Установка и настройка        22.07.2019   

Что такое MIMO антенна? Технология MIMO: что это и с чем её едят.

Требования к пропускной способности мобильных сетей очень высоки и, при этом, они постоянно растут. Очевидные варианты увеличения пропускной способности - увеличение ширины канала и использование модуляций более высокого порядка, не позволяют полностью решить задачу обеспечения высокой пропускной способности. Частотный диапазон все-таки ограничен. А использование модуляции более высокого порядка подразумевает повышение SINR (Signal to Interference plus Noise Ratio), что тоже имеет свой предел. Еще одним способом увеличения пропускной способности беспроводных систем является использование нескольких передающих и приемных антенн (MIMO - Multiple Input Multiple Output ) и специальная обработка сигнала в этом случае. Далее приводится классификация вариантов MIMO и их краткое описание.

Классическая система (SISO - Single Input Single Output)

Для начала рассмотрим варианты MIMO, которые могут быть использованы для передачи данных одному пользователю. Первый классический и самый простой вариант использования одной передающей и одном приемной антенны изображен на рисунке ниже. Такая система с точки зрения терминологии MIMO называется SISO - Single Input Single Output .

Пропускную способность такой системы можно расчитать, используя формулу Шеннона:

C = B log 2 (1 + S /N ), где

C B - ширина канала; S /N - соотношение сигнал/шум.

Разнесенный прием (Rx Diversity, SIMO - Single Input Multiple Output)

Разнесенный прием (Rx Diversity) - это случай использования большего количества антенн на приемной стороне, чем на передающей. С точки зрения MIMO такая система называется SIMO - Single Input Multiple Output . Простейший случай такой системы, когда передающая антенна одна, а приемных две, представлен на рисунке ниже и называется SIMO 1x2.

Представленный вариант не требует специальной подготовки сигнала при передаче, поэтому его достаточно просто реализовать на практике. При использовании разнесенного приема увеличения пропускной способности не происходит. Однако, повышается надежность передачи. В случае с изображенной выше системой на приемной стороне будет два сигнала, и существуют разные способы их обработки. Например, может выбираться сигнал с наилучшим соотношением сигнал/шум. Такой метод называется switched diversity. Или сигналы могут складываться, что позволяет повысить соотношение сигнал/шум. И такой метод называется MRC - Maximum Ratio Combining.

Разнесенная передача (Tx Diversity, MISO - Multiple Input Single Output)

Разнесенная передача (Tx Diversity) - это случай использования большего количества антенн на передающей стороне, чем на приемной. С точки зрения MIMO такая система называется MISO - Multiple Input Single Output . Простейший случай такой системы, когда передающих антенн две, а приемная одна, представлен на рисунке ниже и называется MISO 2x1.

Как и SIMO, MISO не позволяет увеличить пропускную способность канала, но повышает надежность передачи. В то же время, использование MISO позволяет перенести необходимую дополнительную обработку сигнала с приемной стороны (мобильной станции) на передающую (базовую станцию). Для формирования надежного сигнала используется пространственно-временное кодирование. В этом случае копия сигнала передается не только с другой антенны, но и в другое время. Также может использоваться пространственно-частотное кодирование.

Пространственное уплотнение (Spatial Multiplexing, MIMO - Multiple Input Multiple Output)

Пространственное уплотнение (Spatial Multiplexing) - это случай использования нескольких антенн на передающей стороне и нескольких антенн на приемной. В отличие от предыдущих вариантов - MISO и SIMO, описанных выше, данный вариант направлен не на повышение надежности передачи, а на увеличение скорости передачи. Поэтому MIMO используется для передачи данных мобильным станциям, которые находятся в хороших радиоусловиях. В то время, как варианты MISO и SIMO используются для передачи данных мобильным станциям, которые находятся в более плохих радиоусловиях. Для того, чтобы повысить скорость передачи данных в случае с MIMO входной поток данных разбивают на несколько потоков, каждый из которых независимо передается с отдельной антенны. На рисунке ниже приводится общая схема системы MIMO с m передающими антеннами и с n приемными антеннами.

Из-за того, что используется общий канал, каждая антенна на приемнике получает сигнал не только предназначенный для нее (сплошные линии на рисунке), но и все сигналы предназначенные другим антеннам (прерывистые линии на рисунке). Если известна матрица передачи, то влияние сигналов, предназначенных для других антенн, можно вычислить и минимизировать.

