Установка и настройка        14.06.2019   

Какие не бывают виды коммутации тиристоров. Триодные тиристоры в свою очередь разделяются

Абсолютно любой тиристор может быть в двух устойчивых состояниях - закрыт или открыт

В закрытом состоянии он находится в состоянии низкой проводимости и ток почти не идет, в открытом, наоборот полупроводник будет находится в состоянии высокой проводимости, ток проходит через него фактически без сопротивления

Можно сказать, что тиристор это электрический силовой управляемый ключ. Но по сути управляющий сигнал может только открыть полупроводник. Чтобы запереть его обратно, требуется выполнить условия, направленные на снижение прямого тока почти до нуля.

Структурно тиристор представляет последовательность четырех, слоев p и n типа, образующих структуру р-n-р-n и соединенных последовательно.

Одна из крайних областей, на которую подключают положительный полюс питания называют анод , р – типа
Другая, к которой подсоединяют отрицательное полюс напряжения, называют катод , – n типа
Управляющий электрод подключен к внутренним слоям.

Для того чтоб разобраться с работой тиристора рассмотрим несколько случаев, первый: напряжение на управляющий электрод не подается , тиристор подсоединен по схеме динистора – положительное напряжение поступает на анод, а отрицательное на катод, смотри рисунок.

В этом случае коллекторный p-n-переход тиристора находится в закрытом состоянии, а эмиттерный – открыт. Открытые переходы имеют очень низкое сопротивление, поэтому почти все напряжение, следующее от источника питания, приложено к коллекторному переходу, из-за высокого сопротивления которого протекающий через полупроводниковый прибор ток имеет очень низкое значение.

На графике ВАХ это состояние актуально для участка отмеченного цифрой 1 .

При увеличении уровня напряжения, до определенного момента ток тиристора почти не растет. Но достигая условного критического уровня - напряжение включения U вкл , в динисторе появляются факторы, при которых в коллекторном переходе начинается резкий рост свободных носителей заряда, которое почти сразу же носит лавинный характер . В результате происходит обратимый электрический пробой (на представленном рисунке – точка 2). В p -области коллекторного перехода появляется избыточная зона накопленных положительных зарядов, в n -области, наоборот происходит накопление электронов. Рост концентрации свободных носителей заряда приводит к падению потенциального барьера на всех трех переходах , через эмиттерные переходы начинается инжекция носителей заряда. Лавинообразный характер еще сильнее увеличивается, и приводит к переключению коллекторного перехода в открытое состоянии. Одновременно увеличивается ток по всем областям полупроводника, в результате происходит падением напряжения между катодом и анодом, показанный на графике выше отрезком отмеченным цифрой три. В этот момент времени динистор обладает отрицательным дифференциальным сопротивлением. На сопротивлении R n растет напряжение и полупроводник переключается.

После открытия коллекторного перехода ВАХ динистора становится такой же, как на прямой ветви - отрезок №4. После переключения полупроводникового прибора, напряжение снижается до уровня одного вольта. В дальнейшем увеличение уровня напряжения или снижение сопротивления приведет к увеличению выходного тока, один в один, как и работе диода при его прямом включении. Если же уровень напряжение питания снизить, то высокое сопротивление коллекторного перехода, практически мгновенно восстанавливается, динистор закрывается, ток резко падает .

Напряжение включения U вкл , можно настраивать, внося в любой из промежуточных слоев, рядом с к коллекторным переходом, неосновные, для него носители заряда.

С этой целью используется специальный управляющий электрод , запитываемый от дополнительного источника, с которого следует управляющее напряжение – U упр . Как хорошо видно из графика – при росте U упр напряжение включения снижается.

