Оборудование        14.05.2019   

Информационные характеристики дискретных каналов связи. Способ моделирования канала связи

Страница 1

УДК 621.397

Модели дискретных каналов связи

Михаил Владимирович Марков , магистрант, mmarkov 1986@ mail . ru ,

ФГОУВПО «Российский государственный университет туризма и сервиса»,

г. Москва
The basic models of the discrete communication channels used for information transfer in wireless systems of access to information resources are described. The basic merits and demerits of various communication channels are considered and their general characteristic is given. The mathematical apparatus that is necessary for the description of the pulsing nature of the traffic in real channels of transfer is presented. The mathematical calculations used for definition of functions of density of probability are given. Models of channels with the memory, characterized by packing of errors in the conditions of a frequency-selective dying down and multibeam distribution of signals are considered.
Описаны основные модели дискретных каналов связи, используемых для передачи информации в беспроводных системах доступа к информационным ресурсам. Рассмотрены основные достоинства и недостатки различных каналов связи и дана их общая характеристика. Приведен математический аппарат, необходимый для описания пульсирующей природы трафика в реальных каналах передачи. Даны математические выкладки, используемые для определения функций плотности вероятности. Рассмотрены модели каналов с памятью, характеризующиеся пакетированием ошибок в условиях частотно-селективных замираний и многолучевого распространения сигналов.
Key words : models of communication channels, discrete channels without memory, channels with deleting, asymmetrical channels without memory, channels with memory

Ключевые слова : модели каналов связи, дискретные каналы без памяти, каналы со стиранием, несимметричные каналы без памяти, каналы с памятью.
Постановка задачи

Для описания каналов передачи информации принято использовать математические модели, учитывающие особенности распространения радиоволн в окружающей среде. Среди таких особенностей можно, например, отметить наличие частотно-селективных замираний, приводящих к явлению межсимвольной интерференции (МСИ). Эти явления существенно сказываются на качестве принимаемой информации, так как приводят в ряде случаев к пакетированию одиночных ошибок. Для описания процессов пакетирования было разработано множество моделей каналов связи с памятью. В статье описаны основные модели, обладающие различными характеристиками, описываемыми с помощью полигеометрических распределений длин безошибочных промежутков и пачек ошибок.

Каналы связи принято называть дискретными по времени только в том случае, если входные и выходные сигналы доступны для наблюдения и дальнейшей обработки в строго фиксированные моменты времени. Для определения моделей дискретных каналов связи достаточно описать случайные процессы, происходящие в них, а также знать вероятности появления ошибок. Для этого необходимо иметь входной (А ) и выходной () наборы передаваемых символов, должна быть задана совокупность переходных вероятностей p ( | a ), которая зависит от следующих величин:
– случайной последовательности символов входного алфавита, где
– символ на входе канала в i -й момент времени;
– последовательности принятых символов, взятой из выходного алфавита, где
– символ на выходе канала в i -й момент.

С математической точки зрения вероятность
можно определить как условную вероятность приема последовательности при условии, что передана последовательность a . Количество переходных вероятностей прямо пропорционально возрастает с увеличением длительности входных и выходных последовательностей. Например, при использовании бинарного кода для последовательности длиной n, количество переходных вероятностей составит
. Ниже приведено описание математических моделей дискретных каналов, содержащих ошибки. С их помощью можно достаточно просто определить переходные вероятности
для заданной последовательности длиной п.


Дискретный канал без памяти

Этот тип канала характеризуется тем, что вероятность появления символа на его выходе определяется только набором символов на его входе. Это утверждение справедливо для всех пар символов, передаваемых через данных канал связи. Наиболее ярким примером канала без памяти является бинарный симметричный канал. Принцип его функционирования можно описать в виде графа, показанного на рис. 1.

На вход канала подается произвольный символ из последовательности а . На приемной стороне он воспроизводится верно с постоянной вероятностью q равной , или неверно, в случае, если вероятность определяется выражением

Диаграмма переходов для бинарного канала (БСК) показана на рис. 1.