Количество независимых потоков данных, которые могут одновременно передаваться, зависит от количества используемых антенн. Если количество передающих и приемных антенн одинаково, то количество независимых потоков данных равно или меньше количеству антенн. Например, в случае MIMO 4x4 количество независимых потоков данных может быть 4 или меньше. Если же количество передающих и приемных антенн не одинаково, то количество независимых потоков данных равно минимальному количеству антенн или меньше. Например в случае MIMO 4x2 количество независимых потоков данных может быть 2 или меньше.

Для вычисления максимальной пропускной способности в случае использования MIMO применяется следующая формула:

C = M B log 2 (1 + S /N ), где

C - пропускная способность канала; M - количество независимых потоков данных; B - ширина канала; S /N - соотношение сигнал/шум.

В зависимости от количества пользователей, которым одновременно осуществляется передача данных, можно выделить следующие варианты. Single User MIMO (SU-MIMO) - когда технология MIMO используется для передачи данных одному пользователю, то есть все потоки данных адресованы одному и тому же пользователю. И Multi User MIMO (MU-MIMO) - когда технология MIMO используется для передачи данных нескольким пользователям одновременно в одних и тех же ресурсных блоках, то есть когда независимые потоки данных адресованы разным пользователям. Ниже на рисунке приводится пример MU-MIMO для случая с двумя пользователями.

Если вы не нашли интересующую вас информацию по LTE/LTE-A в этой статье, напишите мне об этом письмо на [email protected]. Я постараюсь ее добавить в кратчайшие сроки.

Для того, чтобы лучше понять принцип работы MIMO антенны давайте вообразим следующую ситуацию: базовая станция (БС) оператора мобильной сети и модем стали двумя географическими пунктами А и Б, между этими объектами проложен определенный путь, люди, передвигающиеся по этому пути олицетворяют информацию, А - это ваша приемная Антенна, Б - это БС сотового оператора. Люди передвигаются из одного пункта в другой с помощью поезда, вместимость которого- 100 человек. Но людей, которые хотят из пункта Б добраться в пункт А гораздо больше. Поэтому строится второй путь и запускается новый поезд, вместимость которого, тоже 100 человек. Таким образом, производительность и эффективность двух поездов в 2 раза выше.

Точно также же устроена и новейшая технология MIMO (англ. Multiple Input Multiple Output) , она позволяет принимать одновременно больше потоков. Для этого используются различные поляризации сигналов, например горизонтальная и вертикальная - 2х2. Раньше, чтобы принимать больше информации, то есть больше потоков, потребовалось бы приобретение двух простых антенн.

Сегодня же достаточно приобрести только одну антенну MIMO. Улучшенная антенна MIMO содержит в одном корпусе сразу два набора излучающих элементов, так называемых патчей, каждый из которых подключен к отдельному гнезду. Второй вариант устройства: имеется один набор патчей и запитка для двух портов, что позволяет патчу функционировать в двух направлениях: горизонтальном и вертикальном. В этом случае к двум гнездам присоединяется единственный набор патчей. Именно второй вариант (с двумя кабельными вводами) вы можете найти в ассортименте нашей компании.

А как же подключить 2 кабеля, выходящих из мимо-антенны к одному модему? Все очень просто. Сегодня не только антенны поддерживают эту функцию, но и модемы. Существуют модемы с 2 входами для подключения внешних антенн, например широко распространенный Huawei .

Преимущества технологии MIMO

К главным преимуществам относится возможность улучшения пропускной способности, не расширяя при этом полосу. Так устройство одновременно раздает несколько потоков информации по единственному каналу.

Качество передаваемого сигнала и скорость передачи данных становится лучше. Потому что технология сначала кодирует данные, а затем на приемной стороне восстанавливает их.

Более чем в два раза увеличивается скорость трансляции сигнала.

Увеличиваются и многие другие параметры скорости за счет использования двух независимых кабелей, через которые одновременно происходит раздача и получение информации в виде цифрового потока. Улучшаются качества спектра следующих систем: 3G, 4G/LTE, WiMAX, WiFi, благодаря использованию двух входов и двух выходов.

Сфера применения антенн MIMO

Чаще всего технология MIMO применяется для передачи данных такого протокола, как WiFi. Это объясняется увеличенными пропускной способностью и емкостью. Для примера возьмем протокол 802.11n, в нем при использовании описываемой технологии, можно достичь скорость до 350 Мегабит/сек. Также улучшилось качество передачи данных, даже на тех участках, где сигнал приема низкий. Примером уличной точки доступа с антенной MIMO может послужить всем известная .