Основные характеристики тиристоров

U вкл напряжение включения – при нем осуществляется переход тиристора в открытое состояние
U o6p.max – импульсное повторяющееся обратное напряжение при нем происходит электрический пробой p-n перехода. Для многих тиристоров будет верно выражение U o6p.max . = U вкл
I max - максимально допустимое значение тока
I ср - среднее значение тока за период U np - прямое падение напряжения при открытом тиристоре
I o6p.max - обратный максимальный ток начинающий течь при приложении U o6p.max , за счет перемещения неосновных носителей заряда
I удерж ток удержания – значение анодного тока, при котором осуществляется запирание тиристора
P max - максимальная рассеиваемая мощность
t откл - время отключения необходимое для запирания тиристора

Запираемые тиристоры - имеет классическую четырехслойную p-n-p-n структуру, но при этом обладает рядом конструктивных особенностей, дающих такую функциональную возможность, как полная управляемость. Благодаря такому воздействию от управляющего электрода, запираемые тиристоры могут переходить не только в открытое состояние из закрытого, но и из открытого в закрытое. Для этого на управляющий электрод поступает напряжение, противоположное тому, которое ранее открывает тиристор. Для запирания тиристора на управляющей электрод следует мощный, но короткий по длительности импульс отрицательного тока. При применении запираемых тиристоров следует помнить, что их предельные значения на 30% ниже, чем у обычных. В схемотехнике, запираемые тиристоры активно применяются в роли электронных ключей в преобразовательной и импульсной технике.

В отличие от своих четырехслойных родственников - тиристоров, они имеют пятислойную структуру.


Благодаря такой структуре полупроводника они имеют возможность пропускать ток в обоих направлениях – как от катода к аноду, так и от анода к катоду, а на управляющий электрод поступает напряжение обоих полярностей. Благодаря этому свойству вольт-амперная характеристика симистора имеет симметричный вид в обоих осях координат. Узнать о работе симистора вы можете из видеоурока, по ссылке ниже.


Принцип работы симистора

Если у стандартного тиристора имеются анод и катод то электроды симистора так описать нельзя т.к каждый уго электрод является и анодом и катодом одновременно. Поэтому симистор способен пропускать ток в обоих направлениях. Именно поэтому он отлично работает в цепях переменного тока.

Очень простой схемой, поясняющей принцип симистора является регулятор симисторный регулятор мощности.


После подачи напряжения на один из выводов симистора поступает переменное напряжение. На электрод, являющийся управляющим с диодного моста поступает отрицательное управляющее напряжение. При превышении порога включения симистор отпирается и ток поступает в подключенную нагрузку. В момент времени, когда на входе симистора меняется полярность напряжения он запирается. Затем алгоритм повторяется.

Чем выше уровень управляющего напряжения тем быстрее срабатывает симистор и длительность импульса на нагрузке увеличивается. При снижении уровня управляющего напряжения длительность импульсов на нагрузке также снижается. На выходе симисторного регулятора напряжение будет пилообразной формы с регулируемой длительностью импульса. Таким образом, регулируя управляющее напряжение мы можем изменять яркость лампочки накаливания или температуру жала паяльника подключенных в качестве нагрузки.

Итак симистор управляется как отрицательным так и положительным напряжением. Давайте выделим его минусы и плюсы.

Плюсы: низкая стоимость, большой срок службы, отсутствие контактов и, как следствие, отсутствие искрения и дребезга.
Минусы: достаточно чувствителен к перегреву и его обычно монтируют на радиаторе. Не работает на высоких частотах, так как не успевает переходить из открытого состояния в закрытое. Реагирует на внешниепомехи, вызывающие ложное срабатывание.

Следует также упомянуть о особенностях монтажа симисторов в современной электронной техники.

При малых нагрузках или если в ней протекают короткие импульсные токи, монтаж симисторов можно осуществлять без теплоотводящего радиатора. Во всех остальных случаях – его наличие строго обязательно.
К теплоотводу тиристор может фиксироваться крепежным зажимом или винтом
Для снижения вероятности ложного срабатывания из-за шумов, длина проводов должна быть минимальна. Для подсоединения рекомендуется использовать экранированный кабель или витую пару.

Или оптотиристоры специализированные полупроводники, конструктивной особенностью которого является наличие фотоэлемента, который является управляющим электродом.

