Оборудование        07.07.2019   

Параллельные системы. Классификация систем параллельной обработки данных

суперкомпьютер - это очень мощная ЭВМ с производительностью свыше 10 MFLOPS . Сегодня этот результат перекрывают уже не только рабочие станции, но, по пиковой производительности , и ПК. В начале 1990-х годов границу проводили уже около отметки в 300 MFLOPS . В 2001 году специалисты двух ведущих "суперкомпьютерных" стран, США и Японии, договорились о подъеме планки до 5 GFLOPS .

Таким образом, основные признаки, характеризующие супер-ЭВМ , следующие:

  • самая высокая производительность;
  • самый современный технологический уровень (например, GaAs -технология);
  • специфические архитектурные решения, направленные на повышение быстродействия (например, наличие операций над векторами);
  • цена, обычно свыше 1-2 млн. долларов.

Какой из факторов является решающим в достижении современных фантастических показателей производительности? Обратимся к историческим фактам. На одном из самых первых компьютеров EDSAC (1949 г.), имевшем время такта 2 мкс, можно было выполнить в среднем 100 арифметических операций в секунду. А пиковая производительность суперкомпьютера CRAY C90 с временем такта порядка 4 нс - около 1 миллиарда арифметических операций в секунду. Таким образом, производительность компьютеров за этот период возросла примерно в 10 миллионов раз, а время такта уменьшилось лишь в 500 раз. Следовательно, увеличение производительности происходило и за счет других факторов, важнейшим среди которых является использование новых архитектурных решений, в частности - принципа параллельной обработки данных .

Имеет две разновидности: конвейерность и параллельность.

Идея конвейерной обработки заключается в выделении отдельных этапов выполнения общей операции , причем так, чтобы каждый этап, выполнив свою работу, передавал бы результат следующему, одновременно принимая новую порцию входных данных. Выигрыш в скорости обработки данных получается за счет совмещения прежде разнесенных во времени операций.

Параллельная обработка данных предполагает наличие нескольких функционально независимых устройств.

Закон Амдала

Закон Амдала

S<= 1/

где S - ускорение, f - доля операций, которые нужно выполнить последовательно, p - число процессоров.

Следствие из закона Амдала : для того чтобы ускорить выполнение программы в q раз, необходимо ускорить не менее чем в q раз и не менее чем (1-1/q) -ую часть программы. Следовательно, если нужно ускорить программу в 100 раз по сравнению с ее последовательным вариантом, то необходимо получить не меньшее ускорение на не менее чем 99,99 % кода!

История появления параллелизма в архитектуре ЭВМ

Все современные процессоры используют тот или иной вид

  • 1974 г. - ALLIAC: матричные процессоры (УУ + матрица из 64 процессоров).
  • 1976 г. - CRAY1: векторно-конвейерные процессоры. Введение векторных команд, работающих с целыми массивами независимых данных.
  • «Параллелизм как способ параллельной обработки данных»

    Котовск2010

    Введение

    Стремительное развитие науки и проникновение человеческой мысли во все новые области вместе с решением поставленных прежде проблем постоянно порождает поток вопросов и ставит новые, как правило, более сложные, задачи. Во времена первых компьютеров казалось, что увеличение их быстродействия в 100 раз позволит решить большинство проблем, однако гигафлопная производительность современных суперЭВМ сегодня является явно недостаточной для многих ученых. Электро и гидродинамика, сейсморазведка и прогноз погоды, моделирование химических соединений, исследование виртуальной реальности – вот далеко не полный список областей науки, исследователи которых используют каждую возможность ускорить выполнение своих программ.

    Наиболее перспективным и динамичным направлением увеличения скорости решения прикладных задач является широкое внедрение идей параллелизма в работу вычислительных систем. К настоящему времени спроектированы и опробованы сотни различных компьютеров, использующих в своей архитектуре тот или иной вид параллельной обработки данных. В научной литературе и технической документации можно найти более десятка различных названий, характеризующих лишь общие принципы функционирования параллельных машин: векторно-конвейерные, массивно-параллельные, компьютеры с широким командным словом, систолические массивы, гиперкубы, спецпроцессоры и мультипроцессоры, иерархические и кластерные компьютеры, dataflow, матричные ЭВМ и многие другие. Если же к подобным названиям для полноты описания добавить еще и данные о таких важных параметрах, как, например, организация памяти, топология связи между процессорами, синхронность работы отдельных устройств или способ исполнения арифметических операций, то число различных архитектур станет и вовсе необозримым.

    Попытки систематизировать все множество архитектур начались после опубликования М. Флинном первого варианта классификации вычислительных систем в конце 60-х годов и непрерывно продолжаются по сей день. Классификация очень важна для лучшего понимания исследуемой предметной области, однако нахождение удачной классификации может иметь целый ряд существенных следствий.

    Основной вопрос классификации – что заложить в её основу, может решаться по-разному, в зависимости от того, для кого данная классификация создается и на решение какой задачи направлена. Так, часто используемое деление компьютеров на персональные ЭВМ, рабочие станции, мини–ЭВМ, большие универсальные ЭВМ, минисупер-ЭВМ и супер-ЭВМ, позволяет, быть может, примерно прикинуть стоимость компьютера. Однако она не приближает пользователя к пониманию того, что от него потребуется для написания программы, работающий на пределе производительности параллельного компьютера, т.е. того, ради чего он и решился его использовать.

    Классификация должна помогать разобраться с тем, что представляет собой каждая архитектура, как они взаимосвязаны между собой, что необходимо учитывать для написания действительно эффективных программ или же на какой класс архитектур следует ориентироваться для решения требуемого класса задач. Одновременно удачная классификация могла бы подсказать возможные пути совершенствования компьютеров и в этом смысле она должна быть достаточно содержательной. Трудно рассчитывать на нахождение нетривиальных «белых пятен», например, в классификации по стоимости, однако размышления о возможной систематике с точки зрения простоты и технологичности программирования могут оказаться чрезвычайно полезными для определения направлений поиска новых архитектур.

    1. Параллельные вычислительные системы

    Параллельные вычислительные системы – это физические компьютерные, а также программные системы, реализующие тем или иным способом параллельную обработку данных на многих вычислительных узлах.

    Идея распараллеливания вычислений основана на том, что большинство задач может быть разделено на набор меньших задач, которые могут быть решены одновременно. Обычно параллельные вычисления требуют координации действий. Параллельные вычисления существуют в нескольких формах: параллелизм на уровне битов, параллелизм на уровне инструкций, параллелизм данных, параллелизм задач. Параллельные вычисления использовались много лет в основном в высокопроизводительных вычислениях, но в последнее время к ним возрос интерес вследствие существования физических ограничений на рост тактовой частоты процессоров. Параллельные вычисления стали доминирующей парадигмой в архитектуре компьютеров, в основном в форме многоядерных процессоров.

    Писать программы для параллельных систем сложнее, чем для последовательных, так как конкуренция за ресурсы представляет новый класс потенциальных ошибок в программном обеспечении (багов), среди которых состояние гонки является самой распространённой. Взаимодействие и синхронизация между процессами представляют большой барьер для получения высокой производительности параллельных систем. В последние годы также стали рассматривать вопрос о потреблении электроэнергии параллельными компьютерами. Характер увеличения скорости программы в результате распараллеливания объясняется законом Амдала.

    Если при вычислении не применяются циклические (повторяющиеся) действия, то N вычислительных модулей никогда не выполнят работу в N раз быстрее, чем один единственный вычислительный модуль.