Сеть WiMAX, при использовании MIMO, теперь может транслировать информацию со скоростью до 40 Мегабит/секунду.

В применяется технология MIMO до 8x8. Благодаря этому достигается высокая скорость передачи - более 35 Мегабит/секунду. Помимо этого, обеспечивается надежное и высококачественное соединение отличного качества.

Постоянно ведутся работы по улучшению и усовершенствованию конфигураций технологии. В скором времени это позволит улучшить показатели спектра, усовершенствовать емкость сетей и ускорить скорость передачи данных.

27.08.2015

Наверняка, многие уже слышали про технологию MIMO , в последние годы её частенько пестрят рекламные проспекты и плакаты, особенно в компьютерных магазинах и журналах. Но что же такое MIMO (МИМО) и с чем её едят? Давайте разберёмся поподробнее.

Технология MIMO

MIMO (Multiple Input Multiple Output; множественные входы, множественные выходы) — метод пространственного кодирования сигнала, позволяющий увеличить полосу пропускания канала, при котором для передачи данных используются две и более антенны и такое же количество антенн для приёма. Передающие и приёмные антенны разнесены настолько, чтобы достичь минимального взаимного влияния друг на друга между соседними антеннами. Технология MIMO используется в беспроводных связи Wi-Fi, WiMAX, LTE для увеличения пропускной способности и более эффективного использования частотной полосы. Фактически MIMO позволяет в одном частотном диапазоне и заданном частотном коридоре передавать больше данных, т.е. увеличить скорость. Достигается это за счёт использования нескольких передающих и принимающих антенн.

История MIMO

Технологию MIMO можно отнести к достаточно моложим разработкам. Её история начинается в 1984 году, когда был зарегистрирован первый патент на использования данной технологии. Начальные разработки и исследования проходили в компании Bell Laboratories , а 1996 году компание Airgo Networks был выпущен первый MIMO-чипсет под названием True MIMO . Наибольшее развитие технология MIMO получила в начале XXI века, когда бурными темпами начали развиваться беспроводные сети Wi-Fi и сотовые сети 3G. А сейчас технология MIMO вовсю используется в сетях 4G LTE и Wi-Fi 802.11b/g/ac.

Что даёт технология MIMO?

Для конечного пользователя MIMO даёт значительный прирост в скорости передачи данных. В зависимости от конфигурации оборудования и количества используемых антенн, можно получить двухкратный, трёкратный и до восьмикратного увеличения скорости. Обычно в беспроводных сетях используется одинаковое количество передающих и принимающих антенн, и записывается это как, например, 2х2 или 3х3. Т.е. если видим запись MIMO 2x2, значит две антенны передают сигнал и две принимают. Например, в стандарте Wi-Fi один канал шириной 20 Мгц даёт пропускную способность 866 Мбит/с, тогда как в конфигурации MIMO 8x8 объединяются 8 каналов, что даёт максимальную скорость около 7 Гбит/с. Аналогично и в LTE MIMO - потенциальный рост скорости в несколько раз. Для полноценного использования MIMO в сетях LTE необходимы , т.к. как правило встроенные антенны недостаточно разнесены и дают малый эффект. И конечно, должна быть поддержка MIMO со стороны базовой станции.

LTE-антенна с поддержкой MIMO передаёт и принимает сигнал в горизонтальной и вертикальной плоскостях. Это называется поляризация. Отличительной особенностью MIMO-антенн является наличие двух антенных разъёмов, и соответственно использование двух проводов для подключения к модему/роутеру.

Несмотря на то, что многие говорят, и не безосновательно, что MIMO-антенна для сетей 4G LTE фактически представляет собой две антенны в одной, не стоит думать, что при использовании такой антенны будет двухкратный рост скорости. Таковым он может быть только в теории, а на практике разница между обычной и MIMO-антенной в сети 4G LTE не превышает 20-25%. Однако, более важным в данном случае будет стабильный сигнал, который может обеспечить MIMO-антенна.