Рис. 1. Дискретный канал без памяти
Для БСК можно легко определить вероятность получения любой последовательности символов на выходе при условии, что задана некоторая входная последовательность, обладающая фиксированной длиной. Допустим, что такая последовательность имеет длину 3

Для удобства анализа представим БСК как канал, к которому подключен генератор ошибок. Такой генератор выдает случайную последовательность ошибок
. Каждый её символ складывается по модулю с символом , принадлежащим двоичному каналу -
. Сложение выполняется только при условии, что позиции ошибки и символа совпадают. Таким образом, если ошибка { } имеет единичное значение, передаваемый символ изменится на обратный, то есть на приемной стороне будет декодирована последовательность { }, содержащая ошибку.

Переходные вероятности, описывающие стационарный симметричный канал имеют вид

Из вышеприведенного выражения видно, что канал можно полностью описать статистикой последовательности ошибок { }, где
{0, 1} . Такую последовательность, обладающую длиной n , принято называть вектором ошибок. Компоненты данного вектора принимают единичные значения только на позициях, соответствующих неправильно принятым символам. Число единиц в векторе определяет его вес.


Симметричный канал без памяти со стиранием

Этот вид канала во многом аналогичен каналу без памяти за исключением того, что входной алфавит содержит дополнительный (m+1) символ "? ". Используется этот символ только в том случае, если детектор не способен надежно распознать переданный символ a i . Вероятность такого события Р с всегда является фиксированной величиной и не зависит от передаваемой информации. Граф вероятностей переходов для данной модели показан на рис. 2.

Рис. 2. Симметричный канал без памяти со стиранием
Несимметричный канал без памяти

Данный канал связи можно охарактеризовать тем, что отсутствует зависимость между вероятностями возникновения ошибки. Но сами они определяются передаваемыми в текущий момент времени символами. Таким образом, для бинарного канала можно записать
. Переходные вероятности, описывающие данную модель, показаны на рис. 3.


Рис. 3. Несимметричный канал без памяти
Дискретный канал с памятью.

Этот канал можно описать зависимостью между символами входной и выходной последовательностей. Каждый принятый символ зависит как от соответствующего переданного, так и от предыдущих входных и выходных бит. Большая часть реально функционирующих систем связи содержит именно такие каналы. Наиболее существенной причиной наличия памяти в канале является межсимвольная интерференция, проявляющаяся из-за ограничений, накладываемых на полосу пропускания канала связи. Каждый выходной символ обладает зависимостью от нескольких последовательных символов на входе. Вид этой зависимости определяется импульсной характеристикой канала связи.

Второй, не менее важной, причиной эффекта «памяти» являются паузы в передаче данных в канал. Длительность таких пауз может значительно превышать длительность одного бита данных. Во время перерыва в передаче вероятность неправильного приема информации резко возрастает, в результате возможно появление групп ошибок, называемых пакетами.

По этой причине многими исследователями рекомендуется использовать понятие “состояния канала”. В результате каждый символ принятой последовательности статистически зависит как от входных символов, так и с состояния канала в текущий момент времени. Под термином “состояние канала” обычно понимают вид последовательности входных и выходных символов вплоть до заданного момента времени. На состояние канала в том числе оказывает сильное влияние и межсимвольная интерференция. Память у каналов связи подразделяется на два вида: память по входу и выходу. Если присутствует зависимость между выходным символом и битами на входе
, то такой канал обладает памятью по входу. Его можно описать переходными вероятностями вида
, i = –1, 0, 1, 2, … С точки зрения математического анализа память канала бесконечна. На практике количество символов оказывающих влияние на вероятность правильного или неверного приема информации конечно.