    Например, для быстрой сортировки массива на двухпроцессорной машине можно разделить массив пополам и сортировать каждую половину на отдельном процессоре. Сортировка каждой половины может занять разное время, поэтому необходима синхронизация.

    2. Типы параллелизма

    2.1 Параллелизм на уровне битов

    Эта форма параллелизма основана на увеличении размера машинного слова. Увеличение размера машинного слова уменьшает количество операций, необходимых процессору для выполнения действий над переменными, чей размер превышает размер машинного слова. К примеру: на 8-битном процессоре нужно сложить два 16-битных целых числа. Для этого вначале нужно сложить нижние 8 бит чисел, затем сложить верхние 8 бит и к результату их сложения прибавить значение флага переноса. Итого 3 инструкции. С 16-битным процессором можно выполнить эту операцию одной инструкцией.

    Исторически 4-битные микропроцессоры были заменены 8-битными, затем появились 16-битные и 32-битные. 32-битные процессоры долгое время были стандартом в повседневных вычислениях. С появлением технологии x86–64 для этих целей стали использовать 64-битные процессоры.

    2.2 Параллелизм на уровне инструкций

    Компьютерная программа – это, по существу, поток инструкций, выполняемых процессором. Но можно изменить порядок этих инструкций, распределить их по группам, которые будут выполняться параллельно, без изменения результата работы всей программы. Данный приём известен как параллелизм на уровне инструкций. Продвижения в развитии параллелизма на уровне инструкций в архитектуре компьютеров происходили с середины 1980-х до середины 1990-х.

    Современные процессоры имеют многоступенчатый конвейер команд. Каждой ступени конвейера соответствует определённое действие, выполняемое процессором в этой инструкции на этом этапе. Процессор с N ступенями конвейера может иметь одновременно до N различных инструкций на разном уровне законченности. Классический пример процессора с конвейером – это RISC-процессор с 5-ю ступенями: выборка инструкции из памяти (IF), декодирование инструкции (ID), выполнение инструкции (EX), доступ к памяти (MEM), запись результата в регистры (WB). Процессор Pentium 4 имеет 35-тиступенчатый конвейер.

    Некоторые процессоры, дополнительно к использованию конвейеров, обладают возможностью выполнять несколько инструкций одновременно, что даёт дополнительный параллелизм на уровне инструкций. Возможна реализация данного метода при помощи суперскалярности, когда инструкции могут быть сгруппированы вместе для параллельного выполнения (если в них нет зависимости между данными). Также возможны реализации с использованием явного параллелизма на уровне инструкций: VLIW и EPIC.

    2.3 Параллелизм данных

    Основная идея подхода, основанного на параллелизме данных, заключается в том, что одна операция выполняется сразу над всеми элементами массива данных. Различные фрагменты такого массива обрабатываются на векторном процессоре или на разных процессорах параллельной машины. Распределением данных между процессорами занимается программа. Векторизация или распараллеливание в этом случае чаще всего выполняется уже на этапе компиляции – перевода исходного текста программы в машинные команды. Роль программиста в этом случае обычно сводится к заданию настроек векторной или параллельной оптимизации компилятору, директив параллельной компиляции, использованию специализированных языков для параллельных вычислений.

    2.4 Параллелизм задач (многопоточность)

    Стиль программирования, основанный на параллелизме задач, подразумевает, что вычислительная задача разбивается на несколько относительно самостоятельных подзадач и каждый процессор загружается своей собственной подзадачей.

    2.5 Распределенные операционные системы

    Распределённая ОС, динамически и автоматически распределяя работы по различным машинам системы для обработки, заставляет набор сетевых машин работать как виртуальный унипроцессор. Пользователь распределённой ОС, вообще говоря, не имеет сведений о том, на какой машине выполняется его работа.

    Распределённая ОС существует как единая операционная система в масштабах вычислительной системы. Каждый компьютер сети, работающей под управлением распределённой ОС, выполняет часть функций этой глобальной ОС. Распределённая ОС объединяет все компьютеры сети в том смысле, что они работают в тесной кооперации друг с другом для эффективного использования всех ресурсов компьютерной сети.

    Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

    Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

    МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РЕСПУБЛИКИ КАЗАХСТАН

    Северо - Казахстанский государственный университет им. М. Козыбаева

    Факультет информационных технологии

    Кафедра Информационных систем

    Процесс параллельной обработки данных

    Выполнила: Махкамбаева А.С.

    Проверил: Касимов И. Р.

    Петропавловск, 2014

    Введение

    В однопроцессорных системах имеет место так называемый псевдопараллелизм - хотя в каждый момент времени процессор занят обработкой одной конкретной задачи на другую, достигается иллюзия параллельного исполнения нескольких задач. В многопроцессорных системах задача максимально эффективного использования каждого конкретного процессора также решается путем переключения между процессами, однако тут, наряду с псевдопараллелизмом, имеет место и действительный параллелизм, когда на разных процессорах в один и тот же момент времени исполняются разные процессы.

    Идея распараллеливания обработки данных основана на том, что большинство задач может быть разделено на набор меньших задач, которые могут быть решены одновременно. Процессы, выполнение которых хотя бы частично перекрывается по времени, называются параллельными.

    В 1967 году Джин Амдал сформулировал закон ограничения роста производительности при распараллеливании вычислений: «В случае, когда задача разделяется на несколько частей, суммарное время ее выполнения на параллельной системе не может быть меньше времени выполнения самого длинного фрагмента». Согласно этому закону, ускорение выполнения программы за счет распараллеливания её инструкций ограничено временем, необходимым для выполнения её последовательных инструкций.

    Классификация по Флинну

    процесс синхронизация доступ планирование

    В основе классификации лежат два понятия: потоки команд и потоки данных. Система с N процессорами имеет N счетчиков команд и, следовательно, N потоков команд.

    Потоки команд

    Потоки данных

    Названия

    SISD (Single Instruction, Single Data) -- архитектура компьютера, в которой один процессор выполняет один поток команд, оперируя одним потоком данных. Для данного класса возможен только псевдопараллелизм.

    SIMD (Single Instruction, Multiple Data) -- архитектура компьютера, позволяющая обеспечить параллелизм на уровне данных. Основная идея подхода, основанного на параллелизме данных, заключается в том, что одна операция выполняется сразу над всеми элементами массива данных. Эти системы обычно имеют большое количество процессоров, от 1024 до 16384, которые могут выполнять одну и ту же инструкцию, созданную единственным блоком управления, относительно разных данных. В любой момент в каждом процессоре выполняется одна и та же команда, но обрабатываются различные данные. Реализуется синхронный параллельный вычислительный процесс.

    MISD (Multiple Instruction, Simple Data) -- архитектура компьютера, где несколько функциональных модулей (два или более) выполняют различные операции над одними данными. Отказоустойчивые компьютеры, выполняющие одни и те же команды избыточно с целью обнаружения ошибок, как следует из определения, принадлежат к этому типу.

    MIMD (Multiple Instruction, Multiple Data) -- архитектура компьютера, где несколько независимых процессоров работают как часть большой системы. Обработка разделена на несколько потоков (обеспечивается параллелизм), каждый с собственным аппаратным состоянием процессора, в рамках единственного определённого программным обеспечением процесса или в пределах множественных процессов.

    Среди систем MIMD можно выделить два подкласса: системы с общей оперативной памятью и системы с распределенной памятью. Для систем первого типа характерно то, что любой процессор имеет непосредственный доступ к любой ячейке этой общей оперативной памяти. Системы с распределенной памятью представляют собою обычно объединение компьютерных узлов. Под узлом понимается самостоятельный процессор со своей локальной оперативной памятью. В данных системах любой процессор не может произвольно обращаться к памяти другого процессора.

