Установка и настройка        13.05.2019   

Как писать функции в MATLAB. Файл-функции с несколькими входными аргументами

Большинство разработчиков с трудом представляет, как его синтаксис, так и возможности. Всё дело в том, что язык напрямую связан с популярным программным продуктом, стоимость которого может достигать потрясающих воображение значений. Итак, главный вопрос: так ли хорош непосредственно язык Matlab? И может ли он быть полезен именно вам.

Использование

Начнём не со стандартного экскурса в историю и обсуждения плюсов и минусов языка, а с программной среды MATLAB/Simulink - единственного места, где герой этого текста может быть полезен. Просто представьте себе графический редактор, в котором вы сможете реализовать любую свою задумку, не имея за плечами нескольких лет опыта и соответствующего образования. И создав один раз схему взаимодействия инструментов, получить качественный скрипт для многократного использования.

MATLAB - именно такой редактор в мире данных. Область его применения безгранично широка: IoT, финансы, медицина, космос, автоматика, робототехника, беспроводные системы и многое-многое другое. В общем почти неограниченные возможности по сбору и визуализации данных, а также прогнозированию, но только если есть возможность купить соответствующий пакет.

Что касается цены, то в верхней границы почти нет, а вот нижняя находится в район 99$. Чтобы урвать столь мощный продукт за относительно небольшие деньги, вам необходимо быть студентом ВУЗа. И конечно же вы получите довольно ограниченный продукт.

Особенности языка

Язык MATLAB - инструмент, обеспечивающий взаимодействие оператора (часто даже не программиста) со всеми доступными возможностями анализа, сбора и представления данных. У него есть очевидные плюсы и минусы, свойственные языку живущему в замкнутой экосистеме.

Недостатки:

    Медленный и перегруженный операторами, командами, функциями язык, основной целью которого является улучшение визуального восприятия.

    Узконаправленный. Нет никакой больше программной платформы, где бы MATLAB был полезен.

    Дороговизна ПО. Если вы не студент - либо готовьтесь опустошить карманы или перейти границу закона. И даже если студент - цена приличная.

    Невысокий спрос. Несмотря на большой интерес к MATLAB практически во всех сферах, фактически и легально его используют лишь немногие.

Достоинства:

    Язык легок для изучения, обладает простым и понятным синтаксисом.

    Огромные возможности. Но это скорее преимущество всего продукта в целом.

    Частые обновления, как правило заметные положительные преобразования происходят не реже пары раз в год.

    Программная среда позволяет преобразовывать его в “быстрый” код на С, С++.

Целевая аудитория

Разумеется, MATLAB нужен далеко не всем. Несмотря на широчайшую область применения, трудно представить, что рядовому разработчику приложений может понадобиться знание этого языка. MATLAB крайне полезен в областях, требующих особой надёжности при обработке данных, например, в системах автопилота в автомобилях или бортовых электронных системах самолёта.

То есть если вы не очень программист, но так или иначе ваша профессия связана с необходимостью программной обработки данных, то продукт MATLAB/Simulink с соответствующим языком способны сильно упростить ваши каждодневные задачи.

Литература

Завершаем обзор языка как всегда списком учебной литературы. Само-собой среди них вы не отыщите книг исключительно по языку, но от этого восприятие языка будет только проще:

А у вас есть опыт работы с MATLAB? И какой?

Для тех, кто хочет стать программистом - .

Это окно является основным в MatLAB. В нем появляются символы команд, которые набираются пользователем на экране дисплея, отображаются результаты выполнения этих команд, текст исполняемой программы и информация об ошибках выполнения программы, распознанных системой.

Признаком того, что MatLAB готова к восприятию и выполнению очередной команды, является возникновение в последней строке текстового поля окна знака приглашения " >> ", после которого расположена мигающая вертикальная черта.

В верхней части окна (под заголовком) размещена строка меню, в которой находятся меню File, Edit, View, Windows, Help. Чтобы открыть какое-либо меню, следует установить на нем указатель мыши и нажать ее левую кнопку. Подробнее функции команд меню будут описаны далее, в разделе «Интерфейс MatLab и команды общего назначения. Написание М-книг».

Здесь отметим лишь, что для выхода из среды MatLAB достаточно открыть меню File и выбрать в нем команду Exit MATLAB, или просто закрыть командное окно, нажав левую клавишу мыши, когда курсор мыши установлен на изображении верхней крайней правой кнопки этого окна (с обозначением косого крестика).

1.2. Операции с числами

1.2.1. Ввод действительных чисел

Ввод чисел с клавиатуры осуществляется по общим правилам, принятым для языков программирования высокого уровня:

для отделения дробной части мантиссы числа используется десятичная точка (вместо запятой при обычной записи) ;

десятичный показатель числа записывается в виде целого числа после предшествующей записи символа «е» ;

между записью мантиссы числа и символом «е» (который отделяет мантиссу от показателя ) не должно быть никаких символов , включая и символ пропуска.

Если, например, ввести в командном окне MatLAB строку

то после нажатия клавиши <Еnter> в этом окне появится запись:


Следует отметить, что результат выводится в виде (формате), который определяется предварительно установленным форматом представления чисел. Этот формат может быть установлен с помощью команды Preferences меню File (рис. 1.3). После ее вызова на экране появится одноименное окно (рис. 1.4). Один из участков этого окна имеет название Numeric Format . Он предназначен для установки и изменения формата представления чисел, которые выводятся в командное окно в процессе расчетов. Предусмотрены такие форматы:

Short (default) – краткая запись (применяется по умолчанию);

Long – длинная запись;

Hex – запись в виде шестнадцатиричного числа;

Bank – запись до сотых долей;

Plus – записывается только знак числа;

Short Е – краткая запись в формате с плавающей запятой;

Long Е – длинная запись в формате с плавающей запятой;

Short G – вторая форма краткой записи в формате с плавающей запятой;

Long G – вторая форма длинной записи в формате с плавающей запятой;

Rational – запись в виде рациональной дроби.

Избирая с помощью мыши нужный вид представления чисел, можно обеспечить в дальнейшем выведение чисел в командное окно именно в этой форме.

Как видно из рис. 1.2, число, которое выведено на экран, не совпадает с введенным. Это обусловлено тем, что установленный по умолчанию формат пред­ставления чисел (Short ) не позволяет вывести больше 6 значащих цифр. На самом деле введенное число сохраняется внутри MatLAB со всеми введенными его цифрами. Например, если избрать мышью селекторную кнопку Long Е (т. е. установить указанный формат представления чисел), то, повторяя те же действия, получим:

где уже все цифры отображены верно (рис. 1.5).

Следует помнить:

- введенное число и результаты всех вычислений в системе Ма tLAB сохраняются в памяти ПК с относительной погрешностью около 2.10-16 (т. е. с точными значениями в 15 десятичных разрядах ):

- диапазон представления модуля действительных чисел лежит в диапазоне между 10-308 и 10+308 .