Память канала вычисляется как число символов N, начиная с которого справедливо равенство условных вероятностей

Для всех
. (4)

Последовательность входных символов
можно представить как состояние канала
в (i- 1)-й момент. В таком случае канал можно охарактеризовать набором переходных вероятностей вида
.

В том случае если принятый бит данных характеризуется зависимостью от предшествующих выходных символов, то канал связи принято называть каналом с памятью по выходу. Переходные вероятности можно представить в виде выражения

где выходные символы
определяют состояние канала
в (i –1)-й момент.

Использование переходных вероятностей для описания каналов с памятью очень неэффективно в виду громоздкости математических выкладок. Например, если имеется канал с межсимвольной интерференцией, а его память ограничена пятью символами, то количество возможных состояний канала составит 2 5 =32.

Если же память только по входу или только по выходу ограничивается в двоичном канале N символами, то число состояний равно 2 N , то есть растет по экспоненциальному закону в зависимости от количества символов памяти N. На практике чаще всего приходиться сталкиваться с каналами, обладающими памятью в десятки, сотни и даже тысячи символов.


Дискретно-непрерывный канал

Рассмотрим дискретно-непрерывный канал на входе которого имеются независимые символы a i , а на выходе присутствует непрерывный сигнал
. Для его описания воспользуемся переходными (условными) плотностями
декодируемой реализации z (t) при условии, что передан символ , а также априорными вероятностями передаваемых символов
. Переходные плотности также принято называть функциями правдоподобия. С другой стороны, дискретно-непрерывный канал можно описать апостериорными вероятностями
передачи символа при получении на выходе колебания z (t ). При использовании формулы Байеса получим

, (6).

В данном выражении используется плотность декодируемого колебания, которая определяется как

(7).

Непрерывно-дискретный канал описывается аналогично.


Дискретный канал с памятью, характеризующийся коррелированными

замираниями

Замирания возникают, когда амплитуда или фаза сигнала, переданного через канал изменяются по случайному закону. Понятно, что замирания приводят к существенному ухудшению качества принятой информации. Одной из наиболее существенных причин появления замираний считается многолучевое распространение сигналов.

Здесь буквами E, T обозначена энергия и длительность сигнала,

–целые числа, l k > 1. (9).

На приемной стороне будет наблюдаться случайный процесс y (t )

В данном выражении используются следующие параметры:

µ -коэффициент передачи канала, выбираемый случайным образом,

- случайный фазовый сдвиг,

n (t ) - белый гауссовский шум (АБГШ). Его спектральная плотность мощности равна N 0 /2.

Если передается некоторая последовательность a , то выходной сигнал когерентного демодулятора примет вид . Названная последовательность поступает на вход декодера. Полученную последовательность можно представить в виде вектора

, для вычисления компонент которого используются выражения (11) и (12):

(12)


,

- квадратурные компоненты в сумме дающие коэффициент передачи канала,

- случайные величины, связанные с влиянием белого гауссовского шума,

-- отношение сигнал/шум.

Данные выражения имеют силу, только если передается символ
.

Если имеет место передача символа
, то правые части равенств (11) и (12) меняются местами. Случайные величины подчиняются гауссовскому распределению, обладающему параметрами

(15)

Анализируя эти выражения можно прийти к выводу, что канальный коэффициент передачи

зависит от рэлеевского распределения.

Канал с замираниями характеризуется наличием памяти между элементами последовательности символов . Эта память зависит от характера связей между членами рядов

Предположим, что

, (18),

где
.

В таком случае µ c и µ s образуют независимые Марковские последовательности. А функция плотности вероятностей w (µ) для последовательности µ при N> 1 будет равна



(20)

(21).

В приведенном выражении (х) является функцией Бесселя первого рода нулевого порядка. Параметр будет равен среднему значению отношения С/Ш для релеевского канала. Параметр r характеризует зависимость случайных канальных коэффициентов передачи от времени. Этот параметр может лежать в интервале 0,99-0,999.