    OpenMP (Open Multi-Processing) -- открытый стандарт для распараллеливания программ на языках С, С++ и Фортран. Описывает совокупность команд, которые предназначены для программирования многопоточных приложений на многопроцессорных системах с общей памятью. OpenMP реализует параллельные вычисления с помощью многопоточности, в которой «главный» поток создает набор подчиненных потоков и задача распределяется между ними.

    Задачи, выполняемые потоками параллельно, также как и данные, требуемые для выполнения этих задач, описываются с помощью специальных директив препроцессора соответствующего языка -- прагм. Программа на C должна включать файл "omp.h".

    Следующий цикл складывает массивы «a» и «b» поэлементно. Все, что требуется для параллельного выполнения в этом случае - одна прагма, вставленная непосредственно перед циклом.

    #pragma omp parallel for

    for (i=0; i < numPixels; i++)

    c[i] = a[i]+b[i];

    В этом примере используется "распределение нагрузки" - общий термин, применяемый в OpenMP для описания распределения рабочей нагрузки между потоками. Если распределение нагрузки применяется с директивой for, как показано в примере, итерации цикла распределяются между несколькими потоками, так что каждая итерация цикла выполняется только один раз, параллельно одним или несколькими потоками. OpenMP определяет, сколько потоков следует создать, а также наилучший способ создания, синхронизации и уничтожения потоков. Все, что требуется от программиста - указать OpenMP, какой именно цикл следует распараллелить.

    Баланс нагрузки (распределение рабочей нагрузки поровну между потоками) является одним из наиболее важных атрибутов параллельного выполнения приложения. Без него некоторые потоки могут завершить работу значительно раньше остальных, что приводит к простою вычислительных ресурсов и потере производительности.

    По умолчанию, OpenMP предполагает, что все итерации цикла занимают одинаковое время. В результате OpenMP распределяет итерации цикла между потоками примерно поровну и таким образом, чтобы минимизировать вероятность возникновения конфликтов памяти вследствие ее неправильного совместного использования.

    #pragma omp parallel for

    for (i=2; i < 10; i++)

    factorial[i] = i * factorial;

    Если цикл соответствует всем ограничениям и компилятор распараллелил цикл, это не гарантирует правильной работы, поскольку может существовать зависимость данных.

    Зависимость данных существует, если различные итерации цикла (точнее говоря, итерация, которая выполняется в другом потоке) выполняют чтение или запись общей памяти.

    MPI (Message Passing Interface) -- программный интерфейс для передачи информации, который позволяет обмениваться сообщениями между процессами, выполняющими одну задачу. В первую очередь MPI ориентирован на системы с распределенной памятью. Существуют реализации для языков Фортран, С и С++.

    В первой версии MPI количество процессов (ветвей) задается в момент запуска программы, т.е. не существует возможности порождать ветви динамически. В версии 2.0 эта возможность появилась.

    При запуске приложения все его порожденные ветви образуют группу ветвей (упорядоченное множество ветвей). С каждой группой связано «коммуникационное поле», описывающее всех участников обмена данными и общие для всех участников данные. Для описания коммуникационного поля служат коммутаторы. Все операции обмена данными могут происходить только внутри одного коммуникационного поля (это обеспечивается с помощью проверки коммутаторов).

    Для C, общий формат имеет вид

    rc = MPI_Xxxxx(parameter, ...);

    Заметим, что регистр здесь важен. Например, MPI должно быть заглавным, так же как и первая буква после подчеркивания. Все последующие символы долны быть в нижнем регистре. Переменная rc - есть некий код возврата, имеющий целый тип. В случае успеха, он устанавливается в MPI_SUCCESS. Программа на C должна включать файл "mpi.h".

    Сообщения MPI состоят из двух основных частей: отправляемые/получаемые данные, и сопроводительная информация (записи на конверте /оболочке/), которая помогает отправить данные по определенному маршруту.

    Данным соответствует старт буфера, число, тип данных. Буфер - это просто память, которую компилятор выделил для переменной (часто массива) в вашей программе. Старт буфера - адрес, где данные начинаются. Например, начало массива в вашей программе. Число - количество элементов (не байтов!) данных в сообщении. Тип данных определяет размер одного элемента.

    К информации «на обложке» относятся ранг в коммуникаторе - идентификатор процесса в коммуникационном поле, тег - произвольное число, которое помогает различать сообщения и сам коммуникатор, проверка которого обеспечивает передачу внутри одного коммуникационного поля.

    Параллельная обработка данных

    Существует несколько способов разделения обязанностей между процессами:

    * делегирование («управляющий-рабочий»);

    * сеть с равноправными узлами;

    * конвейер;

    * «изготовитель-потребитель».

    Каждая модель характеризуется собственной декомпозицией работ, которая определяет, кто отвечает за создание потоков и при каких условиях они создаются.

    В модели делегирования один поток («управляющий») создает потоки («рабочие») и назначает каждому из них задачу. Управляющему потоку нужно ожидать до тех пор, пока все потоки не завершат выполнение своих задач. Управляющий поток делегирует задачу, которую каждый рабочий поток должен выполнить, путем задания некоторой функции. Вместе с задачей на рабочий поток возлагается и ответственность за ее выполнение и получение результатов. Кроме того, на этапе получения результатов возможна синхронизация действий с управляющим (или другим) потоком.

    Если в модели делегирования есть управляющий поток, который делегирует задачи рабочим потокам, то в модели с равноправными узлами все потоки имеют одинаковый рабочий статус. Несмотря на существование одного потока, который изначально создает все потоки, необходимые для выполнения всех задач, этот поток считается рабочим потоком, но он не выполняет никаких функций по делегированию задач. В этой модели нет никакого централизованного потока, но на рабочие потоки возлагается большая ответственность. Все равноправные потоки могут обрабатывать запросы из одного входного потока данных, либо каждый рабочий поток может иметь собственный входной поток данных, за который он отвечает. Рабочие потоки могут нуждаться во взаимодействии и разделении ресурсов.

    Модель конвейера подобна ленте сборочного конвейера в том, что она предполагает наличие потока элементов, которые обрабатываются поэтапно. На каждом этапе отдельный поток выполняет некоторые операции над определенной совокупностью входных данных. Когда эта совокупность данных пройдет все этапы, обработка всего входного потока данных будет завершена. Этот подход позволяет обрабатывать несколько входных потоков одновременно. Каждый поток отвечает за получение промежуточных результатов, делая их доступными для следующего этапа (или следующего потока) конвейера Последний этап (или поток) генерирует результаты работы конвейера в целом.

    В модели «изготовитель-потребитель» существует поток-«изготовитель», который готовит данные, потребляемые потоком-«потребителем». Данные сохраняются в блоке памяти, разделяемом между потоками «изготовителем» и «потребителем». Поток-изготовитель» должен сначала приготовить данные, которые затем поток-потребитель» получит. Такому процессу необходима синхронизация. Если поток-изготовитель» будет поставлять данные гораздо быстрее, чем поток-«потребитель» сможет их потреблять, поток-«изготовитель» несколько раз перезапишет результаты, полученные им ранее, прежде чем поток-«потребитель» успеет их обработать. Но если поток-«потребитель» будет принимать данные гораздо быстрее, чем поток-изготовитель» сможет их поставлять, поток-«потребитель» будет либо снова обрабатывать уже обработанные им данные, либо попытается принять еще не подготовленные данные.