1.2.2. Простейшие арифметические действия

В арифметических выражениях языка МаtLAB используются следующие знаки арифметических операций:

+ – сложение;

– – вычитание;

* – умножение;

/ – деление слева направо;

\ – деление справа налево;

^ – возведение в степень.

Использование MatLAB в режиме калькулятора может происходить путем простой записи в командную строку последовательности арифметических действий с числами, то есть обычного арифметического выражения, например: 4.5^2*7.23 – 3.14*10.4.

Если после ввода с клавиатуры этой последовательности нажать клавишу , в командном окне возникнет результат выполнения в виде, представленном на рис. 1.6, т. е. на экран под именем системной переменной ans выводится результат действия последнего выполненного оператора.

Вообще вывод промежуточной информации в командное окно подчиняется таким правилам:

- если запись оператора не заканчивается символом ";", результат действия этого оператора сразу же выводится в командное окно;

- если оператор заканчивается символом ";", результат его действия не отображается в командном окне ;

- если оператор не содержит знака присваивания (= ), т. е. является просто записью некоторой последовательности действий над числами и переменными , значение результата присваивается специальной системной переменной по имени ans ;

- полученное значение переменной ans можно использовать в следующих операторах вычислений, применяя это имя ans; при этом следует помнить, что значение системной переменной ans изменяется после действия очередного оператора без знака присваивания ;

- в общем случае форма представления результата в командном окне имеет вид :

<Имя переменной> = <результат>.

Пример. Пусть нужно вычислить выражение (25+17)*7. Это можно сделать таким образом. Сначала набираем последовательность 25+17 и нажимаем . Получаем на экране результат в виде ans = 42.Теперь записываем последовательность ans*7 и нажимаем . Получаем ans = 294 (рис. 1.7). Чтобы предотвратить выведение промежуточного результата действия 25+17, достаточно после записи этой последовательности добавить символ ";". Тогда будем иметь результаты в виде, представленном на рис. 1.8.

Применяя MatLAB как калькулятор, можно использовать имена переменных для записи промежуточных результатов в память ПК. Для этого служит операция присваивания, которая вводится знаком равенства "=" в соответствия со схемой: <Имя переменной> = <выражение>[;]

Имя переменной может содержать до 30 символов и должно не совпадать с именами функций, процедур системы и системных переменных. При этом система различает большие и маленькие буквы в переменных. Так, имена "amenu", "Amenu", "aMenu" в MatLAB обозначают разные переменные.

Выражение справа от знака присваивания может быть просто числом, арифметическим выражением, строкой символов (тогда эти символы нужно заключить в апострофы) или символьным выражением. Если выражение не заканчивается символом ";", после нажатия клавиши <Еnter> в командном окне возникнет результат выполнения в виде:

<Имя переменной > = <результат >.

Рис. 1.7. Рис. 1.8.

Например, если ввести в командное окно строку "х = 25 + 17", на экране появится запись (рис. 1.9).

Система MatLAB имеет несколько имен переменных, которые используются самой системой и входят в состав зарезервированных:

i, j – мнимая единица (корень квадратный из –1); pi – число p (сохраняется в виде 3.141592653589793); inf – обозначение машинной бесконечности; Na – обозначение неопределенного результата (например, типа 0/0 или inf/inf); eps – погрешность операций над числами с плавающей запятой; ans – результат последней операции без знака присваивания; realmax и realmin – максимально и минимально возможные величины числа, которое может быть использованы.

Эти переменные можно использовать в математических выражениях.

1.2.3. Ввод комплексных чисел

Язык системы MatLAB, в отличие от многих языков программирования высокого уровня, содержит в себе очень простую в пользовании встроенную арифметику комплексных чисел. Большинство элементарных математических функций допускают в качестве аргументов комплексные числа, а результаты формируются как комплексные числа. Эта особенность языка делает его очень удобным и полезным для инженеров и научных работников.

Для обозначения мнимой единицы в языке МatLAB зарезервированы два имени i и j. Ввод с клавиатуры значения комплексного числа осуществляется путем записи в командное окно строки вида:

<имя комплексной переменной > = <значение ДЧ > + i [j ] * <значение МЧ >,

где ДЧ – действительная часть комплексного числа, МЧ – мнимая часть. Например:

Из приведенного примера видно, в каком виде система выводит комплексные числа на экран (и на печать).

1.2.4. Элементарные математические функции

Общая форма использования функции в MatLAB такова:

<имя результата > = <имя функции >(<перечень аргументов или их значений> ).

В языке MatLAB предусмотрены следующие элементарные арифметические функции.

Тригонометрические и гиперболические функции

sin (z) – синус числа z;

sinh (z) – гиперболический синус;

asin (z) – арксинус (в радианах, в диапазоне от к );

а sinh (z) – обратный гиперболический синус;

со s (z) – косинус;

соsh(z) – гиперболический косинус;

acos (z) – арккосинус (в диапазоне от 0 к p );

асо sh (z) – обратный гиперболический косинус;

tan (z) – тангенс;

tanh (z) – гиперболический тангенс;

atan (z) – арктангенс (в диапазоне от от к );

аtап2 (Х, Y) – четырехквадрантный арктангенс (угол в диапазоне от –p до +p между горизонтальным правым лучом и лучом, который проходит через точку с координатами Х и Y );

atanh (z) – обратный гиперболический тангенс;

sec (z) – секанс;

sech (z) – гиперболический секанс;

asec (z) – арксеканс;

asech (z) – обратный гиперболический секанс;

csc (z) – косеканс;

csch (z) – гиперболический косеканс;

acsc (z) – арккосеканс;

acsch (z) – обратный гиперболический косеканс;

cot (z) – котангенс;

coth (z) – гиперболический котангенс;

acot (z) – арккотангенс;

acoth (z) – обратный гиперболический котангенс

Экспоненциальные функции

exp (z) – экспонента числа z;

log (z) – натуральный логарифм;

log 10 (z) – десятичный логарифм;

sqrt (z) – квадратный корень из числа z;

abs (z) – модуль числа z.

Целочисленные функции

fix (z) – округление к ближайшему целому в сторону нуля;

floor (z) – округление к ближайшему целому в сторону отрицательной бесконечности;

ceil (z) – округление к ближайшему целому в сторону положительной бесконечности;

round (z) – обычное округление числа z к ближайшему целому;

mod (X, Y) – целочисленное деление X на Y;

rem (X, Y) – вычисление остатка от деления X на Y;

sign (z) – вычисление сигнум-функции числа z

(0 при z = 0, –1 при z < 0, 1 при z > 0)

1.2.5. Специальные математические функции

Кроме элементарных в языке MatLAB предусмотрен целый ряд специальных математических функций. Ниже приведен перечень и краткое содержание этих функций. Правила обращения к ним и использования пользователь может отыскать в описаниях этих функций, которые выводятся на экран, если набрать команду help и указать в той же строке имя функции.

Функции преобразования координат

cart 2 sph – преобразование декартовых координат в сферические;

cart 2 pol – преобразование декартовых координат в полярные;

pol 2 cart – преобразование полярных координат в декартовые;

sph 2 cart – преобразование сферических координат в декартовые.

