли себя данная среда по отношению к падающей на нее волне как податливая или как жесткая граница. В акустике следует сравнивать волновые сопротивления сред, т. е. отношения плотности к сжимаемости: та из двух сред жестче, для которой это ношение больше. Это обстоятельство снова подчеркивает своеобразие волновых задач сравнительно с задачами механики тел.

Меняя местами рс и р"с", найдем коэффициенты отражения и прохождения и для волны, падающей из второй среды на границу с первой: абсолютная величина коэффициента отражения будет та же, что и при падении из первой среды, но знак его изменится на обратный. Коэффициент прохождения изменится в отношении волновых сопротивлений сред. По абсолютной величине коэффициент отражения всегда меньше единицы (что следует и прямо из закона сохранения энергии); он положителен, если волна падает из среды с меньшим волновым сопротивлением, и отрицателен в обратном случае. Коэффициент прохождения всегда положителен и не превосходит 2.

Таким образом, отраженная и прошедшая волны равны:

, .

Любое средство массовой информации передает сигнал на большие расстояния с помощью электромагнитных волн. Одним из свойств такой волны и является волновое сопротивление. Хотя характерные единицы измерения сопротивления - Омы, это не «настоящее» сопротивление, которое можно измерить с помощью специального оборудования, такого как омметр или мультиметр.

Лучший способ понять, волновое сопротивление – это представить себе бесконечно длинный провод, который не создает отраженных или обратных волн при нагрузке. Создание переменного напряжения (V) в такой цепи приведет к появлению тока (I). Волновое сопротивление (Z) в этом случае будет численно равно соотношению:
Z = V/I
Эта справедлива для вакуума. Но если речь идет о «реальном пространстве», где нет бесконечно длинного провода, уравнение принимает вид закона Ома для участка цепи:
R = V/I

Эквивалентная схема расчета линии передач

Для СВЧ инженеров общим выражением, определяющим волновое сопротивление, является:
Z = R+j*w*L/G+j*w*C
Здесь R, G, L и С – номинальные длины волн модели линии передач. Следует отметить, что в общем виде волновое сопротивление может быть комплексным числом. Важным уточнением является то, что такой случай возможен только, если R или G не равны нулю. На практике всегда стараются достичь минимальных потерь на линии передачи сигнала. Поэтому обычно игнорируют вклад R и G в уравнение и, в конечном итоге, количественное значение волнового сопротивления принимает очень маленькое значение.

Внутреннее сопротивление

Волновое сопротивление присутствует даже если нет линии передачи. Оно связано с распространением волн в любой однородной среде. Внутреннее сопротивление является мерой отношения электрического поля к магнитному. Оно рассчитывается так же, как и в линиях передачи. Предполагая, что нет «реальной» проводимости или сопротивления в среде, уравнение сводится к простой квадратичной форме:
Z = SQRT(L/C)
В этом случае индуктивность на единицу длины сводится к проницаемости среды, а емкость на единицу длины – к диэлектрической проницаемости.

Сопротивление вакуума

В пространстве относительная проницаемость среды и диэлектрическая проницаемость всегда постоянны. Таким образом, уравнение внутреннего сопротивления упрощается до уравнения для волнового сопротивления вакуума:
n = SQRT(m/e)
Здесь m – проницаемость вакуума, а е – диэлектрическая проницаемость среды.
Значение волнового сопротивления вакуума является постоянной величиной и приблизительно равно 120 пикоОм.

Строков Андрей.

Итак, вторая статья из цикла, про которую я уже неоднократно упоминал. Сегодня постараюсь упихать в головы читателей несколько ключевых моментов, без которых нельзя жить на свете. До сих пор я говорил про согласование, согласованную нагрузку. Что-то упоминал про ширину линии, которая вроде как должна быть строго определенной. Пришло время расставить точки. Вам потребуется пластиковая бутылка и ножницы бесконечная пара проводов и немного терпения, добро пожаловать под кат!


Зайдем издалека.
Возьмем генератор с внутренним сопротивлением R. И к нему подключим нагрузку R1. Обычная такая схема.

Вопрос в том, насколько эта схема эффективна? При каком сопротивлении на нагрузке можно получить максимальную мощность?

Немного расчетов:

Чтобы получить максимум мощности вспомним производную и приравняем к нулю.