    Синхронные и асинхронные процессы

    Синхронные процессы - процессы с перемежающимся выполнением, когда один процесс приостанавливает свое выполнение до тех пор, пока не завершится другой. Например, процесс А, родительский, при выполнении создает процесс В, сыновний. Процесс А приостанавливает свое выполнение до тех пор, пока не завершится процесс В. После завершения процесса В его выходной код помещается в таблицу процессов. Тем самым процесс А уведомляется о завершении процесса В. Процесс А может продолжить выполнение, а затем завершиться или завершиться немедленно.

    Асинхронные процессы выполняются независимо один от другого. Это означает, что процесс А будет выполняться до конца безотносительно к процессу В. Между асинхронными процессами могут быть прямые родственные («родитель-сын») отношения, а могут и не быть. Если процесс А создает процесс В, они оба могут выполняться независимо, но в некоторый момент родитель должен получить статус завершения сыновнего процесса. Если между процессами нет прямых родственных отношений, у них может быть общий родитель.

    Асинхронные процессы могут совместно использовать такие ресурсы, как файлы или память. Это может потребовать (или не потребовать) синхронизации или взаимодействия при разделении ресурсов.

    Синхронизация процессов -- приведение нескольких процессов к такому их протеканию, когда определённые стадии разных процессов совершаются в определённом порядке, либо одновременно.

    Синхронизация необходима в любых случаях, когда параллельно протекающим процессам необходимо взаимодействовать. Для её организации используются средства межпроцессного взаимодействия. Среди наиболее часто используемых средств -- сигналы и сообщения, семафоры и мьютексы, каналы, совместно используемая память.

    Межпроцессное взаимодействие

    Одним из решений проблем синхронизации доступа к критическим ресурсам является запрет всех прерываний непосредственно после входа процесса в критическую секцию и разрешение их перед самым выходом из нее. Если прерывания запрещены, то переключение процессов не происходит, так как передача управления планировщику может быть реализована только с использованием прерываний.

    Этот подход, однако, имеет ряд существенных недостатков. Нет никаких гарантий, что процесс, запретивший прерывания, не зациклится в своей критической секции, тем самым приведя систему в полностью неработоспособное состояние. Кроме того, этот метод не годится для многопроцессорной системы, так как запрещение прерываний на одном из процессоров никак не влияет на исполнение процессов на других процессорах ВС, и эти процессоры по-прежнему имеют доступ к разделяемому ресурсу.

    Сообщение - метод взаимодействия, когда один процесс посылает сообщение второму, а тот получает его. Если сообщение не пришло - второй процесс блокируется (ожидает сообщения) или сразу возвращает код ошибки.

    С системами передачи сообщения связано большое количество проблем. Например, сообщение может потеряться. Чтобы избежать потери, получатель отсылает обратно сообщение с подтверждением приема. Если отправитель не получает подтверждения через некоторое время, он отсылает сообщение еще раз.

    Теперь представим, что сообщение получено, а подтверждение до отправителя не дошло. Отправитель пошлет его еще раз и до получателя оно дойдет дважды. Крайне важно, чтобы получатель мог отличить копию предыдущего сообщения от нового. Это легко решается с помощью внедрения номера сообщения в его тело.

    Семафор -- объект, позволяющий войти в заданный участок кода (обычно - критическую секцию) не более чем n процессам.

    С семафором возможны три операции:

    1) init(n); - инициализация счетчика (число, переданное счетчику, является количеством процессов, которые могут одновременно обращаться к критической секции)

    2) wait(); - ждать пока счётчик станет больше 0; после этого уменьшить счётчик на единицу.

    3) leave(); - увеличить счетчик на единицу.

    Перед обращением процесса к критической секции необходимо вызвать метод wait(), после выполнения которого гарантировано, что количество процессов, одновременно обращающихся к ней не превышает n-1. Тогда процесс может продолжить работу и выполнить метод leave() после работы с критической секцией, тем самым дав знать остальным процессам, что “место освободилось”.

    Если количество вызовов методов wait() и leave() не совпадает, то работа системы будет не корректной так же, как и в случае взаимной блокировки процессов - ситуации, при которой несколько процессов находятся в состоянии бесконечного ожидания ресурсов, занятых самими этими процессами:

    Процесс 1

    Процесс 2

    Хочет захватить A и B, начинает с A

    Хочет захватить A и B, начинает с B

    Захватывает ресурс A

    Захватывает ресурс B

    Ожидает освобождения ресурса B

    Ожидает освобождения ресурса A

    Взаимная блокировка

    Отладка взаимных блокировок, как и других ошибок синхронизации, усложняется тем, что для их возникновения нужны специфические условия одновременного выполнения нескольких процессов (в вышеописанном примере если бы процесс 1 успел захватить ресурс B до процесса 2, то ошибка не произошла бы).

    Мьютексы -- это простейшие двоичные семафоры, которые могут находиться в одном из двух состояний -- отмеченном или неотмеченном (открыт и закрыт соответственно). Когда какой-либо поток, принадлежащий любому процессу, становится владельцем объекта mutex, последний переводится в неотмеченное состояние. Если задача освобождает мьютекс, его состояние становится отмеченным.

    Задача мьютекса -- защита объекта от доступа к нему других потоков, отличных от того, который завладел мьютексом. В каждый конкретный момент только один поток может владеть объектом, защищённым мьютексом. Если другому потоку будет нужен доступ к переменной, защищённой мьютексом, то этот поток засыпает до тех пор, пока мьютекс не будет освобождён.

    Test-and-set -- простая неразрывная (атомарная) процессорная инструкция, которая копирует значение переменной в регистр, и устанавливает некое новое значение. Во время исполнения данной инструкции процессор не может прервать её выполнение и переключится на выполнение другого потока. Если используется многопроцессорная архитектура, то пока один процессор выполняет эту инструкцию с ячейкой памяти, то другие процессоры не могут получить доступ к этой ячейке.

    Алгоритм Деккера - первое известное корректное решение проблемы взаимного исключения в конкурентном программировании. Он позволяет двум потокам выполнения совместно использовать неразделяемый ресурс без возникновения конфликтов, используя только общую память для коммуникации.

    Если два процесса пытаются перейти в критическую секцию одновременно, алгоритм позволит это только одному из них, основываясь на том, чья в этот момент очередь. Если один процесс уже вошёл в критическую секцию, другой будет ждать, пока первый покинет её. Это реализуется при помощи использования двух флагов (индикаторов "намерения" войти в критическую секцию) и переменной turn (показывающей, очередь какого из процессов наступила).

    Одним из преимуществ алгоритма является то, что он не требует специальных Test-and-set инструкций и вследствие этого он легко переносим на разные языки программирования и архитектуры компьютеров. Недостатками можно назвать его применимость к случаю только с двумя процессами и использование Busy waiting вместо приостановки процесса (использование busy waiting предполагает, что процессы должны проводить минимальное количество времени внутри критической секции).

    Алгоритм Петерсона -- программный алгоритм взаимного исключения потоков исполнения кода. Хотя изначально был сформулирован для 2-х поточного случая, алгоритм может быть обобщён для произвольного количества потоков. Алгоритм условно называется программным, так как не основан на использовании специальных команд процессора для запрета прерываний, блокировки шины памяти и т. д., используются только общие переменные памяти и цикл для ожидания входа в критическую секцию исполняемого кода.