Функции Бесселя

besselj – функция Бесселя первого рода;

bessely – функция Бесселя второго рода;

besseli – модифицированная функция Бесселя первого рода;

besselk – модифицированная функция Бесселя второго рода.

Бета-функции

beta – бета-функция;

betainc – неполная бета-функция;

betaln – логарифм бета-функции.

Гамма-функции

gamma – гамма-функция;

gammainc – неполная гамма-функция;

gammaln – логарифм гамма-функции.

Эллиптические функции и интегралы

ellipj – эллиптические функции Якоби;

ellipke – полный эллиптический интеграл;

expint – функция экспоненциального интеграла.

Функции ошибок

erf – функция ошибок;

erfc – дополнительная функция ошибок;

erfcx – масштабированная дополнительная функция ошибок;

erflnv – обратная функция ошибок.

Другие функции

gcd – наибольший общий делитель;

lern – наименьшее общее кратное;

legendre – обобщенная функция Лежандра;

log2 – логарифм по основанию 2;

pow2 – возведение 2 в указанную степень;

rat – представление числа в виде рациональной дроби;

rats – представление чисел в виде рациональной дроби.

1.2.6. Элементарные действия с комплексными числами

Простейшие действия с комплексными числами – сложение, вычитание, умножение, деление и возведение в степень – осуществляются при помощи обычных арифметических знаков +,–,*,/, \ и ^ соответственно.

Примеры использования приведены на рис. 1.11.

Примечание. В приведенном фрагменте использована функция disp (от слова "дисплей"), которая тоже выводит в командное окно результаты вычислений или некоторый текст. При этом численный результат, как видно, выводится уже без указания имени переменной или ans.

1.2.7. Функции комплексного аргумента

Практически все элементарные математические функции , приведенные в п. 1.2.4, вычисляются при комплексных значениях аргумента и получают в результате этого комплексные значения результата.

Благодаря этому, например, функция sqrt вычисляет, в отличие от других языков программирования, квадратный корень из отрицательного аргумента, а функция abs при комплексном значении аргумента вычисляет модуль комплексного числа. Примеры приведены на рис. 1.12.

В МаtLАВ есть несколько дополнительных функций, рассчитанных только на комплексный аргумент:

real (z) – выделяет действительную часть комплексного аргумента z;

і mag (z) – выделяет мнимую часть комплексного аргумента;

angle (z) – вычисляет значение аргумента комплексного числа z (в радианах в диапазоне от –p до +p);

conj (z) – выдает число, комплексно сопряженное относительно z.

Примеры приведены на рис. 1.13.

Рис. 1.12. Рис. 1.3.

Кроме того, в MatLAB есть специальная функция cplxpair (V), которая осуществляет сортировку заданного вектора V с комплексными элементами таким образом, что комплексно-сопряженные пары этих элементов располагаются в векторе-результате в порядке возрастания их действительных частей, при этом элемент с отрицательной мнимой частью всегда располагается первым. Действительные элементы завершают комплексно-сопряженные пары. Например (в дальнейшем в примерах команды, которые набираются с клавиатуры , будут написаны жирным шрифтом , а результат их выполнения – обычным шрифтом ):

>> v = [ -1, -1+2i,-5,4,5i,-1-2i,-5i]

Columns 1 through 4

1.0000 -1.0000 +2.0000i -5.0000 4.0000

Columns 5 through 7

0 + 5.0000i -1.0000-2.0000i 0 - 5.0000i

>> disp(cplxpair(v))

Columns 1 through 4

1.0000 - 2.0000i -1.0000 + 2.0000i 0 - 5.0000i 0 + 5.0000i

Columns 5 through 7

5.0000 -1.0000 4.0000

Приспособленность большинства функций MatLAB к оперированию с ком­плексными числами позволяет значительно проще строить вычисления с действи­тельными числами, результат которых является комплексным, например, находить комплексные корни квадратных уравнений.

1. Гультяев А. К. MatLAB 5.2. Имитационное моделирование в среде Windows: Практическое пособие. - Спб.: КОРОНА принт, 1999. - 288 с.

2. Гультяев А. К. Визуальное моделирование в среде MATLAB: Учебный курс. - Спб.: ПИТЕР, 2000. - 430 с.

3. Дьяконов В. П. Справочник по применению системы PC MatLAB. - M.: Физматлит, 1993. - 113с.

4. Дьяконов В. Simulink 4. Специальный справочник. - Спб: Питер, 2002. – 518 с.

5. Дьяконов В., Круглов В. Математические пакеты расширения MatLAB. Специальный справочник. - СПб.: Питер, 2001. - 475с.

6. Краснопрошина А. А., Репникова Н. Б., Ильченко А. А. Современный анализ систем управления с применением MATLAB, Simulink, Control System: Учебное пособие. - К.: "Корнійчук", 1999. – 144 с.

7. Лазарев Ю. Ф. Початки програмування в среде MatLAB: Уч. пособие. - К.: "Корнійчук", 1999. - 160с.

8. Лазарев Ю. MatLAB 5.x. – К.: "Ирина" (BHV), 2000. – 384 с.

9. Медведев В. С., Потемкин В. Г. Control System Toolbox. MatLAB 5 для студентов. - Г.: "ДИАЛОГ-МИФИ", 1999. – 287 с.

10. Потемкин В. Г. MatLAB 5 для студентов: Справ. пособие. - M.: "ДИАЛОГ-МИФИ", 1998. - 314 с.

В среде MATLAB есть несколько режимов работы. Самый простой - это ввод команд непосредственно в окно команд (Command Window ).

Окно команд MATLAB

Если оно не видно в интерфейсе программы, откроем его. Найти окно команд можно через меню Desktop Command Window .

Давайте для примера введём в это окно последовательно друг за другом команды

X = ; y = sqrt(x); plot(y);

и нажмём клавишу «Ввод» (Enter ). Программа моментально создаст переменную X, создаст переменную Y и посчитает её значения по заданной функции, а затем построит её график.

Стрелками клавиатуры вверх и вниз в окне команд мы можем переключаться между введёнными командами, тут же изменять их, а по нажатию Enter отправлять среде MATLAB на исполнение. Стрелками влево и вправо можно перемещаться по введённой команде и редактировать её. Если в конце команды стоит точка с запятой, то результат будет посчитан, но не будет выведен в окно команд; в противном случае результат выполнения команды будет отображён тут же. По любой функции в среде MATLAB есть подробная встроенная справка. Например, чтобы получить справку по команде plot , выделите эту команду, нажмите на неё правой кнопкой мыши, и в открывшемся контекстном меню выберите пункт Help on Selection или нажмите клавишу F1 .

Получение справки по командам MATLAB

Удобно? Безусловно. И главное - очень быстро. Все эти действия занимают несколько секунд.

