Оборудование        07.07.2019   

CISC и RISC архитектуры процессоров. Микропроцессоры с RISC-аpхитектуpой

План

Архитектуры с сокращенным набором команд

1. Особенности RISC-архитектуры.

2. Регистры в RISC-процессорах.

3. Микропроцессор R10000.

Современная технология программирования ориентирована на языки высокого уровня (ЯВУ), главная задача которых - облегчить процесс написания программ. Более 90% всего процесса программирования осуществляют на ЯВУ. К сожалению, операции, характерные для ЯВУ, отличаются от операций, реализуемых машинными командами. Эта проблема получила название семантического разрыва и ведет она к недостаточно эффективному выполнению программ.

Пытаясь преодолеть семантический разрыв между языками высокого уровны (ЯВУ) и операциями, реализуемыми машинными командами, разработчики ВМ расширяют систему команд, дополняя ее командами, реализующими сложные операторы ЯВУ на аппаратном уровне, вводят дополнительные виды адресации и т.п. Архитектуру вычислительных машин, где реализованы эти средства, принято называть архитектуройы с расширенным (полным) набором команд (CISC - Complex Instruction Set Computer).

Системы с CISC- архитектурой обладают рядом недостатков. Это заставило более внимательно проанализировать программы, получаемые после компиляции с ЯВУ. Был предпринят комплекс исследований, в результате которых обнаружились интересные закономерности:

1) реализация сложных команд, эквивалентных операторам ЯВУ, требует увеличения емкости управляющего ПЗУ в микропрограммном УУ;

2) в откомпилированной программе операторы ЯВУ реализуются в виде процедур (подпрограмм), поэтому на операции вызова процедуры и возврата из нее приходится от 15 до 45% вычислительной нагрузки;

3) почти половину операций в ходе вычислений составляет операция присваивания, сводящаяся к пересылке данных между регистрами, ячейками памяти или регистрами и памятью.

4) подавляющее большинство команд (более 90-95%), составляющие программы, образуют сравнительно компактное подмножество из системы команд машины (20%);

5) сравнительно небольшой набор команд можно эффективно реализовать аппаратными средствами так, что каждая операция выполнялась бы за один (реже два) такта.

Детальный анализ результатов исследований привел к серьезному пересмотру традиционных архитектурных решений, следствием чего стало появление архитектуры с сокращенным набором команд (RISC - Reduced Instruction Set Computer).

Главные усилия в архитектуре RISC направлены на построение максимально эффективного конвейера команд. Это относительно просто можно реализовать для этапа выборки. Необходимо лишь, чтобы все команды имели стандартную длину , равную ширине шины данных, соединяющей ЦП и память. Унификация времени исполнения для различных команд - значительно более сложная задача, поскольку наряду с регистровыми существуют также команды с обращением к памяти.


Помимо одинаковой длины команд, важно иметь относительно простую подсистему декодирования и управления : сложное устройство управления (УУ) будет вносить дополнительные задержки в формирование сигналов управления. Очевидный путь существенного упрощения УУ - сокращение числа выполняемых команд , форматов команд и данных , а также видов адресации .

Основная причина, препятствующая сведению всех этапов цикла команды к одному тактовому периоду, - потенциальная необходимость доступа к памяти для выборки операндов и/или записи результатов. Следует максимально сократить число команд, имеющих доступ к памяти. Поэтому целесообразно доступ к памяти осуществлять только командами «Чтение» и «Запись» и сделать все операции, кроме «Чтение» и «Запись» одного типа – «регистр-регистр».

Для упрощения выполнения большинства команд и приведения их к типу "регистр-регистр" требуется снабдить ЦП значительным числом регистров общего назначения. Большое число регистров в регистровом файле ЦП позволяет обеспечить временное хранение промежуточных результатов, используемых как операнды в последующих операциях, и ведет к уменьшению числа обращений к памяти, ускоряя выполнение операций.

В основе RISC- процессоров лежат три принципа :

1) минимизация длительности такта;

2) завершение выполнения команды в каждом такте;

3) минимизация числа команд за счет эффективной компиляции.

Особенности RISC-процессора:

1. Система команд включает сравнительно небольшое число простейших операций (не более 128).

2. Большинство команд выполняется за один цикл (по крайней мере, 75% команд);

3. Все команды имеют стандартную однословную длину и фиксированный формат (количество форматов команд не более 4). Это позволяет получать команду из памяти за одно обращение, а затем дешифрировать код операции за один такт.

4. Дешифрация команд реализуется аппаратными средствами.

5. Используется ограниченное число способов адресации (не более 4).

6. Система команд предусматривает команды работы с памятью, копирования и обработки.

7. Команды обработки отделены от команд обращения к памяти. При выполнении операционных команд аргументы должны располагаться в регистровой памяти и результат также помещается в регистровую память (команды типа «регистр-регистр» (R-команды)).

8. Доступ к памяти только посредством команд «Чтение» и «Запись»;

9. Все команды, за исключением «Чтения» и «Записи», используют внутрипроцессорные межрегистровые пересылки;

10. Относительно большой процессорный файл регистров общего назначения.

11. Устройство управления с «жесткой» логикой;

Как уже отмечалось, система команд RISC- процессоров значительно меньше набора команд ЭВМ с традиционной архитектурой.

Все операционные команды (для RISC I) являются 3-х адресными R-типа, при их выполнении устанавливается определенное значение в специальном регистре кода условия. Эти команды имеют формат, представленный на рис. 4.1, а.

Пусть длина команды составляет 32 разряда, тогда:

КОп – код операции – 7 бит;

S 1 – регистр-источник – 5 бит;

S 2 – регистр-источник – 13 бит;

Rd – регистр-приемник – 5 бит;

F 1 и F 2 – флаги признаков – по 1 биту.

(RISC - reduced instruction set computer - компьютер с сокращенным набором команд).

CPU первого типа являются традиционными, а их система команд включает большое количество команд для выполнения арифметических и логических операций, команд управления, пересылки и ввода-вывода данных. При считывании из операнда кода операции процессор обращается в ПЗУ микрокоманд и получает набор микроинструкций, реализующий алгоритм выполнения данной команды.