    Перед тем как начать исполнение критической секции, поток должен вызвать специальную процедуру (назовем ее EnterRegion) со своим номером в качестве параметра. Она должна организовать ожидание потока своей очереди входа в критическую секцию. После исполнения критической секции и выхода из нее, поток вызывает другую процедуру (назовем ее LeaveRegion), после чего уже другие потоки смогут войти в критическую область.

    Общий принцип алгоритмом Петерсона для 2-х потоков:

    Размещено на http://www.allbest.ru/

    Планирование процессов

    Планирование - обеспечение поочередного доступа процессов к одному процессору.

    Планировщик - отвечающая за это часть операционной системы.

    Алгоритм планирования без вытеснения (неприоритетный) - не требует прерывание по аппаратному таймеру, процесс останавливается только когда блокируется или завершает работу.

    Алгоритм планирования с вытеснением (приоритетный) - требует прерывание по аппаратному таймеру, процесс работает только отведенный период времени, после этого он приостанавливается по таймеру, чтобы передать управление планировщику.

    Процессы размещаются в приоритетных очередях в соответствии со стратегией Планирования. В системах UNIX/Linux используются две стратегии планирования: FIFO (сокр. от First In First Out, т.е. первым прибыл, первым обслужен) и RR (сокр. От round-robin, т.е. циклическая).

    При использовании стратегии FIFO процессы назначаются процессору в соответствии со временем поступления в очередь.

    RR-планирование совпадает с FIFO-планированием с одним исключением: после истечения кванта времени процесс помещается в конец своей приоритетной очереди, и процессору назначается следующий (по очереди) процесс.

    Для обеспечения параллельной работы процессов может подойти приоритетное планирование. Каждому процессу присваивается приоритет, и управление передается процессу с самым высоким приоритетом. Приоритет может быть динамический и статический. Динамический приоритет может устанавливаться так: П=1/Т, где Т- часть использованного в последний раз кванта (если использовано 1/50 кванта, то приоритет 50. Если использован весь квант, то приоритет 1).

    Часто процессы объединяют по приоритетам в группы, и используют приоритетное планирование среди групп, но внутри группы используют циклическое планирование.

    Размещено на Allbest.ur

    Подобные документы

      Структура, специфика и архитектура многопроцессорных систем; классификация Флинна. Организация взаимного исключения для синхронизации доступа к разделяемым ресурсам. Запрещение прерываний; семафоры с драйверами устройств. Кластеры распределения нагрузки.

      курсовая работа , добавлен 07.06.2014

      Управление основной и вторичной памятью компьютера. Доступ пользователей к различным общим сетевым ресурсам. Система поддержки командного интерпретатора. Распределение ресурсов между пользователями, программами и процессами, работающими одновременно.

      презентация , добавлен 24.01.2014

      Улучшение параметров модулей памяти. Функционирование и взаимодействие операционной системы с оперативной памятью. Анализ основных типов, параметров оперативной памяти. Программная часть с обработкой выполнения команд и размещением в оперативной памяти.

      курсовая работа , добавлен 02.12.2009

      Основные функции и процессы подсистемы управления процессами. Диспетчеризация процессов (потоков). Алгоритмы планирования выполнения потоков. Назначение и разновидности приоритетов в операционных системах. Функции подсистемы управления основной памятью.

      презентация , добавлен 20.12.2013

      Абстрактные модели и способы параллельной обработки данных, допустимая погрешность вычислений. Понятие параллельного процесса, их синхронизация и гранулы распараллеливания, определение закона Амдаля. Архитектура многопроцессорных вычислительных систем.

      дипломная работа , добавлен 09.09.2010

      Написание программы, реализующей работу мультипроцессорной системы с общей памятью, которая обрабатывает очереди заявок переменной длины. Анализ типовой архитектуры мультипроцессорной системы. Описание процедур и переменных, используемых в программе.

      курсовая работа , добавлен 21.06.2013

      Достоинства многопроцессорных систем. Создание программы, реализующей работу мультипроцессорной системы с общей памятью по обработке различного количества заявок, а также различного количества процессоров. Модели вычислений на векторных и матричных ЭВМ.

      курсовая работа , добавлен 21.06.2013

      Управление процессами - часть операционной системы, влияющая на функционирование вычислительной машины. Контекст дескриптор процесса и алгоритм его планирования. Средства синхронизации и взаимодействия процессов. Критическая секция, тупики и нити.

      лекция , добавлен 05.02.2009

      Сущность и содержание основных понятий операционных систем: процессы, память, файлы. Классификация по различным признакам и типы процессов, направления взаимосвязи. Принципы планирования работы процессора. Порядок управления невиртуальной памятью.

      презентация , добавлен 24.07.2013

      Классификация параллельных ВС. Системы с общей и распределенной памятью. Конвейеры операций. Производительность идеального конвейера. Суперскалярные архитектуры. VLIW-архитектура. Предсказание переходов. Матричные процессоры. Законы Амдала и Густафсона.

    Работа добавлена на сайт сайт: 2016-06-20

    ">Лекция " xml:lang="en-US" lang="en-US">6

    ">Параллельная обработка данных

    ">Параллелизм – это возможность одновременного выполнения нескольких арифметических, логических или служебных операций. Причем операции могут быть как крупноблочные, так и мелкоблочные.

    В основу параллельной обработки могут быть положены различные принципы:

    Пространственный параллелизм;

    Временной параллелизм:

    1. Конвейеризация.
    2. ">Векторизация.
    3. ">Матричный.
    4. ">Систолический.
    5. ">Организация структуры обработки потока данных.
    6. ">Организация системы на основе структуры гиперкуб.
    7. ">Динамическая перестройка структуры ВС.

    ">Описание любого алгоритма является иерархическим, основанным на свойстве вложенности. При программировании выделяют уровни вложенности: задания, задачи, подзадачи (процессы), макрооперации, операции.

    ">1. Ярусно-параллельная форма алгоритма

    ">Наиболее общей формой представления алгоритмов является информационно-управляющий граф алгоритма. Более определенной формой представления параллелизма задач является аппарат ярусно-параллельной формы (ЯПФ).

    ">Алгоритм в ярусно-параллельной форме представляется в виде ярусов, причем в нулевой ярус входят операторы (ветви) независящие друг от друга.

    ">На графе можно обозначить переходы, означающие передачу результатов вычисления примитивной операции из одного яруса к операции из следующего яруса. Ярусы делятся по переходам. Могут быть «пустые» переходы и «пустые» примитивные операции.

    ">При построении ЯПФ опираются на базовый набор примитивных операций (БНО). Ярусно-параллельная форма характеризуется следующими параметрами:

    ">1. Длина графа (количество ярусов) – " xml:lang="en-US" lang="en-US">L ">.

    ">2. Ширина " xml:lang="en-US" lang="en-US">i ">-го яруса - " xml:lang="en-US" lang="en-US">b ;vertical-align:sub" xml:lang="en-US" lang="en-US">i ">.

    ">3. Ширина графа ярусно-параллельной формы – " xml:lang="en-US" lang="en-US">B ">= " xml:lang="en-US" lang="en-US">max ">(" xml:lang="en-US" lang="en-US">b ;vertical-align:sub" xml:lang="en-US" lang="en-US">i ">).

    ">4. Средняя ширина графа ЯПФ – В ;vertical-align:sub">ср "> – ">.

    ">5. Коэффициент заполнения " xml:lang="en-US" lang="en-US">i ">-го яруса – " xml:lang="en-US" lang="en-US">k ;vertical-align:sub" xml:lang="en-US" lang="en-US">i "> – ">.