Современной и перспективной разновидностью симистора являетсяо оптосимистор. Вместо управляющего электрода в корпусе имеется светодиод и управление происходит с помощью изменения напряжения питания на светодиоде. При попадании светового потока задонной мощности фотоэлемент переключает тиристор в открытое положение. Самой основной функцией в оптосимисторе является то, что между цепью управления и силовой имеется полная гальваническая развязка. Это создает просто отличный уровень и надежности конструкции.

Силовые ключи . Одним из главных моментов, влияющих на востребованность таких схем, служит низкая мощность, которую способен рассеять тиристор в схемах переключения. В запертом состоянии мощность практически не расходуется, т.к ток близок к нулевым значениям. А в открытом состоянии рассеиваемая мощность невелика благодаря низким значениям напряжения

Пороговые устройства – в них реализуется главное свойство тиристоров – открываться при достижении напряжением нужного уровня. Это используется в фазовых регуляторах мощности и релаксационных генераторах

Для прерывания и включения-выключения используются запирающие тиристоры. Правда, в данном случае схемам необходима определенная доработка.

Экспериментальные устройства – в них применяется свойство тиристора обладать отрицательным сопротивление, находясь в переходном режиме

Принцип работы и свойства динистора, схемы на динисторах

Динистор это разновидность полупроводниковых диодов относящихся к классу тиристоров. Динистор состоит из четырех областей различной проводимости и имеет три p-n перехода. В электроники он нашел довольно ограниченное применение, ходя его можно найти в конструкциях энергосберегающих ламп под цоколь E14 и E27, где он применяется в схемах запуска. Кроме того он попадается в пускорегулирующих аппаратах ламп дневного света.

Добрый вечер хабр. Поговорим о таком приборе, как тиристор. Тиристор - это полупроводниковый прибор с двумя устойчивыми состояниями, имеющий три или больше взаимодействующих выпрямляющих перехода. По функциональности их можно соотнести к электронным ключам. Но есть в тиристоре одна особенность, он не может перейти в закрытое состояние в отличие от обычного ключа. Поэтому обычно его можно найти под названием - не полностью управляемый ключ.

На рисунке представлен обычный вид тиристора. Состоит он из четырех чередующихся типов электро-проводимости областей полупроводника и имеет три вывода: анод, катод и управляющего электрод.
Анод - это контакт с внешним p-слоем, катод - с внешним n-слоем.
Освежить память о p-n переходе можно .

Классификация

В зависимости от количества выводов можно вывести классификацию тиристоров. По сути все очень просто: тиристор с двумя выводами называется динисторами (соответственно имеет только анод и катод). Тиристор с тремя и четырьмя выводами, называются триодными или тетродными. Также бывают тиристоры и с большим количеством чередующихся полупроводниковых областей. Одним из самых интересных является симметричный тиристор (симистор), который включается при любой полярности напряжения.

Принцип работы



Обычно тиристор представляют в виде двух транзисторов, связанных между собой, каждый из которых работает в активном режиме.

В связи с таким рисунком можно назвать крайние области - эмиттерными, а центральный переход - коллекторным.
Чтобы разобраться как работает тиристор стоит взглянуть на вольт-амперную характеристику.


К аноду тиристора подали небольшое положительное напряжение. Эмиттерные переходы включены в прямом направлении, а коллекторный в обратном. (по сути все напряжение будем на нем). Участок от нуля до единицы на вольт-амперной характеристике будет примерно аналогичен обратной ветви характеристики диода. Этот режим можно назвать - режимом закрытого состояния тиристора.
При увеличении анодного напряжения происходит происходит инжекция основных носителей в области баз, тем самым происходит накопление электронов и дырок, что равносильно разности потенциалов на коллекторном переходе. С увеличением тока через тиристор напряжение на коллекторном переходе начнет уменьшаться. И когда оно уменьшится до определенного значения, наш тиристор перейдет в состояние отрицательного дифференциального сопротивления (на рисунке участок 1-2).
После этого все три перехода сместятся в прямом направлении тем самым переведя тиристор в открытое состояние (на рисунке участок 2-3).
В открытом состоянии тиристор будет находится до тех пор, пока коллекторный переход будет смещен в прямом направлении. Если же ток тиристора уменьшить, то в результате рекомбинации уменьшится количество неравновесных носителей в базовых областях и коллекторный переход окажется смещен в обратном направлении и тиристор перейдет в закрытое состояние.
При обратном включении тиристора вольт-амперная характеристика будет аналогичной как и у двух последовательно включенных диодов. Обратное напряжение будет ограничиваться в этом случае напряжением пробоя.