Одно из самых существенных и важных нововведений Wi-Fi за прошедшие 20 лет - технология Multi User - Multiple Input Multiple Output (MU-MIMO). MU-MIMO расширяет функциональность появившегося недавно обновления беспроводного стандарта 802.11ac «Wave 2». Безусловно, это огромный прорыв для беспроводной связи. Данная технология помогает увеличить максимальную теоретическую скорость беспроводного соединения от 3,47 Гбит/с в оригинальной спецификации стандарта 802.11ac до 6,93 Гбит/с в обновлении стандарта 802.11ac Wave 2. Это одна из самых сложных функциональностей Wi-Fi на сегодняшний день.

Давайте разберемся как это работает!

Технология MU-MIMO повышает планку за счет разрешения нескольким устройствам принимать несколько потоков данных. Она базируется на однопользовательской технологии MIMO (SU-MIMO), которая была представлена почти 10 лет назад со стандартом 802.11n.

SU-MIMO увеличивает скорость Wi-Fi-соединения, позволяя паре беспроводных устройств одновременно принимать или отправлять несколько потоков данных.

Рисунок 1. Технология SU-MIMO предоставляет многоканальные входные и выходные потоки одному устройству в одно и то же время. Технология MU-MIMO обеспечивает одновременную связь с несколькими устройствами.

По сути, революционные изменения для Wi-Fi обеспечивают две технологии. Первая из этих технологий, называемая beamforming, позволяет Wi-Fi-маршрутизаторам и точкам доступа более эффективно использовать радиоканалы. До появления этой технологии Wi-Fi-маршрутизаторы и точки доступа работали как электрические лампочки, посылая сигнал во всех направлениях. Проблема заключалась в том, что несфокусированному сигналу ограниченной мощности трудно добраться до клиентских Wi-Fi-устройств.

С помощью технологии beamforming Wi-Fi-маршрутизатор или точка доступа обменивается с клиентским устройством информацией о своем местоположении. Затем маршрутизатор изменяет свою фазу и мощность для формирования лучшего сигнала. Как результат: более эффективно используются радиосигналы, ускоряется передача данных и, возможно, увеличивается максимальная дистанция соединения.

Возможности beamforming расширяются. До сих пор Wi-Fi-маршрутизаторы или точки доступа были по своей сути однозадачными, посылая или принимая данные только от одного клиентского устройства одновременно. В более ранних версиях семейства стандартов беспроводной передачи данных 802.11, включая стандарт 802.11n и первую версию стандарта 802.11ac, существовала возможность одновременного приема или передачи нескольких потоков данных, но до сих пор не существовало метода, позволяющего Wi-Fi-маршрутизатору или точке доступа в одно и то же время «общаться» сразу с несколькими клиентами. Отныне же с помощью MU-MIMO такая возможность появилась.

Это действительно большой прорыв, так как возможность одновременной передачи данных сразу нескольким клиентским устройствам значительно расширяет доступную полосу пропускания для беспроводных клиентов. Технология MU-MIMO продвигает беспроводные сети от старого способа CSMA-SD, когда в одно и то же время обслуживалось только одно устройство, к системе, где сразу несколько устройств могут одновременно «говорить». Для большей наглядности примера, представьте себе переход от однополосной проселочной дороги к широкой автомагистрали

Сегодня беспроводные маршрутизаторы и точки доступа второго поколения стандарта 802.11ac Wave 2 активно завоевывают рынок. Каждый, кто разворачивает Wi-Fi понимать специфику работы технологии MU-MIMO. Предлагаем вашему вниманию 13 фактов, которые ускорит ваше обучение в этом направлении.

1. MU-MIMO использует только «Downstream» поток (от точки доступа к мобильному устройству).

В отличие от SU-MIMO, технология MU-MIMO в настоящее время работает только для п ередачи данных от точки доступа к мобильному устройству. Только беспроводные маршрутизаторы или точки доступа могут одновременно передавать данные нескольким пользователям, будь то один или несколько потоков для каждого из них. Сами же беспроводные устройства (такие, как смартфоны, планшеты или ноутбуки) по-прежнему должны по очереди направлять данные к беспроводному маршрутизатору или точке доступа, хотя при этом при наступлении их очереди они по отдельности могут использовать технологию SU-MIMO для передачи нескольких потоков.

Технология MU-MIMO будет особенно полезной в тех сетях, где пользователи больше скачивают данные, чем загружают.

Возможно, в будущем будет реализована версия технологии Wi-Fi: 802.11ax , где метод MU-MIMO будем применим и для «Upstream» трафика.