Но что если нужна более сложная организация команд? Если нужно циклическое исполнение каких-то команд? Вводить команды вручную по одной, а потом долго искать их в истории может быть довольно утомительным делом.

2 Работа с редактором в среде MATLAB

Чтобы упростить жизнь учёному, инженеру или студенту, служит окно редактора (Editor ). Давайте откроем окно редактора через меню Desktop Editor .

В окне редактора можно создавать новые переменные, строить графики, писать программы (скрипты), создавать компоненты для обмена с другими средами, создавать приложения с пользовательским интерфейсом (GUI), а также редактировать имеющиеся.

Нас в данный момент интересует написание программы, содержащей функции для повторного использования в будущем. Поэтому идём в меню File редактора и выбираем New M-File .


М-файлами в среде МАТЛАБ называются файлы, содержащие текст программ (скрипты) или определённые пользователем функции.

Давайте напишем в редакторе простую функцию draw_plot :

function draw_plot(x) % Задаём первую функцию: y = log(x); % Строим первый график: subplot(1, 2, 1), plot(x, y); % Задаём вторую функцию: y = sqrt(x); % Строим второй график: subplot(1, 2, 2), plot(x, y);

Переходим обратно в окно команд.

Можно очистить историю команд, чтобы лишняя информация нас не отвлекала. Для этого кликните правой кнопкой мыши на поле ввода команд и в открывшемся контекстном меню выберите пункт Clear Command Window .

Переменная X у нас осталась после предыдущего эксперимента, мы её не изменяли и не удаляли. Поэтому в окно команд можно сразу ввести:

Draw_plot(x);

Вы увидите, что MATLAB прочитает нашу функцию из файла и выполнит её, нарисовав график.


Если MATLAB при выполнении программы выдаст сообщение, Undefined function or method "draw_plot" for input arguments of type "double". (т.е. вызывается неизвестная функция), нажмите в окне редактора зелёную кнопку со стрелкой (Run ) или через меню редактора: Debug Run draw_plot.m . MATLAB сообщит, что директория, в которой находится файл с нашей программой (draw_plot.m), не является рабочей директорией. Нажмите в диалоговом окне кнопку Add to Path , чтобы пакет MATLAB добавил директорию к рабочему пути и мог использовать наш M-файл. После этого программа должна запуститься нормально.

Скрипты

Наряду с работой в командной строке, существует еще один способ выполнения команд. Это написание программ.

Скрипт - последовательность команд MATLAB, записанная в файл с расширением «.m». Это обычные текстовые файлы. Для их написания можно использовать любой текстовый редактор.

Чтобы создать скрипт, в общем случае достаточно иметь под рукой обычный текстовый редактор. Мы будем использовать встроенный в среду MATLAB редактор. Используйте кнопку «New Script» в верхнем левом углу для создания нового скрипта. После нажатия данной кнопки появится окно текстового редактора (рисунок 5).

Рисунок 5. Редактор кода MATLAB Создадим небольшую программу:

fprintf("Hello World!\n")

Теперь необходимо сохранить данный скрипт, для этого надо нажать на кнопку «Save» в левом верхнем углу, после чего MATLAB предложит сохранить его в текущей директории («Current Folder»). Дадим скрипту имя «Example1.m» и сохраним его. Желательно, чтобы скрипт был сохранен в текущей директории, так MATLAB будет искать скрипты для запуска

в папках, которые перечислены во внутренней переменной MATLAB path . Также в этот список входит и текущая директория, отображаемая в среде MATLAB справа в специальной плавающей области. По умолчанию скрипт будет сохранен в текущий каталог, поэтому можно сразу же сделать его вызов. Запустить скрипт на выполнение можно введя его имя (имя m-файла в который он был сохранен) в командной строке и нажав «Enter» или кнопку «Run» в редакторе кода. В обоих случаях в командном окне отобразится следующий вывод:

>> Example1 Hello World!

Рассмотрим другой пример. Имеется скрипт:

x = 0:0.02:2*pi; a = 0.3;

y = a * sin(x) + b * cos(x); plot(x, y)

Сохраним в файл Example2.m и запустим на выполнение. В результате MATLAB посчитает и выведет на экран график функции y = a sin(x )+ b cos(x ) .

Так же отметим, что после выполнения скрипта в окне «Workspace» появились переменные x ,a ,b иy . Для объяснения почему так получилось, рассмотри очень важно понятие в MATLAB как рабочая область.

Рабочая область в MATLAB

Рабочая область системы MATLAB - это область памяти, в которой размещены переменные системы. Рабочие области в MATLAB бывают двух типов:

base workspace - базовая рабочая область;

function workspace - рабочая область функции.

Все переменные в рабочей области существуют в ней с момента их объявления при работе с данной рабочей областью и до явного их удаления с помощью команды clear или до конца действия данной рабочей области, например для базовой рабочей области это закрытие MATLAB.

При запуске скрипта он не создает новую рабочую область, а работает с рабочей областью откуда был вызван.

Когда мы вызываем скрипт из командного окна, то он работает с работает с базовой рабочей областью, поэтому ему доступны все переменны, которые мы создали до вызова скрипта. Так же если скрипт создаст еще переменные, то они останутся доступными и после

его завершения.

Комментарии

Хорошим тоном в написании программного кода считается составлять комментарии к написанному вами коду. Комментарии никак не влияют на работу программы и служат для предоставления дополнительной информации. Комментарии помогут другим людям разобраться в вашем алгоритме и помогут вам вспомнить суть написанного через какой-то промежуток времени, когда вы уже забыли что программировали. Для указания начала комментария в MATLAB используется символ «%».

% Генерация равномерно распределенных случайных чисел

% Подсчет математического ожидания сгенерированных чисел

% Отображение данных на графике

% 50 случайных чисел

% Сформировать и присвоить вектор случайных

значений переменной r

% Отобразить на графике сформированный вектор

% Проводим линию

через (0, m) и (n, m)

% Вычислить среднее арифметическое по значениям

вектора r

plot(,)

title("Mean of Random Uniform Data") % Название графика

Функции

Еще одна разновидность программ MATLAB - функции. В отличии от скриптов при вызове функция создает новую рабочую область, поэтому внутри функции не будут видны переменны, объявленные вне ее кода. Поэтому для связи функции с внешним кодом используются входные и выходные параметры. Рассмотрим общий синтаксис объявления функции:

function = имя_функции(x1,...,xM) оператор_1 оператор_2

оператор_n end

Функция содержится в отдельном m-файле.

Функция начинается с ключевого слова function , за которым следуют в квадратных

скобках через запятую имена выходных переменных. Далее идет знак «=» и имя функции. Имя функции подчиняется тем же правилам, что и имена переменных. Так же отметим, что имя функции обязательно должно совпадать с именем файла, в котором она определена. После имени функции в круглых скобках через запятую идут имена входных параметров.

Следующие строки содержат тело функции (любые допустимые выражения MATLAB).

В конце функция заканчивается ключевым словом end, однако оно не является обязательным, и его можно опустить.