Общие параметры тиристоров

1. Напряжение включения - это минимальное анодное напряжение, при котором тиристор переходит во включенное состояние.
2. Прямое напряжение - это прямое падение напряжения при максимальном токе анода.
3. Обратное напряжение - это максимально допустимое напряжение на тиристоре в закрытом состоянии.
4. Максимально допустимый прямой ток - это максимальный ток в открытом состоянии.
5. Обратный ток - ток при максимальной обратном напряжении.
6. Максимальный ток управления электрода
7. Время задержки включения/выключения
8. Максимально допустимая рассеиваемая мощность

Заключение

Таким образом, в тиристоре существует положительная обратная связь по току - увеличение тока через один эмиттерный переход приводит к увеличению тока через другой эмиттерный переход.
Тиристор - не полностью управляющий ключ. То есть перейдя в открытое состояние, он остается в нем даже если прекращать подавать сигнал на управляющий переход, если подается ток выше некоторой величины, то есть ток удержания.

Появление четырехслойных p-n-p-n полупроводниковых элементов совершило настоящий прорыв в силовой электронике. Такие устройства получили название «тиристоров». Кремниевые управляемые вентили являются наиболее распространенным семейством тиристоров.

Данный вид полупроводниковых приборов имеет следующую структуру:

Как видим из структурной схемы тиристор имеет три вывода – катод, управляющий электрод и анод. Подключению к силовым цепям подлежат анод и катод, а управляющий электрод подключается к системе управления (слаботочные сети) для управляемого открытия тиристора.

На принципиальных схемах тиристор имеет такое обозначение:

Вольт-амперная характеристика показана ниже:

Давайте подробнее рассмотрим эту характеристику.

Обратная ветвь характеристики

В третьем квадранте характеристики диодов и тиристоров равны. Если к аноду приложить отрицательный потенциал относительно катода, то к J 1 и J 3 прикладывается обратное напряжение, а к J 2 — прямое, что вызовет протекание тока обратного (он очень мал, как правило несколько миллиампер). Когда же это напряжение увеличится до так называемого напряжения пробоя, произойдет лавинное нарастание тока между J 1 и J 3 . При этом, если данный ток не будет ограничен, то произойдет пробой перехода с последующим выходом из строя тиристора. При обратных же напряжениях, которые не превышают напряжения пробоя, тиристор будет вести себя как резистор с большим сопротивлением.

Зона низкой проводимости

В данной зоне все наоборот. Потенциал катода будет отрицательный по отношению к потенциалу анода. Поэтому к J 1 и J 3 будет приложено прямое, а к J 2 – обратное напряжение. Результатом чего станет весьма малый анодный ток.

Зона высокой проводимости

Если напряжение на участке анод – катод достигнет значения, так называемого напряжением переключения, то произойдет лавинный пробой перехода J 2 и тиристор будет переведен в состояние высокой проводимости. При этом U a снизится от нескольких сотен до 1 — 2 вольт. Оно будет зависеть от типа тиристора. В зоне высокой проводимости ток, протекающий через анод, будет зависеть от нагрузки внешней элемента, что дает возможность рассматривать его в этой зоне как замкнутый ключ.

Если пропустить ток через управляющий электрод, то напряжение включения тиристора уменьшится. Оно напрямую зависит от тока управляющего электрода и при достаточно большом его значении практически равно нулю. При выборе тиристора для работы в схеме, то его подбирают таким образом, чтоб напряжения обратное и прямое не превышали паспортных значений напряжений пробоя и переключения. Если эти условия выполнить трудно, или имеется большой разброс в параметрах элементов (например необходим тиристор на 6300 В, а его ближайшие значения 1200 В), то иногда применяют или включение элементов.