Такие CPU способны реализовывать любой алгоритм, который предварительно кодируется в системе команд данного CPU. Большинство универсальных CPU аппаратно поддерживают только целочисленную арифметику. Арифметика же с плавающей точкой реализуется программно во внутренних сопроцессорах . Сопроцессор расширяет набор команд ЭВМ. Когда основной процессор получает команду, которая не входит в его рабочий набор, он передает управление сопроцессору с целью ее выполнения.

Формально к этому классу относятся в большей или меньшей степени все нынешние Athlon , Pentium и прочие процессоры для IBM PC-совместимых компьютеров. В большей или меньшей потому, что те или иные заимствования идей и методов RISC имеются практически в каждом современном чипе.

Из названия RISC следует, что основу архитектуры составляет сокращенный набор команд. Сокращенный - в данном контексте означает также упрощенный для достижения максимальной производительности. Команды в архитектуре RISC имеют фиксированную и небольшую длину, они не нуждаются в интерпретации. С другой стороны, RISC-процессоры обладают значительным числом регистров, что позволяет хранить большое число данных на кристалле процессора и упрощает работу компилятора по распределению переменных по регистрам. Использование трехадресных команд упрощает их дешифрацию и дает возможность сохранять большее число переменных в регистрах без перезагрузки.

По мере развития архитектуры RISC появлялись все новые возможности наращивания производительности. Ключевыми из них являются суперскалярная (многоконвейерная) обработка, внеочередное выполнение команд, появление смешанных или групповых команд для выполнения часто повторяющихся последовательностей. Однако RISC-процессоры не являются суперскалярными в полном смысле слова, и реализация параллельных вычислений в рамках этой архитектуры достаточно сильно ограничена.

Еще одним фактором, сдерживающим стремительный рост производительности процессоров на основе архитектуры RISC, является проблема условных переходов. Проблема характерна для любой архитектуры, поскольку условные переходы значительно тормозят работу процессора. Однако бороться с ними в случае архитектуры RISC особенно сложно, ввиду ограниченного набора инструкций - меньшее число команд ведет к росту числа ветвлений.


Основные задачи распараллеливания вычислений (ILP - Instruction Level Parallelism):

Проверка зависимостей между инструкциями для выявления тех из них, которые можно сгруппировать для параллельного выполнения;

Распределение инструкций между функциональными блоками процессора;

Определение момента начала выполнения инструкций.

На основе статистического анализа кода множества CISC-приложений определяются наиболее часто используемые команды; уменьшение же числа команд позволяет увеличить число внутренних регистров (пересылка между регистрами выполняется быстрее всего), сделать конвейер более эффективным и поднять частоту его работы (чем более простые команды в нем исполняются, тем выше частота). Несмотря на значительно увеличившийся объем программного кода, RISC-процессор будет работать в несколько раз быстрее CISC-процессора с одинаковой частотой: специализация всегда предпочтительнее универсальности в плане быстродействия.

Разницу между RISC- и CISC-программами можно пояснить на простом примере. Но для начала оговорим некоторые детали: память компьютера адресуется по номеру строки и столбца, из которого осуществляется выборка (или в который производится запись). Операции над значениями из памяти производятся в исполнительном блоке, который, однако, может работать лишь с данными, загруженными в процессорные регистры.

Пусть нам нужно умножить два значения в памяти по некоторым адресам 2:2 (строка:столбец) и 5:4. CISC нацелен на исполнение задачи при минимуме команд: набор инструкций процессора строится таким образом, чтобы все более или менее сложные действия решались одной командой. Предположим, что в CISC- процессоре имеется команда MULT, которая выбирает указанные значения из ячеек памяти, записывает их в различные регистры и сохраняет результат в соответствующем регистре. Тогда задача умножения решится в одну строку кода:

MULT 2:2, 5:4

RISC-процессоры используют простые инструкции, которые исполняются за один такт. В этом случае вместо MULT потребуются команды LOAD/STORE, загружающие данные из памяти в регистр и записывающие их обратно, а также команда PROD, выполняющая умножение данных в двух некоторых регистрах. Эквивалентом MULT для RISC-процессора будет следующий код:

LOAD A, 2:2

LOAD B, 5:4

PROD A, B

STORE 2:3, A

Очевидно, код длиннее, но скорость выполнения операций на регистрах в 4 - 8 раз выше.

Таблица 1. Различия CISC и RISC

В принципе, с увеличением объема кода можно мириться, если этот увеличенный объем позволит в несколько раз повысить быстродействие - при необходимости программы пишут на ассемблере. Кроме того, RISC-код очень эффективно «распараллеливается».

В чем тогда причина непринятия RISC рынком IBM PC? Во-первых, наборы инструкций CISC и RISC несовместимы. CISC-кодов для PC-программ было написано очень много, а под RISC - на порядки меньше. Создавались эмуляторы, автоматически транслирующие CISC-инструкции в RISC (подобные приемы увеличения скорости обработки используются в современных CISC-процессорах), но работали они настолько медленно, что разница в производительности между настоящими и эмулированными CISC практически сводилась к нулю. Таким образом, эмулировать CISC на RISC-процессорах оказалось неэффективно, а главное - экономически нецелесообразно.

Во-вторых, как следствие сыграла свою роль несовместимость программного обеспечения. Для х86 уже были написаны DOS и набирающая популярность Windows, а различные RISC- процессоры базировались на Unix, причем, как правило, на несовместимых между собой ее версиях. Да и программ для них было куда меньше, особенно пользовательских. В-третьих, несмотря на кажущуюся «упрощенность», RISC-процессоры были дороги - они выпускались сравнительно небольшими партиями для высокопроизводительных рабочих станций, и производители не считали нужным ни экономить на материалах, ни оптимизировать дизайн, ни упрощать чипсет и материнскую плату.

В некоторых сферах (научные ресурсоемкие вычисления), действительно, конкурировать с RISC системам на базе CISC-процессоров было сложно, зато во всех остальных недорогие и достаточно производительные x86-процессоры остались вне конкуренции. Для создания конкуренции Intel в 1991 году Apple, IBM и Motorola основали альянс AIM Alliance, который занялся созданием дешевого, быстрого и современного RISC-процессора. В 1993 году была представлена спецификация платформы PowerPC, а также первый чип - 32-разрядный PowerPC 601, работавший на частотах 50 и 66 МГц.