Зная все вышеперечисленные параметры можно определить условную функцию плотности вероятности
. Аналитическое выражение для этой функции имеет вид

С учетом выше приведенных уравнений, получим

(23).

Таким образом, условные функции плотности вероятности
являются произведением функций плотности вероятности в случае центрированного и не центрированного X 2 – распределения. Такое распределение имеет две степени свободы.

Модель Гильберта

К сожалению, все выше описанные модели каналов не способны описать пульсирующую природу реальных каналов передачи. Поэтому Гильбертом была предложена следующая модель канала с ошибками. Вероятность ошибки в текущем состоянии сети зависит от того, в каком состоянии находилась сеть в предыдущий момент времени. То есть подразумевается, что имеет место корреляция между двумя последовательными событиями. Таким образом, проявляется память канала и его пульсирующая природа. Модель Гильберта по сути является моделью Маркова первого порядка с двумя состояниями – «хорошим» и «плохим». Если ошибки в принятых данных отсутствуют, то речь идет о «хорошем» состоянии. В «плохом» состоянии вероятность ошибки принимает некоторое значение большее, чем 0. На рис. 4 показана модель Гильберта.

Рис. 4. Схематическая иллюстрация модели Гильберта

Рис. 5. Схематическая иллюстрация модели Гильберта-Эллиота
Вероятность того, что канал находится в «плохом» состоянии равна

(24),

и таким образом, полная вероятность ошибки

Модель Гильберта является самовозобновляемой моделью, это означает, что длины пачек ошибок и длины безошибочных промежутков не зависят от предшествующих пачек и промежутков ошибок. Это так называемая скрытая модель Маркова (HMM). Текущее состояние модели (Х или П) не может быть определено до тех пор, пока не будет получен выходной сигнал модели. Кроме того, параметры модели {p , q , P(1|B) } не могут быть получены непосредственно во время моделирования. Они могут быть оценены лишь с помощью специальных триграмм или с помощью аппроксимации кривых, как это предложено в работе Гильберта.

Из-за возможности прямой оценки параметров чаще всего использовалась упрощенная версия модели Гильберта, в которой вероятность ошибки в «плохом» состоянии всегда равна 1. Эта модель может быть несколько модифицирована и представлена в виде цепи Маркова первого порядка с двумя состояниями. Два параметра упрощенной модели Гильберта {p, q} могут быть вычислены непосредственно путем измерений трасс ошибок при учете средней длины пачек ошибок

(26)

и среднем значении длин промежутков

или полной вероятности ошибки

Улучшения модель Гильберта впервые была описана в работе Элиота. В ней ошибки могут происходить также и в хорошем состоянии, как это показано на рис. 5.

Эта модель, также известная как канал Гильберта – Элиота (GEC), преодолевает ограничение модели Гильберта в отношении геометрических распределений длин пачек ошибок. Кроме того, что данная модель должна соответствовать модели HMM, она должна быть не возобновляемой, то есть длины пачек ошибок должны быть статистически независимы от длин промежутков. Это привносит новые возможности для моделирования радиоканала, но и усложняет процедуру оценки параметров. Параметры для не возобновляемой модели HMM и модели GEC могут быть оценены с использованием алгоритма Баума-Валия.

Рис. 6. Разделенные цепи Маркова
В 1960-х годах, исследователи Бергер, Манделброт, Суссман и Элиот предложили использовать возобновляемые процессы для моделирования характеристик ошибок коммуникационных каналов. Для этого Бергер и Манделброт использовали независимое распределение Парето вида

для интервалов между последовательными ошибками.

Рис. 7. Разделенные цепи Маркова с двумя безошибочными и тремя ошибочными состояниями

Дальнейшие улучшения модели Гильберта были опубликованы Фричманом (1967), который предложил разделить цепи Маркова на несколько цепей с ошибочными и безошибочными состояниями (рис. 6). Было введено ограничение по количеству запрещенных переходов между ошибочными состояниями и состояниями, свободными от ошибок. Параметры этой модели могут быть несколько улучшены благодаря выборочной аппроксимации полигеометрических распределений длин промежутков и длин пачек ошибок. Полигеометрическое распределение вычисляется как

при следующих ограничениях

0 i 1 и 0 i 1.