В нужный момент времени с помощью подачи импульса на управляющий электрод можно перевести тиристор с закрытого состояния в зону высокой проводимости. Ток УЭ, как правило, должен быть выше минимального тока открытия и он составляет порядка 20-200 мА.

Когда анодный ток достигнет определенного значения, при котором запирания тиристора невозможно (ток переключения), управляющий импульс может быть снят. Теперь тиристор сможет перейти обратно в закрытое состояние только при уменьшении тока ниже, чем ток удержания, или прикладыванием к нему напряжения обратной полярности.

Видео работы и графики переходных процессов

Тиристор это полупроводниковый прибор, предназначенный для работы в качестве ключа. Он имеет три электрода и структуру p-n-p-n из четырёх слоёв полупроводника. Электроды именуются как анод, катод и управляющий электрод. Структура p-n-p-n функционально аналогична нелинейному резистору, который способен принимать два состояния:

  • с очень большим сопротивлением, выключенное;
  • с очень малым сопротивлением, включенное.

Виды

На включенном тиристоре сохраняется напряжение около одного или нескольких Вольт, которое незначительно увеличивается с возрастанием силы тока, протекающего через него. В зависимости от вида тока и напряжения, приложенного к электрической цепи с тиристором, в ней используется одна из трёх современных разновидностей этих полупроводниковых приборов. На постоянном токе работают:

  • включаемые тринисторы;
  • три разновидности запираемых тиристоров, именуемых как

На переменном и постоянном токе работают симисторы. Все эти тиристоры содержат управляющий электрод и два других электрода, через которые тёчёт ток нагрузки. Для тринисторов и запираемых тиристоров это анод и катод, для симисторов наименование этих электродов обусловлено правильностью определения свойств управляющего сигнала, подаваемого на управляющий электрод.

Наличие в тиристоре структуры p-n-p-n позволяет разделить её условно на две области, каждая из которых является биполярным транзистором соответствующей проводимости. Таким образом, эти взаимосвязанные транзисторы являются эквивалентом тиристора, что имеет вид схемы на изображении слева. Первыми на рынке появились тринисторы.

Свойства и характеристики

По сути это аналог самоблокирующегося реле с одним нормально разомкнутым контактом, роль которого выполняет полупроводниковая структура, расположенная между анодом и катодом. Отличие от реле состоит в том, что для этого полупроводникового прибора может быть применено несколько способов включения и выключения. Все эти способы объясняются транзисторным эквивалентом тринистора.

Два эквивалентных транзистора охвачены положительной обратной связью. Она многократно усиливает любые изменения тока в их полупроводниковых переходах. Поэтому существует несколько видов воздействия на электроды тринистора для его включения и выключения. Первые два способа позволяют выполнить включение по аноду.

  • Если напряжение на аноде увеличивать, при его определённом значении начнут сказываться эффекты начинающегося пробоя полупроводниковых структур транзисторов. Появившийся начальный ток лавинообразно усилится положительной обратной связью и оба транзистора включатся.
  • При достаточно быстром увеличении напряжения на аноде происходит заряд межэлектродных ёмкостей, которые присутствуют в любых электронных компонентах. При этом в электродах появляются зарядные токи этих ёмкостей, которые подхватывает положительная обратная связь и всё заканчивается включением тринистора.

Если перечисленные выше изменения напряжения отсутствуют, включение обычно происходит током базы эквивалентного n-p-n транзистора. Выключить тринистор можно одним из двух способов, которые также становятся понятны из-за взаимодействия эквивалентных транзисторов. Положительная обратная связь в них действует, начиная с некоторых величин токов, протекающих в структуре p-n-p-n. Если величину тока сделать меньше этих величин, положительная обратная связь сработает на быстрое исчезновение токов.

Другой способ выключения использует прерывание положительной обратной связи импульсом напряжения, который меняет полярность на аноде и катоде. При таком воздействии направления токов между электродами изменяется на противоположные и тринистор выключается. Поскольку для полупроводниковых материалов характерно явление фотоэффекта, существуют фото- и оптотиристоры, у которых включение может быть обусловлено освещением либо приёмного окошка, либо светодиодом в корпусе этого полупроводникового прибора.