Название PowerPC пошло от многочиповой RISC-архитектуры IBM POWER, на базе системы команд которой и был основан первый процессор. Чип рассеивал намного меньше тепла, чем его конкурент в лице Intel Pentium, и работал зачастую быстрее его. Вслед за 601 появились 603/604 модели, затем в 1997 - PowerPC 750 (G3) с L2-кэш и ускоренной системной шиной. В 1999 модельная линейка процессоров PowerPC пополнилась PowerPC 7400 (G4) - «конкурентом» Intel Pentium III, представившим поддержку набора команд для векторных вычислений AltiVec (также известного как VMX - Vector Multimedia eXtension - «мультимедийное расширение» PowerPC).

Однако с появлением и совершенствованием архитектуры Intel NetBurst (в Pentium IV) процессоры компании закрыли единственное слабое место, которое позволяло PowerPC выглядеть более выигрышно: заметно ускорив операции с плавающей точкой, х86- процессоры оказались самыми быстрыми и дешевыми на рынке. PowerPC-чипы же остались основой Apple Macintosh и различных встраиваемых систем (благодаря низкой рассеиваемой мощности) - системы на их базе, даже с учетом более дешевого процессора, все равно получались заметно дороже IBM PC совместимых компьютеров. Кардинальным образом ситуацию не изменил и выход нового процессора от IBM - PowerPC 970 (G5). Он позволил лишь приблизиться к x86 фаворитам в некоторых приложениях.

В настоящее время RISC-CPU широко применяются в проблемно-ориентированных компьютерах повышенной вычислительной мощности; очень часто - в

Предыдущие части:

Создание архитектуры RISC

Как уже неоднократно упоминалось, все х86-процессоры, решения компании Motorola и подавляющее большинство выпущенных в 1980-е годы кристаллов имели архитектуру CISC (Complex Instruction Set Computing). Совокупность всех особенностей привела к тому, что чипы стали не только сложными и дорогими в производстве, но и достигли своего потолка производительности. Для дальнейшего увеличения быстродействия требовалось наращивать количество транзисторов, однако освоенные технологические нормы не позволяли создавать более сложные решения. С этим столкнулась Intel при выпуске семейства i486. Для поднятия производительности они внесли изменения в архитектуру процессоров, добавив кэш-память, множители и конвейеры. Словом, 486-е «камни» получили некоторые «фишки» архитектуры RISC. Тем не менее к созданию RISC-платформы американская компания никакого отношения не имеет. Своим созданием архитектура обязана американскому инженеру Дэвиду Паттерсону, который руководил проектом Berkeley RISC с 1980 по 1984 годы.

Дэвид Паттерсон - отец RISC

Первоначальной идеей, которая затем воплотилась в столь масштабный проект Berkeley RISC, стало исследование работы Motorola 68000. В ходе наблюдений выяснилось, что программы попросту не использовали подавляющее большинство инструкций, заложенных в процессор. Например, система Unix при компиляции использовала лишь 30% команд. Поэтому в рамках проекта Berkeley RISC планировалось создать такой процессор, который бы содержал лишь самые необходимые инструкции.

После нескольких лет исследований и разработки было выпущено несколько образцов процессоров, название которых и дало имя всей архитектуры. Сама аббревиатура RISC расшифровывается как Restricted (Reduced) Instruction Set Computer, что переводится как «компьютер с сокращенным набором команд». «Сокращенный набор команд» вовсе не означает, что количество инструкций меньше, чем число команд CISC-кристаллов. Разница состоит в том, что любая инструкция платформы RISC является простой и выполняется за один такт (по крайней мере, должна выполняться), тогда как на выполнение RISC-инструкции могло уходить несколько десятков тактов. При этом длина команды является фиксированной. Например, 32 бита. Также у RISC имеется гораздо больше регистров общего назначения. Плюс для этой архитектуры характерна конвейеризация. Именно ее использование (вкупе с упрощенными командами) позволяет эффективно наращивать тактовую частоту процессоров RISC.

Команда проекта Berkeley RISC

Дебютными решениями стали RISC I и RISC II - детища Паттерсона и проекта Berkeley RISC. Первый содержал более чем 44 000 транзисторов и работал на частоте 4 МГц. Такой процессор при выполнении небольших программ был в среднем в два раза быстрее VAX 11/780 и примерно в четыре раза производительнее, чем «камень» Zilog Z8000. RISC II отличался от предшественника большим количеством инструкций: 39 против 32. Он был более быстрым. Его преимущество над процессором VAX достигало 200%, а Motorola 68000 в некоторых программах был медленнее примерно в четыре раза.

Нужно отметить, что Berkeley RISC был частью большого проекта под названием VLSI. Сюда также входил проект Стэнфордского университета MIPS, который стартовал в 1981 году.

Процессоры MIPS

Главой проекта MIPS был ученый Стэнфордского университета Джон Хэннесси. Как и в случае с Berkeley RISC, задачей стартапа было исследование и создание такого процессора, который использовал бы конвейер и сокращенный набор команд. Архитектура MIPS-решений также предусматривала наличие вспомогательных блоков в составе кристалла: например, модулей для работы с памятью, целочисленного АЛУ (арифметико-логическое устройство) и декодеров команд. Отличием плана MIPS от Berkeley RISC было использование удлиненного конвейера. Архитектура RISC, в принципе, предполагает использование конвейера, но Хэннесси пошел дальше и предложил максимально удлинить конвейер в процессоре, то бишь еще больше «раздробить» выполнение одной операции. Такой подход открывал еще большие просторы по наращиванию тактовой частоты. При этом удлинение конвейера обеспечивало более эффективное распараллеливание выполнения команд. В то время распараллеливание являлось отличительной чертой RISC-архитектуры, поскольку ни в одном CISC-процессоре эта функция не была реализована вплоть до появления в них конвейеров. Например, в MIPS, так же как и в RISC, выполнение одной команды могло быть еще не завершено, когда начиналась выполняться другая. В процессорах CISC для старта выполнения одной инструкции было необходимо, чтобы была окончена обработка другой.