    ">6. Коэффициент разброса операций в графе - " xml:lang="en-US" lang="en-US">Q ;vertical-align:super" xml:lang="en-US" lang="en-US">j ;vertical-align:sub" xml:lang="en-US" lang="en-US">i "> – ">, " xml:lang="en-US" lang="en-US">j ">БНО, где ">- количество " xml:lang="en-US" lang="en-US">j ">-го типа операций в " xml:lang="en-US" lang="en-US">i ">-м ярусе.

    ">7. Минимальное необходимое количество вычислителей (из БНО) для реализации алгоритма, представленного данным графом в ЯПФ.

    ">8. Минимальное время решения алгоритма (сумма времен срабатывания вычислителей с максимальным объемом вычислений по каждому ярусу) – Т ;vertical-align:sub" xml:lang="en-US" lang="en-US">min ">.

    ">9. Связность алгоритма (количество промежуточных результатов, которое необходимо хранить в процессе реализации алгоритма) – С.

    ">2. Автоматическое обнаружение параллелизма

    ">Возможны два пути построения параллельного алгоритма: непосредственно из постановки задачи или путем преобразования последовательного алгоритма.

    ">Методы построения параллельного алгоритма из последовательного основаны на выделении в последовательном алгоритме типовых часто встречающихся конструкций, которые по определенным правилам заменяются параллельными.

    ">Несмотря на меньший уровень параллелизма, достигаемый при построении параллельного алгоритма путем преобразования из последовательного, такой метод находит широкое применение, так как обеспечивает возможность использовать дорогостоящие прикладные программы, разработанные и отлаженные для последовательных СОД.

    ">В последовательной программе различают явную и скрытую параллельную обработку.

    ">При анализе программы строится граф потока данных. Чтобы обнаружить явную параллельность процессов, анализируются множества входных (считываемых) переменных " xml:lang="en-US" lang="en-US">R "> и выходных (записываемых) переменных " xml:lang="en-US" lang="en-US">W "> каждого процесса.

    ">Скрытая параллельная обработка требует некоторой процедуры преобразования последовательной программы, чтобы сделать возможным ее параллельное выполнение. Преобразование может быть следующим:

    ">а) уменьшение высоты деревьев арифметических выражений (рис.6.3);

    ">б) преобразование линейных рекуррентных соотношений;

    ">в) замена операторов;

    ">г) преобразование блоков условных переходов и циклов к каноническому виду;

    ">д) распределение циклов.

    ">Параллельные архитектуры достигают высокой производительности, если преобразование параллелизма учитывает особенности архитектуры ВС, на которой предполагается выполнение алгоритма.

    ">В качестве примера учета схемы размещения в памяти возьмем память с диагональной адресацией. Для обеспечения параллельной обработки матриц элементы их строк и столбцов должны быть распределены между запоминающими устройствами процессоров таким образом, чтобы можно было их одновременно считывать и обрабатывать. При этом матрица храниться со сдвигом (рис.6.4).

    ">Любой алгоритм содержит последовательные (скалярные) участки. Доказано, что длина этих скалярных участков является определяющим фактором при реализации алгоритма на параллельной ВС.

    ">3. Степень и уровни параллелизма

    ">Степень параллелизма "> (" xml:lang="en-US" lang="en-US">D ">) "> – это порядок числа параллельно работающих устройств в системе при реализации алгоритма задач, при условии, что количество процессоров (обрабатывающих устройств) не ограничено.

    ">1) Низкая степень: от 2 до 10 процессоров.

    ">2) Средняя степень: от 10 до 100 процессоров.

    ">3) Высокая степень: от 100 до 10 ;vertical-align:super">4 "> процессоров.

    ">4) Сверхвысокая степень: от 10 ;vertical-align:super">4 "> до 10 ;vertical-align:super">6 "> процессоров.

    ">Графическое представление параметра " xml:lang="en-US" lang="en-US">D ">(" xml:lang="en-US" lang="en-US">t ">) как функции времени называют профилем параллелизма программы. На рис.6.5 показан типичный профиль параллелизма.

    ">В прикладных программах имеется широкий диапазон потенциального параллелизма. В вычислительно интенсивных программах в каждом цикле параллельно могут выполнятся от 500 до 3500 арифметических операций, если для этого имеется существующая вычислительная среда. Однако даже правильно спроектированный суперскалярный процессор способен поддерживать от 2 до 5,8 команды за цикл. Такое падение связано в первую очередь с коммуникационными и системными издержками.

    Более сильное влияние на производительность вычислительных средств, чем степень параллелизма, оказывает уровень параллелизма.

    Рассматривают алгоритмический и схемный уровни параллелизма.

    Выделяют следующие алгоритмические уровни параллелизма:

    1. Уровень заданий:

    а) между заданиями;

    б) между фазами заданий.

    2. Программный уровень:

    а) между частями программы;

    б) в пределах циклов.

    3. Командный уровень (между фазами выполнения команд).

    4. Арифметический и разрядный уровень:

    ">а) между элементами векторной операции;

    ">б) внутри логических схем АЛУ.

    ">Каждый из уровней характеризуется определенными свойствами, исходя из которых, разработаны специальные структуры вычислительных средств. Командный уровень реализуется в любых современных ЭВМ, включая и персональные ЭВМ.

    ">Схемный уровень параллелизма – это аппаратный уровень, на котором осуществляется распараллеливание обработки данных или организация параллельных вычислений.

    ">Параллельная обработка может быть реализована на следующих схемных уровнях:

    ">1. На уровне логических вентилей и элементов памяти (рис.6.6).

    ">2. Уровень логических схем и простых автоматов с памятью (рис.6.7).

    ">3. Уровень регистров и интегральных схем памяти (рис.6.8).

    4. Уровень элементарных микропроцессоров (рис.6.9).

    ">5. Уровень макропроцессоров, реализующих крупные операции (рис.6.10).

    6. Уровень вычислительных машин, процессоров и программ (рис.6.11).

    ">4. Виды параллелизма

    ">4.1. Естественный параллелизм и

    ">параллелизм множества объектов

    В информационном графе могут быть выделены «вертикальные» независимые подграфы, которые не используют взаимно каких-либо промежуточных результатов, полученных при реализации примитивных операций другого подграфа. Такой вид параллелизма получил название естественного параллелизма независимых задач.

    Задача обладает естественным параллелизмом, если в её исходной постановке она сводится к операции над многомерными векторами, многомерными матрицами или над решётчатыми функциями (рис.6.12).

    Параллелизм множества объектов представляет собой частный случай естественного параллелизма. Его смысл в том, что задача состоит в обработке информации о различных, но однотипных объектах, обрабатываемых по одной и той же или почти по одной и той же программе (рис.6.13).

    ">Здесь сравнительно малый вес занимают так называемые интегральные операции. При параллелизме множества объектов чаще, чем в общем случае, встречаются ситуации, когда отдельные участки вычислений должны выполняться различно для разных объектов.

    ">4.2. Параллелизм независимых ветвей

    Суть параллелизма независимых ветвей состоит в том, что в программе решения задачи могут быть выделены независимые части, называемые ветвями. При наличии в ВС соответствующих аппаратных средств ветви могут выполняться параллельно (рис.6.14).

    ">Ветвь программы Y не зависит от ветви X, если:

    ">- между ними нет функциональных связей, т.е. ни одна из входных переменных ветви Y не является выходной переменной ветви X либо какой-нибудь ветви, зависящей от X;

    ">- между ними нет связи по рабочим полям памяти;

    ">- они должны выполняться по разным программам;

    ">- независимы по управлению, т.е. условие выполнения ветви Y не должно зависеть от признаков, вырабатываемых при выполнении ветви X или ветви, от нее зависящей.