Существуют ещё и так называемые динисторы (неуправляемые тиристоры). В этих полупроводниковых приборах нет управляющего электрода конструктивно. По своей сути это тринистор с одним отсутствующим выводом. Поэтому их состояние зависит только от напряжения анода и катода и они не могут включиться управляющим сигналом. В остальном процессы в них аналогичны обычным тринисторам. То же относится и к симисторам, которые по сути являются двумя тринисторами соединёнными параллельно. Поэтому они применяются для управления переменным током без дополнительных диодов.

Запираемые тиристоры

Если определённым образом изготовить области структуры p-n-p-n вблизи баз эквивалентных транзисторов можно достичь полной управляемости тиристором со стороны управляющего электрода. Такая конструкция структуры p-n-p-n показана на изображении слева. Включать и выключать такой тиристор можно соответствующими сигналами в любой момент времени подавая их на управляющий электрод. Остальные способы включения, применяемые к тринисторам, для запираемых тиристоров так же годятся.

Однако эти способы не применяются к таким полупроводниковым приборам. Они наоборот исключаются теми или иными схемотехническими решениями. Целью является получение надёжного включения и выключения только по управляющему электроду. Это необходимо для использования таких тиристоров в мощных инверторах повышенной частоты. GTO работают на частотах до 300 Герц, а IGCT способны на существенно более высокие частоты, достигающие 2 кГц. Номинальные значения токов могут быть несколько тысяч ампер, а напряжение – несколько киловольт.

Сравнение различных тиристоров приведено в таблице ниже.

Разновидность тиристора Преимущества Недостатки Где используется
Тринистор Минимальное напряжение во включенном состоянии при максимально больших токах и перегрузках. Наиболее надёжен из всех. Хорошая масштабируемость схем путём совместной работы нескольких тринисторв соединяемых либо параллельно, либо последовательно Отсутствует возможность произвольного управляемого отключения только управляющим электродом. Наиболее низкие рабочие частоты. Электроприводы, источники электропитания питания большой мощности; сварочные инверторы; управление мощными нагревателями; статические компенсаторы; коммутаторы в цепях с переменным током
GTO Возможность произвольного управляемого выключения. Относительно высокая способность к перегрузкам по току. Способность надёжно работать при последовательном соединении. Рабочая частота до 300 Гц, напряжение до 4000 В. Значительно напряжение во включенном состоянии при максимально больших токах и перегрузках и соответствующие им потери, в том числе и в системах управления. Сложная схемотехника построения системы в целом. Большие динамические потер.
IGCT Возможность произвольного управляемого выключения. Относительно высокая способность к перегрузкам по току. Относительно малое напряжение во включенном состоянии при максимально больших токах и перегрузках. Рабочая частота — до 2000 Гц. Простое управление. Способность надёжно работать при последовательном соединении. Наиболее дорогие из всех тиристоров Электроприводы; статические компенсаторы реактивной мощности; источники электропитания питания большой мощности, индукционные нагреватели

Тиристоры изготавливаются для широкого диапазона токов и напряжений. Конструкция их определяется размерами структуры p-n-p-n и необходимостью получения надёжного отвода тепла от неё. Современные тиристоры, а также их обозначения на электрических схемах показаны на изображениях ниже.

♦ Как мы уже выяснили – тиристор, это полупроводниковый прибор, обладающий свойствами электрического вентиля. Тиристор с двумя выводами (А — анод, К — катод) , это динистор. Тиристор с тремя выводами (А – анод, К – катод, Уэ – управляющий электрод) , это тринистор, или в обиходе его называют просто тиристор.

♦ С помощью управляющего электрода (при определенных условиях) можно изменять электрическое состояние тиристора, то есть переводить его из состояния «выключено» в состояние «включено».
Тиристор открывается в случае, если приложенное напряжение между анодом и катодом превысит величину U = Uпр , то есть величину напряжения пробоя тиристора;
Тиристор можно открыть и при напряжении меньше, чем Uпр между анодом и катодом (U < Uпр) , если подать импульс напряжения положительной полярности между управляющим электродом и катодом.