Джон Хэннесси - создатель архитектуры MIPS, а ныне президент Стэнфордского университета

В первоначальной спецификации процессоров MIPS не была предусмотрена поддержка таких элементарных операций, как умножение и деление. Сделано это было специально. Таким образом, разработчики хотели избавиться от необходимости использования так называемых блокировок конвейера. Сама блокировка представляла собой приостановку конвейера в тех случаях, когда операцию на определенной стадии конвейера невозможно выполнить за один такт. Тем не менее первые реализации архитектуры MIPS работали с блокировками и даже поддерживали операции умножения и деления. Прошло некоторое время, прежде чем в процессорах была реализована первоначальная задумка.

В 1984 году Хэннесси покинул Стэнфордский университет и основал компанию MIPS Computer Systems, которая и занялась выпуском процессоров с одноименной архитектурой. Спустя год увидел свет первый продукт компании - 32-битный «камень» R2000. Он стал первой коммерчески доступной RISC-моделью в истории. В 1988 году появился процессор следующего поколения под названием R3000. В сравнении с R2000 он получил поддержку многопроцессорности и кэш-памяти инструкций и данных. «Трехтысячный» оказался коммерчески успешным. Процессор использовался в серверных системах и рабочих станциях таких компаний, как Silicon Graphics, DEC, Seiko Epson и многих других. Плюс R3000 стал сердцем игровой консоли Sony PlayStation.

Процессор MIPS R3000

На разработку следующего поколения MIPS-процессоров ушло три года. Процессор R4000 был представлен в 1991 году. Он получил 64-битную архитектуру, встроенный сопроцессор и работал на более высокой тактовой частоте, нежели предшественники. Так, минимальная частота R4000 составляла 100 МГц. Объем кэш-памяти инструкций и данных составлял 8 Кбайт каждый. Спустя два года была представлена доработанная версия процессора с индексом R4400. Новый кристалл обладал увеличенным вдвое кэшем и поддерживал кэш-память второго уровня большего объема. Помимо этого, были исправлены многочисленные ошибки при работе в 64-разрядном режиме.

Удивительно, что, несмотря на коммерческий успех своих процессоров, MIPS испытывала финансовые трудности и в конечном счете была куплена компанией SGI и переименована в MIPS Technologies. Следом начались выдаваться лицензии на производство клонов сторонним компаниям. Так, компания QED (Quantum Effects Devices) создала недорогие MIPS-процессоры, которые использовались в маршрутизаторах Cisco. А NEC занималась производством «камня» VR4300, который «прописался» в игровой консоли Nintendo 64.

Процессор NEC VR4300 использовался в приставке Nintendo 64

В 1994 году появился процессор R8000. Он стал первым MIPS-решением с суперскалярной архитектурой, которая подразумевает параллельное выполнение команд при условии, что исполнение одной команды не зависит от результата другой. Например, R8000 умел обрабатывать до четырех инструкций за такт.

В январе 1996 года MIPS представила процессор следующего поколения под названием R10000. «Десятитысячный» использовал такую же суперскалярную архитектуру, как и R8000, и, по сути, являлся доработанной версией предшественника. Также процессор имел кэш-память инструкций и данных объемом 32 Кбайт каждая и работал на частоте 175 МГц или 195 МГц. В 1997 году даже появилась версия чипа с частотой 250 МГц. Но даже при параметре 195 МГц R10000 был одним из быстрейших процессоров того времени.

Процессор R10000, произведенный компанией Toshiba

К сожалению, после запуска R10000 компания SGI забросила MIPS-архитектуру. Все последующие кристаллы основывались на ядре «десятитысячного» и не имели в сравнении с ним каких-то принципиальных отличий. Например, процессор R12000, представленный в 1998 году, получил дополнительную стадию в конвейер и улучшенную работу с очередями инструкций. Его тактовая частота составляла 270 МГц, 300 МГц или 360 МГц. После R12000 вышли еще два поколения процессоров MIPS: R14000 и R16000. Они получили поддержку более быстрых системных шин, увеличенные частоты и кэш-память большего объема. Например, R16000 мог работать на частоте 700 МГц и поддерживал 64 Кбайт кэш-памяти инструкций и данных.

После этого MIPS занялась продажей лицензий на 32-битную и 64-битную архитектуры MIPS32 и MIPS64.

Процессоры SPARC

Компания Sun Microsystems также решилась на разработку архитектуры - SPARC (Scalable Processor ARChitecture). Так, инженеры черпали вдохновение из проекта Berkeley RISC. А сам Дэвид Паттерсон даже привлекался к проекту в качестве консультанта. Тем не менее в результате SPARC больше напоминала MIPS-архитектуру. Например, в наборе команд платформы также отсутствовали инструкции умножения и деления. Особенностью архитектуры SPARC стало использование регистрового окна, с помощью которого был немного изменен процесс вызова функций в программах. Обычно при вызове программ процессор запоминал свое состояние (то есть запоминал состояние некоторых регистров общего и специального назначения), переходил к выполнению функции, а затем возвращался в свое исходное состояние до вызова функции. А в процессорах SPARC при вызове функции необходимые данные записывались в конец регистрового окна, а само регистровое окно перемещалось по файлу так, чтобы данные оказывались в начале окна. Такой подход в теории обеспечивал более высокую скорость работы.

Процессор SPARC V7, изготовленный компанией Fujitsu

Первая версия архитектуры получила название SPARC V7. Одноименный процессор на ее базе производился вплоть до 1992 года. Затем появилась следующая генерация архитектуры - SPARC V8. Она не претерпела каких-либо кардинальных изменений. Ключевыми отличиями стало добавление операций умножения и деления, а также улучшенное выполнение арифметики чисел с плавающей запятой. Как и SPARC V7, SPARC V8 оставалась 32-битной архитектурой, на базе которой был создан процессор microSPARC. Он принадлежал к Low-End-сегменту и использовался в небольших рабочих станциях и встраиваемых системах. Силами компаний Texas Instruments и Fujitsu также были выпущены улучшенные клоны. Более производительным решением стал процессор SuperSPARC.