и вот мы уже получаем, что максимальная мощность выделяется, когда R = R1 . В этом случае говорят, что система генератор-нагрузка согласована.

Ну а теперь пошли фокусы. Подаем в нашу схему большую частоту. В прошлый раз мы видели, что в разных частях линии напряжение может быть совсем разным. Вот пусть на нашей схеме будет вот так:

да, забудьте пока про узлы-пучности, стоячих волн нет, рассматриваем только падающую. В любом случае «в лоб» закон ома для этой картинки уже не применить. Вот когда начинается такая беда, значит мы имеем дело с длинной линией . Заодно можно вспомнить наши сопли из припоя и 1206 конденсаторы, которые начинают вести себя как попало на каких то частотах, опять же из-за того, что размеры сравнимы с длиной волны и там появляются всякие шлейфы, стоячие волны и резонансы. Все это называют устройствами с распределенными параметрами . Обычно говорят про распределенные параметры, когда размеры элементов хотя бы раз в 10 больше длины волны.
Так что же нам делать с нашей схемой? В прошлый раз мы говорили про длину линий, не затрагивая другие параметры. Пора исправить это недоразумение.
Представьте, что генератор (или выходной каскад, например), качает в линию мощность. Никакой отраженной волны (пока) нет, наш генератор вообще не знает, что с той стороны линии, качает в никуда. Это как будто берем динамик, подносим к трубе и в трубу уходят звуковые волны.

Параметры такой системы можно определить по-разному. Можно определить(пока, правда, не понятно, как) ток и напряжение. А можно определить мощность (произведение тока на напряжение) и отношение тока к напряжению в линии. Последняя величина имеет смысл сопротивления. Ее так и называют — волновое сопротивление. И величина эта для конкретно взятой линии (и на конкретной частоте, если быть точным) всегда одинаковая, от генератора не зависит.
Если вы возьмете бесконечную линию с каким-то заданным Z (так обычно обозначают волновое сопротивление) и подключите к ней ваш мультиметр, он это сопротивление и покажет. Хотя, казалось бы, просто пара проводов. А вот если пара будет конечной, как это обычно и бывает в нашей жизни, возникнет отражение на конце линии, стоячая волна. Поэтому ваш мультиметр покажет бесконечное сопротивление (это будет, в принципе, пучность).

Итак, по линии бежит волна. Волновое сопротивление линии не меняется (говорят, что линия регулярна ), отношение напряжения к току одинаковое. А теперь — бах! — сопротивление линии совершает скачок.

Так как дальше соотношения между током и напряжением будут уже другие, «лишний» или недостающий ток в точке скачка формирует отраженную волну. Для более подробного понимания процесса неплохо бы записать для точки телеграфные уравнения, но для начала достаточно помнить, что
При отражении от ХХ фаза не меняется
При отражении от КЗ фаза переворачивается на 180°

Ну и осталось сказать про подключение линии к нагрузке. В принципе, нагрузку, можно рассматривать как бесконечную линию с волновым сопротивлением равным сопротивлению нагрузки. Прошлый пример с мультиметром, я думаю, это показывает весьма наглядно тем, кто в начале поста запасся бесконечным проводом. Так что если сопротивление нагрузки равно сопротивлению линии, система согласована, ничего не отражается, КСВ равно единице. Ну а если сопротивления отличаются, справедливы все вышеописанные рассуждения про отражение.
Собственно, в прошлый раз мы рассматривали КЗ и ХХ, вот на эти вещи можно смотреть как на нагрузки с нулевым или бесконечным сопротивлением.

Используя переотражения на скачках волнового сопротивления и линии с разным волновым сопротивлением, можно получить множество разных вещей в СВЧ. Нужно рассказывать про диаграмму смита и комплексное волновое сопротивление, это не сегодня. Приведу только пару примеров:
1. Если отрезок линии имеет длину в половину длины волны, его волновое сопротивление не важно. Волновое сопротивление на входе равно волновому сопротивлению на выходе.

2. Для отрезка в четверть волны c волновым сопротивлением линии Z волновое сопротивление на входе рассчитывается по формуле

Так можно согласовывать линии с разным волновым сопротивлением в узком диапазоне (в котором одна-три-пять-… четвертей длины волны соответствует длине шлейфа)

А теперь посмотрим на линию передачи поближе.