Так же отметим, что если функция возвращает только один параметр, то его не обязательно заключать в квадратные скобки, например:

function s = triaArea(a, b)

% вычисление площади прямоугольного треугольника

% a, b - катеты треугольника

s = a * b / 2; end

Если функция вообще не возвращает параметры, то сразу после ключевого слова function идет имя функции, например:

function hellowWorld()

% пример функции без входных и выходных параметров disp("Hello world!");

Для вызова функции применяется следующий синтаксис:

Имя_функции(z1,...,zM)

где k1, ..., kN - переменны, куда будут записаны выходные значения функции, аz1,...,zM - аргументы функции.

В случае если функция возвращает только один параметр, то квадратные скобки можно опустить, например:

s = triaArea(1,2)

Фактические и формальные параметры функции

Важно различать фактические и формальные параметры функции:

фактический параметр - аргумент, передаваемый в функцию при ее вызове;

формальный параметр - аргумент, указываемый при объявлении или определении функции.

Поясним данное различие на примере.

Среда MATLAB включает интерпретатор команд на языке высокого уров­ня, графическую систему, пакеты расширений и реализована на языке C. Вся работа организуется через командное окно (Command Window), которое появля­ется при запуске программы matlab.exe. В процессе работы данные располага­ются в памяти (Workspace), для изображения кривых, поверхностей и других графиков создаются графические окна.

В командном окне в режиме диалога проводятся вычисления. Пользова­тель вводит команды или запускает на выполнение файлы с текстами на языке MATLAB. Интерпретатор обрабатывает введенное и выдает результаты: число­вые и строковые данные, предупреждения и сообщения об ошибках. Строка ввода помечена знаком >>. В командном окне показываются вводимые с кла­виатуры числа, переменные, а также результаты вычислений. Имена перемен­ных должны начинаться с буквы. Знак = соответствует операции присваивания. Нажатие клавиши Enter заставляет систему вычислить выражение и показать результат. Наберите с клавиатуры в строке ввода:

Нажмите клавишу Enter, на экране в зоне просмотра появится результат вычисления:

Все значения переменных, вычисленные в течение текущего сеанса рабо­ты, сохраняются в специально зарезервированной области памяти компьютера, называемой рабочим пространством системы MATLAB (Workspace). Коман­дой clc можно стереть содержимое командного окна, однако это не затронет содержимого рабочего пространства. Когда исчезает необходимость в хранении ряда переменных в текущем сеансе работы, их можно стереть из памяти ком­пьютера командой clear или clear(имя1, имя2, ...). Первая команда удаляет из памяти все переменные, а вторая - переменные с именами имя1 и имя2. Коман­дой who можно вывести список всех переменных, входящих в данный момент в рабочее пространство системы. Для просмотра значения любой переменной из текущего рабочего пространства системы достаточно набрать ее имя и нажать клавишу Enter.

После окончания сеанса работы с системой MATLAB все ранее вычислен­ные переменные теряются. Чтобы сохранить в файле на диске компьютера со­держимое рабочего пространства системы MATLAB, нужно выполнить коман­ду меню File / Save Workspace As ... .По умолчанию расширение имени файла mat, поэтому такие файлы принято называть МАТ-файлами. Для загрузки в па­мять компьютера ранее сохраненного на диске рабочего пространства нужно выполнить команду меню: File / Load Workspace ... .

Вещественные числа и тип данных double

Система MATLAB представляет на машинном уровне все действительные числа заданные мантиссой и показателем степени, например, 2.85093Е+11, где буквой Е обозначается основание степени равное 10. Этот основной тип дан­ных носит название double. MATLAB по умолчанию использует формат short для вывода вещественных чисел, при котором показываются только четыре де­сятичных цифры после запятой.

Введите с клавиатуры пример:

» res=5.345*2.868/3.14-99.455+1.274

Получите результат вычисления:

Если требуется полное представление вещественного числа res, введите с клавиатуры команду:

нажмите клавишу Enter и получите более подробную информацию:

res = -93.29900636942675

Теперь все результаты вычислений будут показываться с такой высокой точностью в течение данного сеанса работы в среде системы MATLAB. Если требуется до прекращения текущего сеанса работы вернуться к старой точности визуального представления вещественных чисел в командном окне, нужно вве­сти и исполнить (нажав клавишу Enter) команду:

Целые числа показываются системой в командном окне в виде целых чисел.

Над вещественными числами и переменными типа double производятся арифметические операции: сложения +, вычитания -, умножения *, деления / и возведения в степень ^ . Приоритет в выполнении арифметических операций обычный. Операции одинакового приоритета выполняются в порядке слева на­право, но круглые скобки могут изменить этот порядок.

Если нет необходимости видеть в командном окне результат вычисления некоторого выражения, то в конце введенного выражения следует поставить точку с запятой и только после этого нажать Enter.

В системе MATLAB присутствуют все основные элементарные функции для вычислений с вещественными числами. Любая функция характеризуется своим именем, списком входных аргументов (перечисляются через запятую и стоят внутри круглых скобок, следующих за именем функции) и вычисляемым (возвращаемым) значением. Список всех имеющихся в системе элементарных математических функций может быть получен по команде help elfun. В Прило­жении 1 перечислены стандартные функции вещественного аргумента.

Вычислите выражение, включающее вычисление функции арксинус:

Убедитесь, что получился следующий результат:

соответствующее числу «пи». В системе MATLAB для вычисления числа «пи» есть специальное обозначение: pi. (Список системных переменных MATLAB находится в Приложении 2).

MATLAB имеет также логические функции, функции, связанные с цело­численной арифметикой (округления до ближайшего целого: round, усечение дробной части числа: fix). Есть еще функция mod - остаток от деления с учетом знака, sign - знак числа, lcm - наименьшее общее кратное, perms - вычисление числа перестановок и nchoosek - числа сочетаний и много других. Многие из функций имеют область определения, отличную от множества всех действи­тельных чисел.

Помимо арифметических операций над операндами типа double выполня­ются еще операции отношения и логические операции. Операции отношения сравнивают между собой два операнда по величине. Эти операции записывают­ся следующими знаками или комбинациями знаков (Таблица 1):

Таблица 1


В случае истинности операции отношения ее величина равна 1, а в случае ложности - 0. Операции отношения имеют более низкий приоритет, чем ариф­метические операции.

Наберите с клавиатуры выражение с операциями отношения и вычислите

» a=1; b=2; c=3;

» res=(a

Вы получите следующий результат:

Логические операции над вещественными числами обозначаются знаками, перечисленными в таблице 2:

Таблица 2


& | ~
И ИЛИ НЕ

Первые две из этих операций являются бинарными (двухоперандными), а последняя - унарной (однооперандной). Логические операции трактуют свои операнды как «истинные» (не равные нулю) или «ложные» (равные нулю). Ес­ли оба операнда операции «И» истинны (не равны нулю), то результат этой операции равен 1 («истина»); во всех остальных случаях операция «И» выраба­тывает значение 0 («ложь»). Операция «ИЛИ» вырабатывает 0 («ложь») только в случае, когда являются ложными (равными нулю) оба операнда. Операция «НЕ» инвертирует «ложь» на «истину». Логические операции имеют самый низкий приоритет.