Созданием следующего поколения архитектуры с именем SPARC V9 работала уже целая организация SPARC Architecture Committee, в состав которой, кроме самой Sun, входили такие компании, как Texas Instruments, Fujitsu, Philips и многие другие. Платформа была расширена до 64 бит и являлась суперскалярной с 9-стадийным конвейером. SPARC V9 предусматривала использование кэш-памяти первого уровня, разделенного на инструкции и данные объемом 16 Кбайт каждая, а также второго уровня емкостью 512-4096 Кбайт. Реализацией архитектуры стал процессор UltraSPARC с частотой 143-200 МГц.

Процессор UltraSPARC II

UltraSPARC не был единственным процессором с архитектурой SPARC V9. В 1997 году был представлен UltraSPARC II.

Процессоры ARM

История ныне популярных ARM-процессоров, а точнее самой архитектуры ARM, начинается с компании Acorn Computers и ее компьютера BBC Micro. В нем использовался «камень» MOS Technology 6502, однако его производительности было недостаточно, чтобы создать десктоп следующего поколения. По различным причинам другие доступные процессоры также не подходили под требования Acorn, поэтому в компании задумались о создании собственного чипа. После изучения различных архитектур, инженеры Acorn взяли за основу процессоры RISC и все тот же кристалл MOS Technology 6502.

Компьютер BBC Micro

У процессора MOS, например, была позаимствована архитектура доступа к памяти и набор инструкций. Каждая инструкция была дополнена специальным четырехбитным кодом условия. В зависимости от значения кода (true или false) инструкция могла выполняться или не выполняться. Это позволило сократить количество переходов при выполнение операций, которые негативно влияли на производительность конвейерной архитектуры. Также разработчики заложили в первоначальную ревизию архитектуры команды, которые выполняли несколько элементарных операций. Словом, немного отступили от правил RISC. Однако в конечном счете это лишь улучшило производительность процессора.

Разработка архитектуры была завершена в 1985 году созданием процессора ARM. Первые же коммерческие варианты появились в 1986 году и носили название ARM2. По сравнению с CISC-процессорами, ARM2 был очень простым - он содержал всего 30 000 транзисторов. При этом он потреблял очень мало энергии и в то же время был достаточно производительным. Несколько позже появились и ARM-процессоры, в которые были добавлены 4 Кбайт кэш-памяти, что еще больше повысило производительность кристаллов.

Процессор ARM2

К концу 1980-х годов Acorn занималась разработкой архитектуры ARM уже не в одиночку – к ней присоединилась Apple. В связи с этим подразделение, занимавшееся непосредственно ARM-процессорами, было преобразовано в отдельную компанию – Advanced RISC Machines. Первым продуктом новой компании стало процессорное ядро ARM6 и процессор ARM610, который использовался в одном из первых в мире КПК Apple Newton.

Однако ARM-процессоры уже не могли соперничать с CISC-решениями в плане производительности, а в RISC-сегменте господствовали процессоры с архитектурой MIPS. Тогда в ARM пошли иным путем. Компания начала позиционировать ARM6 как встраиваемое ядро, которое любой сторонний производитель мог использовать в своих процессорах за небольшие деньги. Такая политика принесла свои плоды, и ядро ARM стало очень популярным, а сама компания - коммерчески успешной.

Вместе с компанией DEC была разработана архитектура для более производительных ARM-решений под названием StrongARM, которое представляло собой классическую скалярную архитектуру с 5-стадийным конвейером. Архитектура имела блоки управления памятью и поддерживала кэш-память инструкций и данных объемом 16 Кбайт каждая.

Первый процессор на базе StrongARM - SA-110 - был представлен в феврале 1996 года. Он работал на тактовых частотах 100 МГц, 160 МГц или 200 МГц. «Камень» использовался в Apple MessagePad 2000, а также системах Acorn Computer Risc PC и Eidos Optima. На протяжении 1996 года SA-110 оставался самым производительным мобильным процессором.

Apple MessagePad 2000 использовал процессор SA-110

В 1997 году права на архитектуру StrongARM были проданы компании Intel, которая занялась разработкой следующего поколения платформы. В 2000 году оно было представлено, но архитектура (а точнее реализация архитектуры) носила другое название - Xscale. Платформа получила множество изменений. Например, длина конвейера была увеличена до 8 стадий. Объем кэш-памяти как для инструкций, так и для данных увеличился до 32 Кбайт. XScale использовался в таких устройствах, как RIM Blackberry, Dell Axim, мобильном телефоне Motorola A780 и других девайсах.

Процессоры PowerPC

Если быть уж совсем точным, то первой компанией, начавшей разработку RISC-архитектуры, стала IBM. Еще в 1974 году стартовала разработка процессора IBM 801, которая и заложила первые основы для этой платформы. А проект Berkeley RISC окончательно сформировал архитектуру.

В начале 80-х годов некоторые процессоры IBM для встраиваемых систем использовали архитектуру 801. Процессор на его базе также «прописался» в компьютере IBM 9370.

В 1985 году IBM начала разработку RISC-архитектуры следующего поколения. Проект получил название America Project. Разработка процессора и набора инструкций для него закончилась в 1990 году. Сам кристалл получил название POWER1 и использовался в серверах и рабочих станциях IBM. Он обладал достаточно высоким уровнем производительности, но имел многочиповую компоновку и состоял из 11 различных микросхем. В 1992 году IBM представила бюджетный вариант процессора POWER1, который умещался в одном чипе.

Процессор POWER1. Даже, скорее, чипсет

В 1993 году была представлена второе поколение архитектуры POWER2. В него было добавлено по одному дополнительному блоку арифметико-логических операций и вычислений с плавающей запятой. Также был расширен набор команд: например, была добавлена операция вычисления квадратного корня из числа на аппаратном уровне. Тактовая частота процессора варьировалась от 55 МГц до 71 МГц, а кэш-память данных и инструкций - 256 Кбайт и 32 Кбайт соответственно. Как и предшественник, новый процессор имел многочиповую компоновку. Но в мае 1994 года была выпущена и одночиповая версия.