Параметры μ i и λ i соответствуют вероятностям перехода к новому состоянию и вероятности перехода в пределах нового состояния, K – это число безошибочных состояний, N – общее количество состояний.

Конфигурация данной модели показана на рис. 7. Она включает в себя два безошибочных состояния и три состояния соответствующие ошибкам. Однако все еще имеется статистическая зависимость между текущим промежутком и предыдущей пачкой ошибок, а также между текущим промежутком (пачкой ошибок) и предыдущим промежутком (пачкой ошибок). Поэтому для полного описания модели эти зависимости также необходимо рассмотреть. Однако здесь имеется ограничение, связанное с сохранением фиксированных пропорций вероятностей перехода из одного состояния в другое. В связи с этим модель становится возобновляемой. Например, в случае конфигурации модели 2/3 соотношения между вероятностями будут такими: p 13 : p 14 : p 15 = p 23 : p 24 : p 25 и p 31 : p 32 = p 41 : p 42 = p 51 : p 52 . Так, модель Фричмана, показанная на рис. 8, является частным случаем разделенной цепи Маркова. На этом рисунке показано только одно ее ошибочное состояние. Такая конфигурация распределения промежутков между ошибками уникально характеризует модель, а ее параметры могут быть найдены путем аппроксимации соответствующей кривой. Каждое состояние модели Фричмана представляет собой ошибочную модель без памяти, и поэтому модель Фричмана ограничивается полигеометрическими распределениями длин промежутков и пачек ошибок.

Рис. 8. Модель Фричмана

В статье были рассмотрены основные модели каналов связи, используемых для передачи различной дискретной информации и обеспечивающих доступ к разделяемым информационным ресурсам. Для большинства моделей даны соответствующие математические выкладки, на основе анализа которых сделаны выводы об основных достоинствах и ограничениях этих моделей. В работе было показано, что все рассматриваемые модели обладают существенными различиями в характеристиках ошибок.
Литература


  1. Adoul, J-P.A., Fritchman, B.D. and Kanal, L.N. A critical statistic for channels with memory // IEEE Trans. on Information Theory. 1972. № 18.

  2. Aldridge, R.P. and Ghanbari, M. Bursty error model for digital transmission channels. // IEEE Letters. 1995. № 31.

  3. Murthy, D.N.P., Xie, M. and Jiang, R. Weibull Models. John Wiley & Sons Ltd., 2007.

  4. Pimentel, C. and Blake, F. Modelling Burst Channels Using Partitioned Fritchman’s Markov Models. // IEEE Trans. on Vehicular Technology. 1998. № 47.

  5. McDougall, J., Yi, Y. and Miller, S. A Statistical Approach to Developing Channel Models for Network Simulations. // Proceedings of the IEEE Wireless Communication and Networking Conference. 2004. vol. 3. Р. 1660–1665.
страница 1

Для того чтобы дать математическое описание канала, необходимо и достаточно указать множество сигналов, которые могут быть поданы на его вход, и для любого допустимого входного сигнала задать случайный процесс (сигнал) на его выходе. Задать процесс (см. § 2.1)-это значит задать в той или иной форме распределение вероятностей.

Точное математическое описание любого реального канала обычно весьма сложное. Вместо этого используют упрощенные математические модели, которые позволяют выявить все важнейшие закономерности реального канала, если при построении модели учтены наиболее существенные особенности канала и отброшены второстепенные детали, мало влияющие на ход связи.

Рассмотрим наиболее простые и широко используемые математические модели каналов, начав с непрерывных каналов, поскольку они во многом предопределяют и характер дискретных каналов.