2. MU-MIMO работает только в Wi-Fi-диапазоне частот 5 ГГц

Технология SU-MIMO работает как в диапазоне частот 2,4 ГГц, так и 5 ГГц. Беспроводные роутеры и точки доступа второго поколения стандарта 802.11ac Wave 2 могут одновременно обслуживать несколько пользователей только на полосе частот 5 ГГц. С одной стороны, конечно, жаль, что на более узкой и более перегруженной полосе частот 2,4 ГГц мы не сможем использовать новую технологию. Но, с другой стороны, на рынке появляется все больше двухдиапазонных беспроводных устройств, поддерживающих технологию MU-MIMO, которые мы можем использовать для разворачивания производительных корпоративных Wi-Fi-сетей.

3. Технология Beamforming помогает направлять сигналы

В литературе СССР можно встретить понятие Фазированная Антенная Решётка, которая была разработана для военных радаров в конце 80-х. Аналогичная технология была применена в современном Wi-Fi. MU-MIMO использует технологию формирования направленного сигнала (в англоязычной технической литературе известной как «beamforming»). Beamfiorming позволяет направлять сигналы в направлении предполагаемого местоположения беспроводного устройства (или устройств), а не посылать их случайным образом во всех направлениях. Таким образом получается сфокусировать сигнал и существенно увеличить дальность действия и скорость работы Wi-Fi-соединения.

Хотя технология beamforming стала опционально доступна еще со стандартом 802.11n, тем ни менее большинство производителей реализовывали свои проприетарные версии этой технологии. Эти вендоры и сейчас предлагают проприетарные реализации технологии в своих устройствах, но теперь им придется включить хотя бы упрощенную и стандартизированную версию технологии формирования направленного сигнала, если они хотят поддерживать технологию MU-MIMO в своей продуктовой линейке стандарта 802.11ac.

4. MU-MIMO поддерживает ограниченное количество одновременных потоков и устройств

К огромному сожалению, маршрутизаторы или точки доступа с реализованной технологией MU-MIMO не могут одновременно обслуживать неограниченное количество потоков и устройств. Маршрутизатор или точка доступа имеют собственное ограничение на число потоков, которые они обслуживают (зачастую это 2, 3 или 4 потока), и это количество пространственных потоков также ограничивает количество устройств, которые точка доступа может одновременно обслужить. Так, точка доступа с поддержкой четырех потоков может одновременно обслуживать четыре различных устройства, либо, к примеру, один поток направить к одному устройству, а три других потока агрегировать на другое устройство (увеличив скорость от объёединения каналов).​

5. От пользовательских устройств не требуется наличие нескольких антенн

Как и в случае с технологией SU-MIMO, только беспроводные устройства со встроенной поддержкой MU-MIMO могут агрегировать потоки (скорость). Но, в отличие от ситуации с технологией SU-MIMO, беспроводным устройствам не обязательно требуется иметь несколько антенн, чтобы принимать MU-MIMO-потоки от беспроводных маршрутизаторов и точек доступа. Если беспроводное устройство оснащено только одной антенной, оно может принять только один MU-MIMO-поток данных от точки доступа, используя beamforming для улучшения приёма.

Большее количество антенн позволит беспроводному пользовательскому устройству принимать большее количество потоков данных одновременно (обычно из расчета один поток на одну антенну), что, безусловно, положительно скажется на производительности этого устройства. Однако, наличие нескольких антенн у пользовательского устройства негативно сказывается на потребляемой мощности и размере этого изделия, что критично для смартфонов.

Однако технология MU-MIMO предъявляет меньшие аппаратные требования к клиентским устройствам, чем обременительная в техническом плане технология SU-MIMO, то можно с уверенностью предположить, что производители гораздо охотнее станут оснащать свои ноутбуки и планшеты поддержкой технологии MU-MIMO.​

6. Точки доступа выполняют «тяжелую» обработку

Стремясь к упрощению требований к устройствам конечных пользователей, разработчики технологии MU-MIMO постарались переложить на точки доступа большую часть работы по обработке сигнала. Это еще один шаг вперед по сравнению с технологией SU-MIMO, где бремя по обработке сигнала большей частью лежало на пользовательских устройствах. И опять же, это поможет производителям клиентских устройств экономить на мощности, размере и других затратах при производстве своих продуктовых решений с поддержкой MU-MIMO, что должно весьма позитивно сказаться на популяризации данной технологии.