Однако еще до выхода POWER2 IBM вместе с Apple и Motorola образовали альянс AIM и договорились о создании улучшенной архитектуры на основе POWER. В выигрыше остались все три компании, получив один из самых быстрых RISC-процессоров на рынке. Разработанная совместно архитектура получила название PowerPC. Помимо базового набора функций платформы POWER, в нее были добавлены поддержка работы в двух режимах (big-endian и little-endian), новые инструкции для вычислений с плавающей запятой и обратная совместимость с 32-битным режимом работы для 64-разрядной версии архитектуры.

Процессор PowerPC первого поколения

В отличие от других RISC-архитектур, которые занимали узкие ниши рынка, PowerPC позиционировалась как платформа-конкурент x86. Ее основным назначением являлись персональные компьютеры. Так, процессор на базе PowerPC довольно долгое время использовался в компьютерах Apple Macintosh - вплоть до 2006 года.

Архитектура конкурировала наравне с x86 до 2001 года, но после этого угнаться за процессорами Intel и AMD не смогла. Несмотря на это, процессоры на базе PowerPC использовались в игровых консолях Sony PlayStation 3 и Microsoft Xbox 360.

Консоли Sony PlayStation 3 и Microsoft Xbox 360 работают под управлением процессора PowerPC

В 90-е годы IBM успела выпустить третью генерацию процессоров под названием POWER3, которая, по сути, стала реализацией 64-разрядной архитектуры PowerPC. Чип создавался с прицелом на использование в серверах и рабочих станциях, но в итоге его главным применением стали системы IBM RS/6000.

Процессоры DEC Alpha

Архитектура DEC VAX безнадежно устаревала и в начале 90-х в компании задумались о разработке собственной RISC-платформы. Ей стала Alpha, выпущенная в 1994 году. Первым процессором стал Alpha 21064 с кодовым названием EV4. Это 64-разрядный суперскалярный кристалл с конвейерной архитектурой. То есть имел классический RISC-дизайн. Процессор DEC выгодно отличала отлаженная работа всех его блоков. Так, при равной с другими «камнями» частоте EV4 показывал более высокую производительность. Внешняя шина процессора была 128-разрядной. Он имел 16 Кбайт кэш-памяти данных и инструкций и изготавливался с помощью технологии CMOS-4. Тактовая частота EV4 составляла 150 МГц или 200 МГц. Несколько позже появилась модификация под названием 21064A, которая могла работать на скоростях вплоть до 300 МГц, что обеспечило кристаллу звание самого быстрого процессора того времени. Основным применением EV4 стали серверы и рабочие станции.

Процессор Alpha 21064

Alpha 21064A оставался топовой моделью DEC до выхода следующего поколения процессоров - 21164 (EV5). Он обладал двумя целочисленными блоками и двумя модулями вычислений с плавающей запятой. В EV5 было уже три уровня кэш-памяти: два располагались непосредственно в процессоре, а третий был внешним. Кэш-память первого уровня была разделена на две части: кэш данных и кэш инструкций объемом 8 Кбайт каждый. Объем кэш-памяти второго уровня составлял 96 Кбайт. Тактовая частота процессора варьировалась от 266 МГц до 333 МГц. Alpha 21164 перенял пальму первенства у Alpha 21064A и был быстрейшим процессором до выхода Pentium Pro. Тем не менее, ответ DEC не заставил себя долго ждать - компания выпустила более производительный процессор Alpha 21164A, работающий на более высоких тактовых частотах (до 666 МГц). Процессор использовался в рабочих станциях и серверных компьютерах таких компаний, как Digital, Network Appliance и Cray Research.

Процессор Alpha 21264

В 1996 году было представлено следующее поколение процессоров DEC - Alpha 21264 (EV6). Чип получил несколько важных изменений по сравнению с предшествующими моделями. Например, он поддерживал внеочередное исполнение инструкций, что повлекло за собой полную реорганизацию ядра. Целочисленные блоки и блоки загрузки/сохранения были объединены в единый модуль Ebox, а блоки вычислений с плавающей запятой выделены в модуль Fbox. Помимо самих блоков, эти юниты содержали еще и файлы регистров. Структура кэш-памяти опять стала двухуровневой - она пришла на смену трехуровневой организации кэша в Alpha 21164. Кэш первого уровня сохранил разделение на память для инструкций и для данных. Объем каждой части составлял 64 Кбайт. Что касается кэш-памяти второго уровня, то ее объем мог составлять от 1 Мбайт до 16 Мбайт. Плюс процессор получил поддержку предсказания ветвлений. С течением времени выпускались все новые и новые версии процессоров Alpha 21264, в которых, прежде всего, наращивалась тактовая частота. Последней модификацией стал Alpha 21264E, который работал на частоте 1250 МГц.

Увы, но линейка процессоров Alpha 21264 стала последней в истории «независимой» DEC. В начале 1998 года DEC признали банкротом, и она была поглощена компанией Compaq.

Архитектура Intel P5

Процессоры с архитектурой RISC в своем большинстве заняли свою специализированную нишу, однако в настольных системах все равно продолжали использоваться кристаллы с архитектурой x86. Их развитие продолжалось, пусть и с некоторыми изменениями.

Несмотря на то, что Intel вышла на рынок RISC-процессоров со своими решениями i860 и i960, основную ставку в компании все же делали на x86-кристаллы. Следующим поколением «камней» стали всем известные Pentium на базе архитектуры P5, выпущенные в 1993 году.

Была проделана большая работа. Во-первых, P5 стала суперскалярной. Архитектура работала с помощью двух конвейеров, каждый из которых мог выполнять две операции за такт. Во-вторых, шина данных стала 64-битной, что позволило передавать вдвое больший объем данных за цикл. В-третьих, кэш-память данных и инструкций была разделена на два отдельных блока объемом 8 Кбайт каждый. Помимо этого, в процессор был добавлен блок предсказания ветвлений, а модуль вычислений с плавающей запятой стал более производительным.