Идеальный канал без помех представляет собой линейную цепь с постоянной передаточной функцией, обычно сосредоточенной в ограниченной полосе частот. Допустимы любые входные сигналы, спектр которых лежит в определенной полосе частот F, имеющие ограниченную среднюю мощность Р (либо пиковую мощность Р пик). Эти ограничения характерны для всех непрерывных каналов, и в дальнейшем о них не говорится. Заметим, что если мощность сигнала не ограничивать, то множество допустимых сигналов образует векторное пространство, конечномерное (при определенных ограничениях на длительность и ширину спектра) либо бесконечномерное (при более слабых ограничениях). В идеальном канале выходной сигнал при заданном входном детерминированный. Эту модель иногда используют для описания кабельных каналов. Однако, строго говоря, она непригодна для реальных каналов, в которых неизбежно присутствуют, хотя бы и очень слабые, аддитивные помехи.

Канал с аддитивным гауссовским шумом. Сигнал на выходе такого канала

Z(t) = ku(t-τ) + N(f), (3.38)

где u(t) - входной сигнал; k и t - постоянные; N (t) - гауссовский аддитивный шум с нулевым математическим ожиданием и заданной корреляционной функцией. Чаще всего рассматривается белый шум либо квазибелый (с равномерной спектральной плотностью в полосе спектра сигнала u(t)).

Обычно запаздывание τ не учитывают, что соответствует изменению начала отсчета времени на выходе канала.

Некоторое усложнение этой модели получается, если коэффициент передачи k и запаздывание т считать известными функциями времени:

Z(t) = k(t)u + N(t). (3.39)

Такая модель удовлетворительно описывает многие проводные каналы, радиоканалы при связи в пределах прямой видимости, а также радиоканалы с медленными общими замираниями, при которых можно надежно предсказать значения k, τ.

Канал с неопределенной фазой сигнала отличается от предыдущего тем, что в нем запаздывание является случайной величиной. Для узкополосных сигналов, с учетом (2.69) и (3.2), выражение (3.39) при постоянном k и случайных τ(t) можно представить в виде

Z(t) = k + N (t), (3.40)

где ũ(t) - преобразование Гильберта от u(t); θ K = ω 0 τ - случайная начальная фаза. Распределение вероятностей θ K предполагается заданным, чаще всего равномерным на интервале от 0 до 2π. Эта модель удовлетворительно описывает те же каналы, что и предыдущая, если фаза сигнала в них флуктуирует. Такая флуктуация вызывается небольшими изменениями протяженности канала, свойств среды, в которой проходит сигнал, а также фазовой нестабильностью опорных генераторов.

Однолучевой гауссовский канал с общими замираниями (флуктуациями амплитуд и фаз сигнала) также описывается формулой (3.40), но множитель K, как и фаза θ K , считаются случайными процессами. Иными словами, случайными будут квадратурные компоненты

X = K cos θ K ; Y = K sin θ K , (3.41)

При изменении квадратурных компонент X(t), Y(t) во времени принимаемое колебание

Z(t) = X(t)u(t) + Y(t)ũ(t) + N(t) = K (t) + N(t). (3.42)

Как отмечалось на с. 85, одномерное распределение коэффициента передачи K(t) может быть рэлеевским (3.35) или обобщенным рэлеевским (3.36). Такие каналы называют соответственно каналами с рэлеевскими или с обобщенными рэлеевскими замираниями. В рамках общей гауссовской модели канала K(t) имеет четырех параметрическое распределение. Модель однолучевого канала с замираниями достаточно хорошо описывает многие каналы радиосвязи в различных диапазонах волн, а также некоторые другие каналы.

Канал с межсимвольной интерференцией (МСИ) и аддитивным шумом. Эта модель является частным случаем (3.31), когда G(t, τ) от t не зависит (или меняется очень медленно), так что рассеяние по частоте практически не наблюдается.