♦ В открытом состоянии тиристор может находиться сколько угодно долго, пока на него подано питающее напряжение.
Тиристор можно закрыть:

  • — если уменьшить напряжение между анодом и катодом до U = 0 ;
  • — если снизить анодный ток тиристора до величины, меньше тока удержания Iуд .
  • — подачей запирающего напряжения на управляющий электрод, (только для запираемых тиристоров).

Тиристор может также находиться в закрытом состоянии сколько угодно долго, до прихода запускающего импульса.
Тиристоры и динисторы работают как в цепях постоянного, так и в цепях переменного тока.

Работа динистора и тиристора в цепях постоянного тока.

Рассмотрим несколько практических примеров.
Первый пример применения динистора, это релаксационный генератор звуковых сигналов .

В качестве динистора используем КН102А-Б.

♦ Работает генератор следующим образом.
При нажатии кнопки Кн , через резисторы R1 и R2 постепенно заряжается конденсатор С (+ батареи – замкнутые контакты кнопки Кн – резисторы – конденсатор С – минус батареи).
Параллельно конденсатору подключена цепочка из телефонного капсюля и динистора. Через телефонный капсюль и динистор ток не протекает, так как динистор еще «заперт».
♦ При достижении на конденсаторе напряжения, при котором пробивается динистор, через катушку телефонного капсюля проходит импульс тока разряда конденсатора (С – катушка телефона – динистор — С). Слышен щелчок из телефона, конденсатор разрядился. Далее снова идет заряд конденсатора С и процесс повторяется.
Частота повторения щелчков зависит от емкости конденсатора и величины сопротивления резисторов R1 и R2 .
♦ При указанных на схеме номиналах напряжения, резисторов и конденсатора, частоту звукового сигнала с помощью резистора R2 можно менять в пределах 500 – 5000 герц. Телефонный капсюль необходимо использовать с низкоомной катушкой 50 – 100 Ом , не более, например телефонный капсюль ТК-67-Н .
Телефонный капсюль необходимо включать с соблюдением полярности, иначе не будет работать. На капсюле есть обозначение +(плюс) и – (минус).

♦ У этой схемы (рис 1) есть один недостаток. Из-за большого разброса параметров динистора КН102 (разное напряжение пробоя), в некоторых случаях, нужно будет увеличить напряжение источника питания до 35 – 45 вольт , что не всегда возможно и удобно.

Устройство управления, собранное на тиристоре, для включения – выключения нагрузки с помощью одной кнопки показано на рис 2.


Устройство работает следующим образом.
♦ В исходном состоянии тиристор закрыт и лампочка не горит.
Нажмем на кнопку Кн в течении 1 – 2 секунды . Контакты кнопки размыкаются, цепь катода тиристора разрывается.

В этот момент конденсатор С заряжается от источника питания через резистор R1 . Напряжение на конденсаторе достигает величины U источника питания.
Отпускаем кнопку Кн .
В этот момент конденсатор разряжается по цепи: резистор R2 – управляющий электрод тиристора – катод — замкнутые контакты кнопки Кн – конденсатор.
В цепи управляющего электрода потечет ток, тиристор «откроется» .
Загорается лампочк а по цепи: плюс батареи – нагрузка в виде лампочки – тиристор — замкнутые контакты кнопки – минус батареи.
В таком состоянии схема будет находиться сколько угодно долго .
В этом состоянии конденсатор разряжен: резистор R2, переход управляющий электрод – катод тиристора, контакты кнопки Кн.
♦ Для выключения лампочки необходимо кратковременно нажать на кнопку Кн . При этом основная цепь питания лампочки обрывается. Тиристор «закрывается» . Когда контакты кнопки замкнутся, тиристор останется в закрытом состоянии, так как на управляющем электроде тиристора Uynp = 0 (конденсатор разряжен).

Мною опробованы и надежно работали в этой схеме различные тиристоры: КУ101, Т122, КУ201, КУ202, КУ208 .

♦ Как уже упоминалось, динистор и тиристор имеют свой транзисторный аналог .