Комплексные числа и комплексные функции

Комплексные переменные, как и вещественные автоматически имеют тип double и не требуют никакого предварительного описания. Для записи мнимой единицы зарезервированы буквы i или j. В случае, когда коэффициентом перед мнимой единицей является не число, а переменная, между ними следует обяза­тельно использовать знак умножения. Итак, комплексные числа можно записывать следующим образом:

» 2+3i; -6.789+0.834e-2*i; 4-2j; x+y*i;

Почти все элементарные функции допускают вычисления с комплексны­ми аргументами. Вычислите выражение:

» res=sin(2+3i)*atan(4i)/(1 -6i)

Получится результат:

1.8009 - 1.91901

Специально для работы с комплексными числами предназначены следую­щие функции: abs (абсолютное значение комплексного числа), conj (комплекс­но сопряженное число), imag (мнимая часть комплексного числа), real (дейст­вительная часть комплексного числа), angle (аргумент комплексного числа), isreal («истина», если число действительное). Функции комплексного перемен­ного перечислены в Приложении 1.

В отношении арифметических операций ничего нового для комплексных чисел (по сравнению с вещественными) сказать невозможно. То же самое отно­сится и к операциям отношения «равно» и «не равно». Остальные операции от­ношения вырабатывают результат исходя только из действительных частей этих операндов.

Введите выражение, получите результат и объясните его:

» c=2+3i; d=2i; » c>d

Логические операции трактуют операнды как ложные, если они равны ну­лю. Если же у комплексного операнда не равна нулю хотя бы одна его часть (вещественная или мнимая), то такой операнд трактуется как истинный.

Числовые массивы

Для создания одномерного массива можно использовать операцию конка­тенации, которая обозначается с помощью квадратных скобок . Элементы массива помещаются между скобками и отделяются друг от друга пробелом или запятой:

» al=; d=;

Для доступа к индивидуальному элементу массива нужно применить операцию индексации, для чего после имени элемента указать в круглых скоб­ках индекс элемента.

Можно изменять элементы уже сформированного массива путем примене­ния операций индексации и присваивания. Например, введя:

мы изменим третий элемент массива. Или, после введения:

» al(2)=(al(1)+al(3))/2;

второй элемент массива станет равным среднему арифметическому первого и третьего элементов. Запись несуществующего элемента вполне допустима - она означает добавление нового элемента к уже существующему массиву:

Применяя после выполнения этой операции к массиву а1 функцию length, находим, что количество элементов в массиве возросло до четырех:

Тоже самое действие - «удлинение массива а1» - можно выполнить и с помощью операции конкатенации:

Можно задать массив, прописывая все его элементы по отдельности:

» a3(1)=67; a3(2)=7.8; a3(3)=0.017;

Однако этот способ создания не является эффективным. Еще один способ создания одномерного массива основан на применении специальной функции, обозначаемой двоеточием (операция формирования диапазона числовых значений). Через двоеточие следует набрать первое число диапазона, шаг (приращение) и конечное число диапазона. Например:

» diap=3.7:0.3:8.974;

Если не нужно выводить на экран весь получившийся массив, то в конце набора (после конечного числа диапазона) следует набрать точку с запятой. Чтобы узнать, сколько элементов в массиве, следует вызвать функцию length (имя массива).

Для создания двумерного массива (матрицы) также можно использовать операцию конкатенацию. Элементы массива набираются один за другим со­гласно их расположению в строках, в качестве разделителя строк используется точка с запятой.

Введите с клавиатуры:

» a=

Нажмите ENTER, получим:

Полученную матрицу а размером 3x2 (первым указывается число строк, вторым - число столбцов) можно сформировать также вертикальной конкате­нацией вектор-строк:

» a=[;;];

или горизонтальной конкатенацией вектор-столбцов:

» a=[,];

Структуру созданных массивов можно узнать с помощью команды whos(имя массива), размерность массива - функцией ndims, а размер массива - size.

Двумерные массивы можно задать также с помощью операции индекса­ции, прописывая по отдельности его элементы. Номер строки и столбца, на пе­ресечении которых находится задаваемый элемент массива, указываются через запятую в круглых скобках. Например:

» a(1,1)=1; a(1,2)=2; a(2,1)=3; » a(2,2)=4; a(3,1)=5; a(3,2)=6;

Однако будет намного эффективнее, если до начала прописывания элементов массива, создать массив нужного размера функциями ones (m,n) или zeros(m,n), заполненный единицами или нулями (m - число строк, n - число столбцов). При вызове этих функций предварительно выделяется память под заданный размер массива, после этого постепенное прописывание элементов нужными значениями не требует перестройки структуры памяти, отведенной под массив. Использование этих функций возможно и при задании массивов других раз­мерностей.

Если после формирования массива Х потребуется, не изменяя элементов массива, изменить его размеры, можно воспользоваться функцией reshape (Х, М, N), где M и N - новые размеры массива Х

Объяснить работу этой функции можно, только исходя из способа, каким система MATLAB хранит элементы массивов в памяти компьютера. Она хра­нит их в непрерывной области памяти упорядоченно по столбцам: сначала рас­полагаются элементы первого столбца, вслед за ними расположены элементы второго столбца и т.д. Помимо собственно данных (элементов массива) в памя­ти компьютера хранится также управляющая информация: тип массива (напри­мер, double), размерность и размер массива, другая служебная информация. Этой информации достаточно для определения границ столбцов. Отсюда сле­дует, что для переформирования матрицы функцией reshape достаточно изме­нить только служебную информацию и не трогать собственные данные.

Поменять местами строки матрицы с ее столбцам можно операцией транс­портирования, которая обозначается знаком." (точка и апостроф). Например,

» A=;

Операция " (апостроф) выполняет транспонирование для вещественных матриц и транспонирование с одновременным комплексным сопряжением для комплексных матриц.

Объекты, с которыми работает MATLAB, являются массивами. Даже од­но заданное число во внутреннем представлении MATLAB является массивом, состоящим из одного элемента. MATLAB позволяет делать вычисления с ог­ромными массивами чисел также легко как и с одиночными числами, и это яв­ляется одним из самых заметных и важных преимуществ системы MATLAB над другими программными пакетами, ориентированными на вычисления и программирование. Помимо памяти, необходимой для хранения числовых эле­ментов (по 8 байт на каждый в случае вещественных чисел и по 16 байт в слу­чае комплексных чисел), MATLAB автоматически при создании массивов вы­деляет еще и память для управляющей информации.

Вычисления с массивами

В традиционных языках программирования вычисления с массивами осу­ществляются поэлементно в том смысле, что нужно запрограммировать каж­дую отдельную операцию над отдельным элементом массива. В М-языке сис­темы MATLAB допускаются мощные групповые операции над всем массивом сразу. Именно групповые операции системы MATLAB позволяют чрезвычайно компактно задавать выражения, при вычислении которых реально выполняется гигантский объем работы.