    ">4.3. Параллелизм смежных операций или

    ">локальный параллелизм

    Параллелизм смежных операций имеет место тогда, когда входные данные для текущих операций получены на более ранних этапах вычисления и построение вычислительных средств позволяет совместить выполнение нескольких операций, не связанных между собой выходными данными и результатами.

    Локальная оптимизация программ состоит в том, что просматриваются несколько команд, которые должны выполняться подряд, и изменяется порядок следования некоторых из них, возможно, изменяются номера регистров и ячеек памяти, чтобы обеспечить максимально возможный параллелизм смежных операций.

    В большинстве случаев показатель связности смежных операций зависит не столько от задачи, сколько от качества выполнения локальной оптимизации.

    ">5. Модель задачи

    Модель задачи строится для сравнительного анализа структур параллельных ЭВМ. Поэтому она должна иметь достаточно общий характер и описывать только состав форм параллелизма и типов связей.

    Как правило, любая модель задачи строится на основе анализа моделируемого класса задач. По результатам анализа проводится преобразование алгоритмов к параллельному виду. Исследуемый алгоритм можно представить в виде программы, состоящей из последовательности участков трех типов (рис.6.15):

    1. скалярных участков (СК);
    2. участков с параллелизмом независимых ветвей (ВТ);
    3. векторных участков (ВК).

    Модель задачи – это совокупность параметров, характеризующих параллельную программу

    При построении модели задачи главная цель – определение относительного времени ее выполнения при реализации исследуемым алгоритмом.

    ">Рис.6.15. Соотношение общего числа вычислений, приходящихся на разные участки алгоритма в модели задачи

    " xml:lang="en-US" lang="en-US">W ">ск

    " xml:lang="en-US" lang="en-US">Wвт

    " xml:lang="en-US" lang="en-US">W ">вк

    " xml:lang="en-US" lang="en-US">m ;vertical-align:sub">ск

    " xml:lang="en-US" lang="en-US">m ;vertical-align:sub" xml:lang="en-US" lang="en-US">вт

    " xml:lang="en-US" lang="en-US">m ;vertical-align:sub">вк

    " xml:lang="en-US" lang="en-US">А

    " xml:lang="en-US" lang="en-US">В

    " xml:lang="en-US" lang="en-US">C

    объем вычислений

    относительная длина

    На протяжении всей истории развития вычислительной техники делались попытки найти какую-то общую классификацию, под которую подпадали бы все возможные направления развития компьютерных архитектур. Ни одна из таких классификаций не могла охватить все разнообразие разрабатываемых архитектурных решений и не выдерживала испытания временем. Тем не менее в научный оборот попали и широко используются ряд терминов, которые полезно знать не только разработчикам, но и пользователям компьютеров.

    Любая вычислительная система (будь то супер-ЭВМ или персональный компьютер) достигает своей наивысшей производительности благодаря использованию высокоскоростных элементов и параллельному выполнению большого числа операций. Именно возможность параллельной работы различных устройств системы (работы с перекрытием) является основой ускорения основных операций.

    Параллельные ЭВМ часто подразделяются по классификации Флинна на машины типа SIMD (Single Instruction Multiple Data - с одним потоком команд при множественном потоке данных) и MIMD (Multiple Instruction Multiple Data - с множественным потоком команд при множественном потоке данных). Как и любая другая, приведенная выше классификация несовершенна: существуют машины прямо в нее не попадающие, имеются также важные признаки, которые в этой классификации не учтены. В частности, к машинам типа SIMD часто относят векторные процессоры, хотя их высокая производительность зависит от другой формы параллелизма - конвейерной организации машины. Многопроцессорные векторные системы, типа Cray Y-MP, состоят из нескольких векторных процессоров и поэтому могут быть названы MSIMD (Multiple SIMD).

    Классификация Флинна не делает различия по другим важным для вычислительных моделей характеристикам, например, по уровню "зернистости" параллельных вычислений и методам синхронизации.

    Можно выделить четыре основных типа архитектуры систем параллельной обработки:

    1) Конвейерная и векторная обработка.

    Основу конвейерной обработки составляет раздельное выполнение некоторой операции в несколько этапов (за несколько ступеней) с передачей данных одного этапа следующему. Производительность при этом возрастает благодаря тому, что одновременно на различных ступенях конвейера выполняются несколько операций. Конвейеризация эффективна только тогда, когда загрузка конвейера близка к полной, а скорость подачи новых операндов соответствует максимальной производительности конвейера. Если происходит задержка, то параллельно будет выполняться меньше операций и суммарная производительность снизится. Векторные операции обеспечивают идеальную возможность полной загрузки вычислительного конвейера.



    При выполнении векторной команды одна и та же операция применяется ко всем элементам вектора (или чаще всего к соответствующим элементам пары векторов). Для настройки конвейера на выполнение конкретной операции может потребоваться некоторое установочное время, однако затем операнды могут поступать в конвейер с максимальной скоростью, допускаемой возможностями памяти. При этом не возникает пауз ни в связи с выборкой новой команды, ни в связи с определением ветви вычислений при условном переходе. Таким образом, главный принцип вычислений на векторной машине состоит в выполнении некоторой элементарной операции или комбинации из нескольких элементарных операций, которые должны повторно применяться к некоторому блоку данных. Таким операциям в исходной программе соответствуют небольшие компактные циклы.

    2) Машины типа SIMD. Машины типа SIMD состоят из большого числа идентичных процессорных элементов, имеющих собственную память. Все процессорные элементы в такой машине выполняют одну и ту же программу. Очевидно, что такая машина, составленная из большого числа процессоров, может обеспечить очень высокую производительность только на тех задачах, при решении которых все процессоры могут делать одну и ту же работу. Модель вычислений для машины SIMD очень похожа на модель вычислений для векторного процессора: одиночная операция выполняется над большим блоком данных.

    В отличие от ограниченного конвейерного функционирования векторного процессора, матричный процессор (синоним для большинства SIMD-машин) может быть значительно более гибким. Обрабатывающие элементы таких процессоров - это универсальные программируемые ЭВМ, так что задача, решаемая параллельно, может быть достаточно сложной и содержать ветвления. Обычное проявление этой вычислительной модели в исходной программе примерно такое же, как и в случае векторных операций: циклы на элементах массива, в которых значения, вырабатываемые на одной итерации цикла, не используются на другой итерации цикла.

    Модели вычислений на векторных и матричных ЭВМ настолько схожи, что эти ЭВМ часто обсуждаются как эквивалентные.

    3) Машины типа MIMD. Термин "мультипроцессор" покрывает большинство машин типа MIMD и (подобно тому, как термин "матричный процессор" применяется к машинам типа SIMD) часто используется в качестве синонима для машин типа MIMD. В мультипроцессорной системе каждый процессорный элемент (ПЭ) выполняет свою программу достаточно независимо от других процессорных элементов. Процессорные элементы, конечно, должны как-то связываться друг с другом, что делает необходимым более подробную классификацию машин типа MIMD. В мультипроцессорах с общей памятью (сильносвязанных мультипроцессорах) имеется память данных и команд, доступная всем ПЭ. С общей памятью ПЭ связываются с помощью общей шины или сети обмена. В противоположность этому варианту в слабосвязанных многопроцессорных системах (машинах с локальной памятью) вся память делится между процессорными элементами и каждый блок памяти доступен только связанному с ним процессору. Сеть обмена связывает процессорные элементы друг с другом.