Первые процессоры линейки Pentium работали на частотах 60 МГц или 66 МГц. При этом для их работы требовалось напряжение 5 В, поэтому они сильно грелись. Также первые «пни» прославились неправильной работой блока вычислений с плавающей запятой, который в некоторых случаях при выполнении деления чисел выдавал неверный результат. Поэтому вскоре Intel запустила в продажу процессоры с исправленной архитектурой P54C.

Процессор Intel Pentium

P54C стала своего рода работой над ошибками. Производство новых процессоров было переведено на 0,6-мкм техпроцесс. Сами кристаллы теперь работали с напряжением 3,3 В, что позволило решить проблему с перегревом. Что касается изменений на уровне архитектуры, то в P54C был добавлен полуторный множитель - отныне процессоры работали на более высокой частоте, чем системная шина. Скорость работы процессоров составляла 75 МГц, 90 МГц или 100 МГц. Также P54C устанавливались в разъемы Socket 5 или Socket 7. В отличие от P5, которые поддерживали только Socket 4. Сама архитектура P54C еще раз получила обновление в 1995 году, когда была переведена на 350-нм техпроцесс. Это позволило вновь снизить энергопотребление кристаллов, а также увеличить их тактовую частоту до 200 МГц.

1.1 Основные отличия CISC и RISC архитектур

Двумя основными архитектурами набора команд, используемыми компьютерной промышленностью на современном этапе развития вычислительной техники (в соответствии с ) являются архитектуры CISC и RISC. Основоположником CISC-архитектуры можно считать компанию IBM с ее базовой архитектурой /360, ядро которой используется с 1964 года и дошло до наших дней, например, в таких современных мейнфреймах как IBM ES/9000.Лидером в разработке микропроцессоров c полным набором команд (CISC – Complete Instruction Set Computer) считается компания Intel со своей серией x86 и Pentium. Эта архитектура является практическим стандартом для рынка микрокомпьютеров. Для CISC-процессоров характерно: сравнительно небольшое число регистров общего назначения; большое количество машинных команд, некоторые из которых нагружены семантически аналогично операторам высокоуровневых языков программирования и выполняются за много тактов; большое количество методов адресации; большое количество форматов команд различной разрядности; преобладание двухадресного формата команд; наличие команд обработки типа регистр-память.

Основой архитектуры современных рабочих станций и серверов является архитектура компьютера с сокращенным набором команд (RISC – Reduced Instruction Set Computer). Зачатки этой архитектуры уходят своими корнями к компьютерам CDC6600, разработчики которых (Торнтон, Крэй и др.) осознали важность упрощения набора команд для построения быстрых вычислительных машин. Эту традицию упрощения архитектуры С. Крэй с успехом применил при создании широко известной серии суперкомпьютеров компании Cray Research. Однако окончательно понятие RISC в современном его понимании сформировалось на базе трех исследовательских проектов компьютеров: процессора 801 компании IBM, процессора RISC университета Беркли и процессора MIPS Стенфордского университета.

Среди других особенностей RISC-архитектур следует отметить наличие достаточно большого регистрового файла (в типовых RISC-процессорах реализуются 32 или большее число регистров по сравнению с 8 – 16 регистрами в CISC-архитектурах), что позволяет большему объему данных храниться в регистрах на процессорном кристалле большее время и упрощает работу компилятора по распределению регистров под переменные.

Для обработки, как правило, используются трехадресные команды, что помимо упрощения дешифрации дает возможность сохранять большее число переменных в регистрах без их последующей перезагрузки.

Развитие архитектуры RISC в значительной степени определялось прогрессом в области создания оптимизирующих компиляторов. Именно современная техника компиляции позволяет эффективно использовать преимущества большего регистрового файла, конвейерной организации и большей скорости выполнения команд. Современные компиляторы используют также преимущества другой оптимизационной техники для повышения производительности, обычно применяемой в процессорах RISC: реализацию задержанных переходов и суперскалярной обработки, позволяющей в один и тот же момент времени выдавать на выполнение несколько команд.

Следует отметить, что в последних разработках компании Intel (имеются в виду Pentium и Pentium Pro), а также ее последователей-конкурентов (AMD R5, Cyrix M1, NexGen Nx586 и др.) широко используются идеи, реализованные в RISC-микропроцессорах, так что многие различия между CISC и RISC стираются. Однако сложность архитектуры и системы команд x86 остается и является главным фактором, ограничивающим производительность процессоров на ее основе.

Преимущества и недостатки архитектуры PA-RISC компании Hewlett Packard

Основой разработки современных изделий Hewlett-Packard является архитектура PA-RISC. Она была разработана компанией в 1986 году и с тех пор прошла несколько стадий своего развития благодаря успехам интегральной технологии от многокристального до однокристального исполнения. В сентябре 1992 года компания Hewlett-Packard объявила о создании своего суперскалярного процессора PA-7100, который с тех пор стал основой построения семейства рабочих станций HP 9000 Series 700 и семейства бизнес-серверов HP 9000 Series 800. В настоящее время имеются 33-, 50- и 99 МГц реализации кристалла PA-7100. Кроме того выпущены модифицированные, улучшенные по многим параметрам кристаллы PA-7100LC с тактовой частотой 64, 80 и 100 МГц, и PA-7150 с тактовой частотой 125 МГц, а также PA-7200 с тактовой частотой 90 и 100 МГц. Компания активно разрабатывает процессор следующего поколения HP 8000, которые будет работать с тактовой частотой 200 МГц и обеспечивать уровень 360 единиц SPECint92 и 550 единиц SPECfp92. Появление этого кристалла ожидается в 1996 году. Кроме того, Hewlett-Packard в сотрудничестве с Intel планируют создать новый процессор с очень длинным командным словом (VLIW-архитектура), который будет совместим как с семейством Intel x86, так и семейством PA-RISC. Выпуск этого процессора планируется на 1998 год.