Межсимвольная интерференция вызывается рассеянием сигнала во времени при его прохождении по каналу связи. Она проявляется в том, что на выходе канала сигнал, описываемый общим выражением (3.42), оказывается деформированным так, что одновременно присутствуют отклики канала на отрезки входного сигнала, относящиеся к довольно отдаленным моментам времени. При передаче дискретных сообщений это приводит к тому, что при приеме одного символа на вход приемного устройства воздействуют также отклики на более ранние (а иногда и более поздние) символы, которые в этих случаях действуют как помехи.

Межсимвольная интерференция непосредственно вызывается нелинейностью фазо-частотной характеристики канала и ограниченностью его полосы пропускания. В радиоканалах причиной МСИ чаще всего является многолучевое распространение радиоволн * .

* (Использование сигналов с большой базой позволяет в месте приема ликвидировать вредные последствия многолучевого распространения, однако такие системы характеризуются низкой эффективностью использования полосы частот канала. )

Пусть передатчик передает синхронно с тактовым интервалом Т последовательность элементарных сигналов, соответствующих цепочке символов

b -Q , b -(Q-1) ,....,b -2 , b -1 , b 0 , b 1 , b 2 ,....,b Q-1 , b Q , (3.43)

причем каждый из символов последовательности выбирают из возможного для данного кода набор 0, 1, ..., m - 1 (m - основание кода).

Обозначим отклик линейного канала на элементарный сигнал, соответствующий символу b r через s r (t) * , 0≤t≤(Q + 1)T, где

относительная память канала, определяемая целой частью от деления времени рассеяния канала Δτ (длительности переходного процесса в канале) на Т. Тогда принимаемое колебание z(t) в месте приемка на интервале анализа T a = (D+1T) ** при поиске решения о символе b 0 можно записать в виде

где s 0 (t) - сигнал, обусловленный анализируемым символом

сигнал межсимвольной интерференции, обусловленный символами, переданными до и после анализируемого символа; n(t)-аддитивный шум в канале;


сигнал, который определяет остаточный сигнал, МСИ, обусловленный символами, переданными до анализируемого;


Сигнал, который определяет сигнал МСИ, обусловленный символами, переданными после анализируемого. Чем больше скорость передали символов 1/Т в каждом частотном канале при заданной его полосе пропускания, тем большее число соседних с анализируемым символов определяет сигнал g M.u (t). В некоторых случаях в модели (3.44) можно считать, что элементарные сигналы на приеме s r (t) и передаче u r (t) связаны детерминированными (как правило, линейным) отношением. Тогда при незначительном уровне шумов n(t) в канале можно, в принципе, осуществить его коррекцию, т. е. перейти к модели не искажающего канала. Однако при значительных уровнях шумов в канале с МСИ предельное качество может обеспечить лишь оптимальный прием . При случайных изменениях параметров канала функции s r (t) (G(t, τ)) становятся случайными и модель (3.44) усложняется.

* (При использовании двоичных противоположных сигналов и постоянных параметрах канала s r (t) = a r s(t), где s(t)-отклик канала на элементарный сигнал, соответствующий символу 1, a r = ±1. )

** (При поэлементном приеме D определяет задержку (выраженную в числе символов) принятия решения о передаваемом символе. С ростом D возрастает качество связи при оптимальном приеме. Обычно выбирают D≤Q . )

*** (При Т a = Т (D = 0) это слагаемое сигнала МСИ обращается в нуль. )

Модели дискретного канала. Полезно напомнить, что в дискретном канале всегда содержится непрерывный канал, а также модем. Последний можно рассматривать как устройство, преобразующее непрерывный канал в дискретный. Поэтому, в принципе, можно вывести математическую модель дискретного канала из моделей непрерывного канала и модема. Такой подход часто является плодотворным, однако он приводит к сложным моделям.