Операции сложения и вычитания матриц обозначаются стандартными знаками + и -.

Задайте матрицы А и В и выполните операцию сложения матриц:

» A=; B=;

Если используются операнды разных размеров, выдается сообщение об ошибке, за исключением случая, когда один из операндов является скаляром. При выполнении операции А + скаляр (А - матрица) система расширит скаляр до массива размера А, который и складывается далее поэлементно с А.

Для поэлементного перемножения и поэлементного деления массивов одинаковых размеров, а также поэлементного возведения в степень массивов, применяются операции, обозначаемые комбинациями двух символов: .* , ./, и.^. Использование комбинаций символов объясняется тем, что символами * и / обозначены специальные операции линейной алгебры над векторами и матри­цами.

Кроме операции./, называемой операцией правого поэлементного деления, есть еще операция левого поэлементного деления.\. Разница между этими операциями: выражение А./ В приводит к матрице с элементами А (k, m) /В (k, m), а выражение А.\В приводит к матрице с элементами В (k, m) /А (k, m).

Знак * закреплен за перемножением матриц и векторов в смысле линейной алгебры.

Знак \ закреплен в системе MATLAB за решением довольно сложной зада­чи линейной алгебры - нахождением корней системы линейных уравнений. Например, если требуется решить систему линейных уравнений Ay = b, где А - заданная квадратная матрица размера N´N, b - заданный вектор- столбец длины N, то для нахождения неизвестного вектор-столбца у достаточно вычислить выражение А\b (это равносильно операции: A -1 B).

Типичные задачи аналитической геометрии в пространстве, связанные с нахождением длин векторов и углов между ними, с вычислением скалярного и векторного произведений, легко решаются разнообразными средствами систе­мы MATLAB. Например, для нахождения векторного произведения векторов предназначена специальная функция cross, например:

» u=; v=;

Скалярное произведение векторов можно вычислить с помощью функции общего назначения sum, вычисляющей сумму всех элементов векторов (для матриц эта функция вычисляет суммы для всех столбцов). Скалярное произве­дение, как известно, равно сумме произведений соответствующих координат (элементов) векторов. Таким образом, выражение: » sum(u.*v)

вычисляет скалярное произведение двух векторов u и v. Скалярное произведе­ние можно также вычислить как: u*v".

Длина вектора вычисляется с помощью скалярного произведения и функ­ции извлечения квадратного корня, например:

» sqrt(sum(u.*u))

Ранее рассмотренные для скаляров операции отношения и логические опе­рации выполняются в случае массивов поэлементно. Оба операнда должны быть одинаковых размеров, при этом операция возвращает результат такого же размера. В случае, когда один из операндов скаляр, производится его предвари­тельное расширение, смысл которого уже был пояснен на примере арифметиче­ских операций.

Среди функций, генерирующих матрицы с заданными свойствами, часто испольльзуется функция eye , производящую единичные квадратные матрицы, а так­же широко применяемую на практике функцию rand, генерирующую массив со случайными элементами, равномерно распределенными на интервале от 0 до 1. Например, выражение

порождает массив случайных чисел размером 3х3 с элементами, равномерно распределенными на интервале от 0 до 1.

Если вызвать эту функцию с двумя аргументами, например R=rand(2,3), то получится матрица R случайных элементов размером 2x3. При вызове функции rand с тремя и более скалярными аргументами производятся многомерные мас­сивы случайных чисел.

Определитель квадратной матрицы вычисляется с помощью функции det. Среди функций, производящих простейшие вычисления над массивами, помимо рассмотренной выше функции sum, используется еще и функция prod, ко­торая во всем аналогична функции sum, только вычисляет она не сумму эле­ментов, а их произведение. Функции max и min ищут соответственно макси­мальный и минимальный элементы массивов. Для векторов они возвращают единственное числовое значение, а для матриц они порождают набор экстре­мальных элементов, вычисленных для каждого столбца. Функция sort сортиру­ет в возрастающем порядке элементы одномерных массивов, а для матриц она производит такую сортировку для каждого столбца отдельно.

В MATLAB есть уникальная возможность производить групповые вычисления над массивами, используя обыч­ные математические функции, которые в традиционных языках программиро­вания работают только со скалярными аргументами. В результате с помощью крайне компактных записей, удобных для ввода с клавиатуры в интерактивном режиме работы с командным окном системы MATLAB, удается произвести большой объем вычислений. Например, всего два коротких выражения

» x=0:0.01:pi/2; y=sin(x);

вычисляют значения функции sin сразу в 158 точках, формируя два вектора x и у со 158 элементами каждый.

Построение графиков функций

Графические возможности системы MATLAB являются мощными и разно­образными. Изучим наиболее простые в использовании возможности (высоко­уровневую графику).

Сформируйте два вектора х и у:

» x=0:0.01:2; y=sin(x);

Вызовите функцию:

и вы получите на экране график функции (рис. 1).

Рис. 1. График функции y=sin(x)

MATLAB показывает графические объекты в специальных графических окнах, имеющих в заголовке слово Figure. Не убирая с экрана дисплея первое графическое окно, введите с клавиату­ры выражения

и получите новый график функции в том же самом графическом окне (при этом старые оси координат и график пропадают - этого также можно добиться ко­мандой clf, командой cla удаляют только график с приведением осей коорди­нат к их стандартным диапазонам от 0 до 1).

Если нужно второй график провести «поверх первого графика», то перед вторичным вызовом графической функции plot нужно выполнить команду hold on, которая предназначена для удержания текущего графического окна:

» x=0:0.01:2; y=sin(x);

Практически тоже самое получится (рис. 2), если набрать:

» x=0:0.01:2; y=sin(x); z=cos(x);

» plot(x,y,x,z)

Рис. 2. Графики функций y=sin(x), z=cos(x), построенные в одном графи­ческом окне

Если нужно одновременно визуализировать несколько графиков так, что­бы они не мешали друг другу, то это можно сделать двумя способами. Первым решением является построение их в разных графических окнах. Для этого пе­ред вторичным вызовом функции plot следует набрать команду figure, которая создает новое графическое окно и заставляет все последующие за ней функции построения графиков выводить их туда.

Вторым решением показа нескольких графиков без конфликта диапазонов осей координат является использование функции subplot. Эта функция позволя­ет разбить область вывода графической информации на несколько подобластей, в каждую из которых можно вывести графики различных функций.