Схема аналога тиристора состоит из двух транзисторов и изображена на рис 3 .
Транзистор Тр 1 имеет p-n-p проводимость, транзистор Тр 2 имеет n-p-n проводимость. Транзисторы могут быть как германиевые, так и кремниевые.

Аналог тиристора имеет два управляющих входа.
Первый вход: А – Уэ1 (эмиттер — база транзистора Тр1).
Второй вход: К – Уэ2 (эмиттер – база транзистора Тр2).

Аналог имеет: А – анод, К — катод, Уэ1 – первый управляющий электрод, Уэ2 – второй управляющий электрод.

Если управляющие электроды не использовать, то это будет динистор, с электродами А — анод и К — катод .

♦ Пару транзисторов, для аналога тиристора, надо подбирать одинаковой мощности с током и напряжением выше, чем необходимо для работы устройства. Параметры аналога тиристора (напряжение пробоя Unp, ток удержания Iyд) , будут зависеть от свойств применяемых транзисторов.

♦ Для более устойчивой работы аналога в схему добавляют резисторы R1 и R2 . А с помощью резистора R3 можно регулировать напряжение пробоя Uпр и ток удержания Iyд аналога динистора – тиристора. Схема такого аналога изображена на рис 4 .

Если в схеме генератора звуковых частот (рис 1) , вместо динистора КН102 включить аналог динистора, получится устройство с другими свойствами (рис 5) .

Напряжение питания такой схемы составит от 5 до 15 вольт . Изменяя величины резисторов R3 и R5 можно изменять тональность звука и рабочее напряжение генератора.

Переменным резистором R3 подбирается напряжение пробоя аналога под используемое напряжение питания.

Потом можно заменить его на постоянный резистор.

Транзисторы Тр1 и Тр2: КТ502 и КТ503; КТ814 и КТ815 или любые другие.

♦ Интересна схема стабилизатора напряжения с защитой от короткого замыкания в нагрузке (рис 6) .

Если ток в нагрузке превысит 1 ампер , сработает защита.

Стабилизатор состоит из:

  • — управляющего элемента– стабилитрона КС510 , который определяет напряжение выхода;
  • — исполнительного элемента–транзисторов КТ817А, КТ808А , исполняющих роль регулятора напряжения;
  • — в качестве датчика перегрузки используется резистор R4 ;
  • — исполнительным механизмом защиты используется аналог динистора, на транзисторах КТ502 и КТ503 .

♦ На входе стабилизатора в качестве фильтра стоит конденсатор С1 . Резистором R1 задается ток стабилизации стабилитрона КС510 , величиной 5 – 10 мА. Напряжение на стабилитроне должно быть 10 вольт .
Резистор R5 задает начальный режим стабилизации выходного напряжения.

Резистор R4 = 1,0 Ом , включен последовательно в цепь нагрузки.Чем больше ток нагрузки, тем больше на нем выделяется напряжение, пропорциональное току.

В исходном состоянии, когда нагрузка на выходе стабилизатора мала или отключена, аналог тиристора закрыт. Приложенного к нему напряжения 10 вольт (от стабилитрона) не хватает для пробоя. В этот момент падение напряжения на резисторе R4 почти равно нулю.
Если постепенно увеличивать ток нагрузки, будет увеличиваться падение напряжения на резисторе R4 . При определенном напряжении на R4, аналог тиристора пробивается и установится напряжение, между точкой Тчк1 и общим проводом, равное 1,5 — 2,0 вольта .
Это есть напряжение перехода анод — катод открытого аналога тиристора.

Одновременно загорается светодиод Д1 , сигнализируя об аварийной ситуации. Напряжение на выходе стабилизатора, в этот момент, будет равно 1,5 — 2,0 вольта .
Чтобы восстановить нормальную работу стабилизатора, необходимо выключить нагрузку и нажать на кнопку Кн , сбросив блокировку защиты.
На выходе стабилизатора вновь будет напряжение 9 вольт , а светодиод погаснет.
Настройкой резистора R3 , можно подобрать ток срабатывания защиты от 1 ампера и более . Транзисторы Т1 и Т2 можно ставить на один радиатор без изоляции. Сам же радиатор изолировать от корпуса.