Рассмотрим простые модели дискретного канала, при построении которых свойства непрерывного канала и модема не учитывались. Следует, однако, помнить, что при проектировании системы связи имеется возможность варьировать в довольно широких пределах модель дискретного канала при заданной модели непрерывного канала изменением модема.

Модель дискретного канала содержит задание множества возможных сигналов на его входе и распределение условных верояткостей выходного сигнала при заданном входном. Здесь входным и выходным сигналами являются последовательности кодовых символов. Поэтому для определения возможных входных сигналов достаточно указать число га различных символов (основание кода), а также длительность Т передачи каждого символа. Будем считать значение Т одинаковым для всех символов, что выполняется в большинстве современных каналов. Величина v = 1/T определяет количество символов, передаваемых в единицу времени. Как указывалось в § 1.5, она называется технической скоростью и измеряется в бодах. Каждый символ, поступивший на вход канала, вызывает появление одного символа на выходе, так что техническая скорость на входе и выходе канала одинакова * .

* (В реальных каналах это не всегда выполняется, так как при нарушении тактовой синхронизации модема число символов на выходе канала может оказаться больше или меньше, чем на входе. В данном курсе это обстоятельство не учитывается и синхронизация считается идеальной. Методы обеспечения синхронизации изучаются в специальных курсах. )

В общем случае для любого n должна быть указана вероятность того, что при подаче на вход канала любой заданной последовательности b [n] кодовых символов, на выходе появится некоторая реализация случайной последовательности B [n] . Кодовые символы обозначим числами от 0 до m-1, что позволит производить над ними арифметические операции. При этом все n-последовательности (векторы), число которых равно m n , образуют m n -мерное конечное векторное пространство, если "сложение" понимать как поразрядное суммирование по модулю m и аналогично определить умножение на скаляр (целое число). Для частного случая m = 2 такое пространство было рассмотрено в § 2.6.

Введем еще одно полезное определение. Будем называть вектором ошибки поразрядную разность (разумеется, по модулю m) между принятым и переданным векторами. Это значит, что прохождение дискретного сигнала через канал можно рассматривать как сложение входного вектора с вектором ошибки. Вектор ошибки играет в дискретном канале примерно ту же роль, что и помеха в непрерывном канале. Таким образом, для любой модели дискретного канала можно записать, пользуясь сложением в векторном пространстве (поразрядным, по модулю m):

B [n] = В [n] + Е [n] , (3.45)

где B [n] и В [n] - случайные последовательности из n символов на входе и выходе канала; Е [n] - случайный вектор ошибки, который в общем случае зависит от В [n] Различные модели отличаются распределением вероятностей вектора E [n] . Смысл вектора ошибки особенно прост в случае двоичных каналов (m = 2), когда его компоненты принимают значения 0 и 1. Всякая единица в векторе ошибок означает, что в соответствующем месте передаваемой последовательности символ принят ошибочно, а всякий нуль означает безошибочный прием символа. Число ненулевых символов в векторе ошибок называется его весом. Образно говоря, модем, осуществляющий переход от непрерывного канала к дискретному, преобразует помехи и искажения непрерывного канала в поток ошибок.

Перечислим наиболее важные и достаточно простые модели дискретных каналов.

Симметричный канал без памяти определяется как дискретный канал, в котором каждый переданный кодовый символ может быть принят ошибочно с фиксированной вероятностью р и правильно с вероятностью 1-р, причем в случае ошибки вместо переданного символа b может быть с равной вероятностью принят любой другой символ. Таким образом, вероятность того, что принят символ b̂ j , если был передан b i

Термин "без памяти" означает, что вероятность ошибочного приема символа не зависит от предыстории, т. е. от того, какие символы передавались до него и как они были приняты. В дальнейшем, для сокращения, вместо "вероятность ошибочного приема символа" будем говорить "вероятность ошибки".

Очевидно, что вероятность любого n-мерного вектора ошибки в таком канале

р (Е [n]) = }