7. Даже бюджетные устройства получают ощутимую выгоду от одновременной передачи через несколько пространственных поток

Подобно агрегации каналов в сети Ethernet (802.3ad и LACP), объединение потоков 802.1ac не увеличивает скорость соединения «точка-точка». Т.е. если вы единственный пользователь и у Вас запущено только одно приложение - вы задействует только 1 пространственный поток.

Однако существует возможность увеличить общую пропускную способность сети за счет предоставления возможности по обслуживанию точкой доступа нескольких пользовательских устройств одновременно.

Но если все используемые в вашей сети пользовательские устройства поддерживают работу только с одним потоком, то MU-MIMO позволит вашей точке доступа обслуживать одновременно до трех устройств, вместо одного за раз, в то время как другим (более продвинутым) пользовательским устройствам придется ожидать своей очереди.




Рисунок 2​.

8. Некоторые пользовательские устройства имеют скрытую поддержку технологии MU-MIMO

Не смотря на то, что в настоящее время все еще не так много маршрутизаторов, точек доступа или мобильных устройств поддерживают MU-MIMO, в компании-производителе Wi-Fi-чипов утверждают, что часть производителей в своем производственном процессе учла аппаратные требования для поддержки новой технологии для некоторых своих устройств для конечных пользователей еще несколько лет назад. Для таких устройств относительно простое обновление программного обеспечения добавит поддержку технологии MU-MIMO, что также должно ускорить популяризацию и распространение технологии, а также стимулировать компании и организации модернизировать свои корпоративные беспроводные сети с помощью оборудования с поддержкой стандарта 802.11ac.

9. Устройства без поддержки MU-MIMO также оказываются в выигрыше

Не смотря на то, что Wi-Fi-устройства обязательно должны иметь поддержку MU-MIMO для того, чтобы использовать эту технологию, даже те клиентские устройства, которые такой поддержкой не имеют, могут получить косвенную выгоду от работы в беспроводной сети, где маршрутизатор или точки доступа поддерживают технологию MU-MIMO. Следует помнить, что скорость передачи данных по сети напрямую зависит от общего времени, в течение которого абонентские устройства подключены к радиоканалу. И если технология MU-MIMO позволит обслуживать часть устройств быстрее, то это означает, что у точек доступа в такой сети останется больше времени на обслуживание других клиентских устройств.

10. MU-MIMO помогает увеличить пропускную способность беспроводной сети

Когда вы увеличиваете скорость Wi-Fi-соединения, вы также увеличиваете пропускную способность беспроводной сети. Так как устройства обслуживаются более быстро, то у сети появляется больше эфирного времени на обслуживание большего количества клиентских устройств. Таким образом, технология MU-MIMO может значительно оптимизировать работу беспроводных сетей с интенсивным трафиком или большим количеством подключенных устройств, таких как общественные Wi-Fi-сети. Это прекрасная новость, так как количество смартфонов и других мобильных устройств с возможностью подключения к Wi-Fi-сети, скорее всего, продолжит увеличиваться.

11. Поддерживается любая ширина канала

Одним из способов расширения пропускной способности Wi-Fi-канала является связывание каналов, когда объединяются два соседних канала в один канал, который в два раза шире, что фактически удваивает скорость Wi-Fi-соединения между устройством и точкой доступа. Стандарт 802.11n предусматривал поддержку каналов шириной до 40 МГц, в оригинальной спецификации стандарта 802.11ac поддерживаемая ширина канала была увеличена до 80 МГц. В обновленном стандарте 802.11ac Wave 2 поддерживаются каналы шириной 160 МГц.



Рисунок 3. На сегодняшний день стандарт 802.11ac поддерживает каналы шириной до 160 МГц в диапазоне частот 5 ГГц

Однако, не следует забывать, что использование в беспроводной сети каналов большей ширины увеличивает вероятность возникновения помех в совмещенных каналах. Поэтому такой подход не всегда будет правильным выбором для разворачивания всех без исключения Wi-Fi-сетей. Тем ни менее, технология MU-MIMO, как мы можем убедиться, может быть использована для каналов любой ширины.

Тем ни менее, даже если ваша беспроводная сеть использует более узкие каналы шириной 20 МГц или 40 МГц, технология MU-MIMO все равно может помочь ей работать быстрее. А вот насколько быстрее, будет зависеть от того, сколько необходимо будет обслуживать клиентских устройств и сколько потоков каждое из этих устройств поддерживает. Таким образом, использование технологии MU-MIMO даже без широких связанных каналов может более чем в два раза увеличить пропускную способность выходного беспроводного соединения для каждого устройства.