    Базовой моделью вычислений на MIMD-мультипроцессоре является совокупность независимых процессов, эпизодически обращающихся к разделяемым данным. Существует большое количество вариантов этой модели. На одном конце спектра - модель распределенных вычислений, в которой программа делится на довольно большое число параллельных задач, состоящих из множества подпрограмм. На другом конце спектра - модель потоковых вычислений, в которых каждая операция в программе может рассматриваться как отдельный процесс. Такая операция ждет своих входных данных (операндов), которые должны быть переданы ей другими процессами. По их получении операция выполняется, и полученное значение передается тем процессам, которые в нем нуждаются. В потоковых моделях вычислений с большим и средним уровнем гранулярности, процессы содержат большое число операций и выполняются в потоковой манере.

    4) Многопроцессорные машины с SIMD-процессорами.

    Многие современные супер-ЭВМ представляют собой многопроцессорные системы, в которых в качестве процессоров используются векторные процессоры или процессоры типа SIMD. Такие машины относятся к машинам класса MSIMD.

    Языки программирования и соответствующие компиляторы для машин типа MSIMD обычно обеспечивают языковые конструкции, которые позволяют программисту описывать "крупнозернистый" параллелизм. В пределах каждой задачи компилятор автоматически векторизует подходящие циклы. Машины типа MSIMD, как можно себе представить, дают возможность использовать лучший из этих двух принципов декомпозиции: векторные операции ("мелкозернистый" параллелизм) для тех частей программы, которые подходят для этого, и гибкие возможности MIMD-архитектуры для других частей программы.

    Многопроцессорные системы за годы развития вычислительной техники претерпели ряд этапов своего развития. Исторически первой стала осваиваться технология SIMD. Однако в настоящее время наметился устойчивый интерес к архитектурам MIMD. Этот интерес главным образом определяется двумя факторами:

    1. Архитектура MIMD дает большую гибкость: при наличии адекватной поддержки со стороны аппаратных средств и программного обеспечения MIMD может работать как однопользовательская система, обеспечивая высокопроизводительную обработку данных для одной прикладной задачи, как многопрограммная машина, выполняющая множество задач параллельно, и как некоторая комбинация этих возможностей.
    2. Архитектура MIMD может использовать все преимущества современной микропроцессорной технологии на основе строгого учета соотношения стоимость/производительность. В действительности практически все современные многопроцессорные системы строятся на тех же микропроцессорах, которые можно найти в персональных компьютерах, рабочих станциях и небольших однопроцессорных серверах.

    Одной из отличительных особенностей многопроцессорной вычислительной системы является сеть обмена, с помощью которой процессоры соединяются друг с другом или с памятью. Модель обмена настолько важна для многопроцессорной системы, что многие характеристики производительности и другие оценки выражаются отношением времени обработки к времени обмена, соответствующим решаемым задачам. Существуют две основные модели межпроцессорного обмена: одна основана на передаче сообщений, другая - на использовании общей памяти. В многопроцессорной системе с общей памятью один процессор осуществляет запись в конкретную ячейку, а другой процессор производит считывание из этой ячейки памяти. Чтобы обеспечить согласованность данных и синхронизацию процессов, обмен часто реализуется по принципу взаимно исключающего доступа к общей памяти методом "почтового ящика".

    В архитектурах с локальной памятью непосредственное разделение памяти невозможно. Вместо этого процессоры получают доступ к совместно используемым данным посредством передачи сообщений по сети обмена. Эффективность схемы коммуникаций зависит от протоколов обмена, основных сетей обмена и пропускной способности памяти и каналов обмена.

    Часто, и притом необосновано, в машинах с общей памятью и векторных машинах затраты на обмен не учитываются, так как проблемы обмена в значительной степени скрыты от программиста. Однако накладные расходы на обмен в этих машинах имеются и определяются конфликтами шин, памяти и процессоров. Чем больше процессоров добавляется в систему, тем больше процессов соперничают при использовании одних и тех же данных и шины, что приводит к состоянию насыщения. Модель системы с общей памятью очень удобна для программирования и иногда рассматривается как высокоуровневое средство оценки влияния обмена на работу системы, даже если основная система в действительности реализована с применением локальной памяти и принципа передачи сообщений.

    В сетях с коммутацией каналов и в сетях с коммутацией пакетов по мере возрастания требований к обмену следует учитывать возможность перегрузки сети. Здесь межпроцессорный обмен связывает сетевые ресурсы: каналы, процессоры, буферы сообщений. Объем передаваемой информации может быть сокращен за счет тщательной функциональной декомпозиции задачи и тщательного диспетчирования выполняемых функций.

    Таким образом, существующие MIMD-машины распадаются на два основных класса в зависимости от количества объединяемых процессоров, которое определяет и способ организации памяти и методику их межсоединений.

    К первой группе относятся машины с общей (разделяемой) основной памятью, объединяющие до нескольких десятков (обычно менее 32) процессоров. Сравнительно небольшое количество процессоров в таких машинах позволяет иметь одну централизованную общую память и объединить процессоры и память с помощью одной шины. При наличии у процессоров кэш-памяти достаточного объема высокопроизводительная шина и общая память могут удовлетворить обращения к памяти, поступающие от нескольких процессоров. Поскольку имеется единственная память с одним и тем же временем доступа, эти машины иногда называются UMA (Uniform Memory Access). Такой способ организации со сравнительно небольшой разделяемой памятью в настоящее время является наиболее популярным. Структура подобной системы представлена на рис. 10.1.

    Рис. 10.1. Типовая архитектура мультипроцессорной системы с общей памятью.

    Вторую группу машин составляют крупномасштабные системы с распределенной памятью. Для того чтобы поддерживать большое количество процессоров приходится распределять основную память между ними, в противном случае полосы пропускания памяти просто может не хватить для удовлетворения запросов, поступающих от очень большого числа процессоров. Естественно при таком подходе также требуется реализовать связь процессоров между собой. На рис. 10.2 показана структура такой системы.

    С ростом числа процессоров просто невозможно обойти необходимость реализации модели распределенной памяти с высокоскоростной сетью для связи процессоров. С быстрым ростом производительности процессоров и связанным с этим ужесточением требования увеличения полосы пропускания памяти, масштаб систем (т.е. число процессоров в системе), для которых требуется организация распределенной памяти, уменьшается, также как и уменьшается число процессоров, которые удается поддерживать на одной разделяемой шине и общей памяти.

    Распределение памяти между отдельными узлами системы имеет два главных преимущества. Во-первых, это эффективный с точки зрения стоимости способ увеличения полосы пропускания памяти, поскольку большинство обращений могут выполняться параллельно к локальной памяти в каждом узле. Во-вторых, это уменьшает задержку обращения (время доступа) к локальной памяти. Эти два преимущества еще больше сокращают количество процессоров, для которых архитектура с распределенной памятью имеет смысл.

    Обычно устройства ввода/вывода, также как и память, распределяются по узлам и в действительности узлы могут состоять из небольшого числа (2-8) процессоров, соединенных между собой другим способом. Хотя такая кластеризация нескольких процессоров с памятью и сетевой интерфейс могут быть достаточно полезными с точки зрения эффективности в стоимостном выражении, это не очень существенно для понимания того, как такая машина работает, поэтому мы пока остановимся на системах с одним процессором на узел. Основная разница в архитектуре, которую следует выделить в машинах с распределенной памятью заключается в том, как осуществляется связь и какова логическая модель памяти.

    Рис. 10.2. Типовая архитектура машины с распределенной памятью.