Например, для ранее выполненных вычислений с функциями sin и cos по­стройте графики этих двух функций в первой подобласти, а график функции exp(x) - во второй подобласти одного и того же графического окна (рис. 3):

» subplot(1,2,1); plot(x,y,x,z)

» subplot(1,2,2); plot(x,w)

Рис. 3. Графики функций y=sin(x), z=cos(x) и w=exp(x), построенные в двух подобластях одного графического окна

Диапазоны изменения переменных на осях координат этих подобластей не­зависимы друг от друга. Функция subplot принимает три числовых аргумента, первый из которых равен числу рядов подобластей, второй равен числу коло­нок подобластей, а третий аргумент - номеру подобласти (номер отсчитывается вдоль рядов с переходом на новый ряд по исчерпании). Снять действие функ­ции subplot можно командой:

» subplot(1,1,1)

Если для одиночного графика диапазоны изменения переменных вдоль од­ной или обеих осей координат слишком велик, то можно воспользоваться функциями построения графиков в логарифмических масштабах. Для этого предназначены функции semilogx, semilogy и loglog.

Построить график функции в полярных координатах (рис. 4) можно с по­мощью графической функции polar.

» phi=0:0.01:2*pi; r=sin(3*phi);

Рис. 4. График функции r=sin(3*phi) в полярных координатах

Рассмотрим дополнительные возможности, связанные с управлением внешним видом графиков - задание цвета и стиля линий, а также размещение различных надписей в пределах графического окна. Например, команды

» x=0:0.1:3; y=sin(x);

» plot(x,y,"r-",x,y, "ko")

позволяют придать графику вид красной сплошной линии (рис. 5), на которой в дискретных вычисляемых точках проставляют черные окружности. Здесь функция plot дважды строит график одной и той же функции, но в двух разных стилях. Первый из этих стилей отмечен как "r-", что означает проведение линии красным цветом (буква r), а штрих означает проведение сплошной линии. Вто­рой стиль, помечен как "ko", означает проведение черным цветом (буква k) ок­ружностей (буква o) на месте вычисляемых точек.

Рис. 5. Построение графика функции y=sin(x) в двух разных стилях

В общем случае функция plot (x1, y1, s1, x2, y2, s2, ...) позволяет объеди­нить в одном графическом окне несколько графиков функций y1(x1), y2(x2), ... проведя их со стилями s1, s2, ... и т. д.

Стили s1, s2,... задаются в виде набора трех символьных маркеров, заклю­ченных в одиночные кавычки (апострофы). Один из этих маркеров задает тип линии (Таблица 3). Другой маркер задает цвет (Таблица 4). Последний маркер задает тип проставляемых «точек» (Таблица 5). Можно указывать не все три маркера. Тогда используются маркеры, установленные по умолчанию. Порядок, в котором указывают маркеры, не является существенным, то есть "r+-" и "-+r" приводит к одинаковому результату.

Таблица 3. Маркеры, задающие тип линии

Таблица 4 Маркеры, задающие цвет линии

Таблица 5 Маркеры, задающие тип точки

Если в строке стиля поставить маркер на тип точки, но не проставить мар­кер на тип линии, то тогда отображаются только вычисляемые точки, а непре­рывной линией они не соединяются.


Сис­тема MATLAB устанавливает пределы на горизонтальной оси равными тем значениям, что указаны пользователем для независимой переменной. Для зави­симой переменной по вертикальной оси MATLAB самостоятельно вычисляет диапазон изменения значений функции. Если надо отказаться от этой осо­бенности масштабирования при построении графиков в системе MATLAB, то нужно явным образом навязать свои пределы изменения переменных по осям координат. Это делается с помощью функции axis().

Для проставления различных надписей на полученном рисунке применяют функции xlabel, ylabel, title и text. Функция xlabel создает подпись у горизон­тальной оси, функция ylabel - тоже для вертикальной оси (причем эти надписи ориентированы вдоль осей координат). Если требуется разместить надпись в произвольном месте рисунка, применяют функцию text. Общий заголовок для графика создается функцией title. Кроме того, используя команду grid on, мож­но нанести измерительную сетку на всю область построения графика. Напри­мер (рис. 6):

» x=0:0.1:3; y=sin(x);

» plot(x,y,"r-",x,y,"ko")

»title("Function sin(x) graph");

» xlabel("xcoordinate"); ylabel("sin(x)");

» text(2.1, 0.9, "\leftarrowsin(x)"); grid on

Надпись функцией text помещается начиная от точки с координатами, указанными первыми двумя аргументами. По умолчанию координаты задаются в тех же единицах измерения, что и координаты, указанные на горизонтальной и вертикальной осях. Специальные управляющие символы вводятся внутри текста после символа \ (обратная косая черта).

Трехмерная графика

Каждая точка в пространстве характеризуется тремя координатами. Набор точек, принадлежащих некоторой линии в пространстве, нужно задать в виде трех векторов, первый из которых содержит первые координаты этих точек, второй вектор - вторые их координаты, третий вектор - третьи координа­ты. После чего эти три вектора можно подать на вход функции plot3, которая и осуществит проектирование соответствующей трехмерной линии на плоскость и построит результирующее изображение (рис. 7). Введите с клавиатуры:

» t=0:pi/50:10*pi; x=sin(t);

» y=cos(t); plot3(x,y,t); grid on

Рис. 7. График винтовой линии, построенный с помощью функции plot3

Эту же функцию plot3 можно применить и для изображения поверхностей в пространстве, если, конечно, провести не одну линию, а много. Наберите с клавиатуры:

» u=-2:0.1:2; v=-1:0.1:1;

» =meshgrid(u,v);

» z=exp(-X.^2-Y.^2);

Получите трехмерное изображение графика функции (рис. 8).

Функция plot3 строит график в виде набора линий в пространстве, каждая из которых является сечением трехмерной поверхности плоскостями, парал­лельными плоскости yOz. Помимо этой простейшей функции система MATLAB располагает еще рядом функций, позволяющих добиваться большей реалистичности в изображении трехмерных графиков.

Рис. 8. График поверхности в пространстве, построенный с помо­щью функции plot3


Сценарии и m-файлы.

Для простых операций удобен интерактивный режим, но если вычисле­ния нужно многократно выполнять или необходимо реализовывать сложные алгоритмы, то следует использовать m-файлы MATLAB (расширение файла со­стоит из одной буквы m). script-m-файл (или сценарий) - текстовый файл, содержащий инструкции на языке MATLAB, подле­жащими исполнению в автоматическом пакетном режиме. Создать такой файл удобнее с помощью редактора системы MATLAB. Он вызывается из командно­го окна системы MATLAB командой меню File/New/M-file (или самой левой кнопкой на полосе инструментов, на которой изображен чистый белый лист бумаги). Записанные в script-файлы команды будут выполнены, если в команд­ной строке ввести имя script-файла (без расширения). Переменные, определяе­мые в командном окне и переменные, определяемые в сценариях, составляют единое рабочее пространство системы MATLAB, причем переменные, опреде­ляемые в сценариях, являются глобальными, их значения заместят значения таких же переменных, которые были использованы до вызова данного script- файла.

После создания текста сценария его надо сохранить на диске. Путь к каталогу с файлом обязательно должен быть известен сис­теме MATLAB. Командой File/Set Path вызывается диалоговое окно просмотрщика путей доступа к каталогам. Для добавления нового каталога в список пу­тей доступа необходимо выполнить далее команду меню Path/Add to path.