12. Обработка сигналов повышает безопасность

Интересным побочным эффектом технологии MU-MIMO является то, что маршрутизатор или точка доступа шифрует данные перед их отправкой через радиоканалы. Достаточно трудно декодировать данные, передаваемые с использованием технологии MU-MIMO, т. к. не ясно какая часть кода в каком пространственном потоке находится. Хотя впоследствии могут быть разработаны специальные инструменты, позволяющие другим устройствам перехватывать передаваемый трафик, на сегодняшний день технология MU-MIMO эффективно маскирует данные от расположенных вблизи устройств прослушивания. Таким образом, новая технология помогает повысить Wi-Fi-безопасность, что особенно актуально для открытых беспроводных сетей, таких как общественные Wi-Fi-сети, а также точек доступа, работающих в персональном режиме или использующих упрощенный режим аутентификации пользователей (Pre-Shared Key, PSK) на базе технологий защиты Wi-Fi-сети WPA или WPA2.

13. MU-MIMO лучше всего подходит для неподвижных Wi-Fi-устройств

Также существует одно предостережение о технологии MU-MIMO: она не очень хорошо работает с быстродвижущимися устройствами, так как процесс формирования направленного сигнала по технологии beamforming становится более сложным и менее эффективным. Поэтому MU-MIMO не сможет обеспечить вам заметную пользу для устройств, часто использующих роуминг в вашей корпоративной сети. Однако, следует понимать, что эти «проблемные» устройства никак не должны повлиять ни на MU-MIMO-передачу данных другим клиентским устройствам, которые менее подвижны, ни на их производительность.

Подписка на новости

2 года назад

Как увеличить скорость передачи данных для Wi-Fi стандарта 802.11 и для WiMAX стандарта 802.16? Использовать беспроводные системы с применением нескольких антенн как для передатчика, так и для приемника. Это и есть технология MIMO, или Multiple-Input Multiple-Output.

Если дословно перевести на русский, то это означает «множественный вход множественный выход». Также ее называют «умной антенной системой» или по-английски - smart antenna systems.

Технология выполняет важную роль в реализации Wi-Fi стандарта 802.11n. Технология MIMO предусматривает применение нескольких передатчиков и приемников для того, чтобы одновременно передавать большое количество данных.

Технология MIMO использует эффект передачи радиоволн, который называют многолучевым распространением. Суть в том, что информация, которая передается, потом отражается от стен, потолков и других объектов. А принимающая антенна воспринимает сигналы под разными углами и в разное время.

Технология MIMO дает возможность использовать преимущества многолучевого распространения для того, чтобы объединить информацию из нескольких сигналов. Она повышает скорость и целостность данных.

На сегодня есть немало устройств по стандарту 802.11n. Самым простым из них может быть радиосистема с множеством раздельных путей передачи и приема. MIMO-системы используют определенное количество передатчиков и приемников. Стандарт 802.11n определяет набор возможных комбинаций от 1х1 до 4х4.

Отметим, что далеко не все Wi-Fi клиенты и Точки Доступа одинаковы с точки зрения MIMO.

Существуют клиенты 1х1, 2х1, 3х3 и т.д. Скажем, мобильные устройства типа смартфона преимущественно поддерживают MIMO 1x1, изредка 1x2. Это связано с двумя ключевыми проблемами. То есть с необходимостью обеспечить низкое потребление энергии и долгую жизнь аккумулятора, как и со сложностью в расположении в маленьком корпусе нескольких антенн с адекватным их разнесением. Это распространяется и на другие мобильные устройства, к примеру, планшетные компьютеры, КПК и т. д.

Ноутбуки высокого уровня в большинстве случаев сейчас поддерживают MIMO вплоть до 3х3. Условия множественного распространения сигнала постоянно меняются, поскольку Wi-Fi-устройства часто перемещаются. Смартфон с Wi-Fi может находиться в руках пользователя, а вокруг перемещаются самые разные объекты. Скажем, автомобили. И если сигналы прибывают в разное время и под разными углами, то возможны искажения и затухание сигнала.

Технология MIMO все чаще применяется во всех системах беспроводной передачи данных. Потенциал ее растет. Разрабатываются новые варианты конфигурации антенн, вплоть до 64х64 MIMO. Есть перспективы добиться еще больших скоростей передачи данных, емкости сети и спектральной эффективности.