1.3 Характеристика процессоров на основе архитектуры PA-RISC

1.3.1 Характеристика и особенности процессора PA 7100

Особенностью архитектуры PA-RISC является внекристальная реализация кэша, что позволяет реализовать различные объемы кэш-памяти и оптимизировать конструкцию в зависимости от условий применения (рисунок 1.3.1). Хранение команд и данных осуществляется в раздельных кэшах, причем процессор соединяется с ними с помощью высокоскоростных 64-битовых шин. Кэш-память реализуется на высокоскоростных кристаллах статической памяти (SRAM), синхронизация которых осуществляется непосредственно на тактовой частоте процессора. При тактовой частоте 100 МГц каждый кэш имеет полосу пропускания 800 Мбайт/с при выполнении операций считывания и 400 Мбайт/с при выполнении операций записи. Микропроцессор аппаратно поддерживает различный объем кэш-памяти: кэш команд может иметь объем от 4 Кбайт до 1 Мбайт, кэш данных - от 4 Кбайт до 2 Мбайт.

Чтобы снизить коэффициент промахов применяется механизм хеширования адреса. В обоих кэшах для повышения надежности применяются дополнительные контрольные разряды, причем ошибки кэша команд корректируются аппаратными средствами.

рис.1.3.1 Блок-схема процессора PA 7100

Процессор подсоединяется к памяти и подсистеме ввода/вывода посредством синхронной шины. Процессор может работать с тремя разными отношениями внутренней и внешней тактовой частоты в зависимости от частоты внешней шины: 1:1, 3:2 и 2:1. Это позволяет использовать в системах разные по скорости микросхемы памяти.

Конструктивно на кристалле PA-7100 размещены: целочисленный процессор, процессор для обработки чисел с плавающей точкой, устройство управления кэшем, унифицированный буфер TLB, устройство управления, а также ряд интерфейсных схем. Целочисленный процессор включает АЛУ, устройство сдвига, сумматор команд перехода, схемы проверки кодов условий, схемы обхода, универсальный регистровый файл, регистры управления и регистры адресного конвейера. Устройство управления кэш-памятью содержит регистры, обеспечивающие перезагрузку кэш-памяти при возникновении промахов и контроль когерентного состояния памяти. Это устройство содержит также адресные регистры сегментов, буфер преобразования адреса TLB и аппаратуру хеширования, управляющую перезагрузкой TLB. В состав процессора плавающей точки входят устройство умножения, арифметико-логическое устройство, устройство деления и извлечения квадратного корня, регистровый файл и схемы "закоротки" результата. Интерфейсные устройства включают все необходимые схемы для связи с кэш-памятью команд и данных, а также с шиной данных. Обобщенный буфер TLB содержит 120 строк ассоциативной памяти фиксированного размера и 16 строк переменного размера.

Устройство плавающей точки реализует арифметику с одинарной и двойной точностью в стандарте IEEE 754. Его устройство умножения используется также для выполнения операций целочисленного умножения. Устройства деления и вычисления квадратного корня работают с удвоенной частотой процессора. Арифметико-логическое устройство выполняет операции сложения, вычитания и преобразования форматов данных. Регистровый файл состоит из 28 64-битовых регистров, каждый из которых может использоваться как два 32-битовых регистра для выполнения операций с плавающей точкой одинарной точности. Регистровый файл имеет пять портов чтения и три порта записи, которые обеспечивают одновременное выполнение операций умножения, сложения и загрузки/записи.

Конвейер проектировался с целью максимального увеличения времени, необходимого для выполнения чтения внешних кристаллов SRAM кэш-памяти данных. Это позволяет максимизировать частоту процессора при заданной скорости SRAM. Все команды загрузки (LOAD) выполняются за один такт и требуют только одного такта полосы пропускания кэш-памяти данных. Поскольку кэши команд и данных размещены на разных шинах, в конвейере отсутствуют какие-либо потери, связанные с конфликтами по обращениям в кэш данных и кэш команд.

Процессор может в каждом такте выдавать на выполнение одну целочисленную команду и одну команду плавающей точки. Полоса пропускания кэша команд достаточна для поддержания непрерывной выдачи двух команд в каждом такте. Отсутствуют какие-либо ограничения по выравниванию или порядку следования пары команд, которые выполняются вместе. Кроме того, отсутствуют потери тактов, связанных с переключением с выполнения двух команд на выполнение одной команды.

Специальное внимание было уделено тому, чтобы выдача двух команд в одном такте не приводила к ограничению тактовой частоты. Чтобы добиться этого, в кэше команд был реализован специально предназначенный для этого заранее декодируемый бит, чтобы отделить команды целочисленного устройства от команд устройства плавающей точки. Этот бит предварительного декодирования команд минимизирует время, необходимое для правильного разделения команд.

Потери, связанные с зависимостями по данным и управлению, в этом конвейере минимальны. Команды загрузки выполняются за один такт, за исключением случая, когда последующая команда пользуется регистром-приемником команды LOAD. Как правило компилятор позволяет обойти подобные потери одного такта. Для уменьшения потерь, связанных с командами условного перехода, в процессоре используется алгоритм прогнозирования направления передачи управления. Для оптимизации производительности циклов передачи управления вперед по программе прогнозируются как невыполняемые переходы, а передачи управления назад по программе - как выполняемые переходы. Правильно спрогнозированные условные переходы выполняются за один такт.

Количество тактов, необходимое для записи слова или двойного слова командой STORE уменьшено с трех до двух тактов. В более ранних реализациях архитектуры PA-RISC был необходим один дополнительный такт для чтения тега кэша, чтобы гарантировать попадание, а также для того, чтобы объединить старые данные строки кэш-памяти данных с записываемыми данными. PA 7100 использует отдельную шину адресного тега, чтобы совместить по времени чтение тега с записью данных предыдущей команды STORE. Кроме того, наличие отдельных сигналов разрешения записи для каждого слова строки кэш-памяти устраняет необходимость объединения старых данных с новыми, поступающими при выполнении команд записи слова или двойного слова. Этот алгоритм требует, чтобы запись в микросхемы SRAM происходила только после того, когда будет определено, что данная запись сопровождается попаданием в кэш и не вызывает прерывания. Это требует дополнительной ступени конвейера между чтением тега и записью данных. Такая конвейеризация не приводит к дополнительным потерям тактов, поскольку в процессоре реализованы специальные цепи обхода, позволяющие направить отложенные данные команды записи последующим командам загрузки или командам STORE, записывающим только часть слова. Для данного процессора потери конвейера для команд записи слова или двойного слова сведены к нулю, если непосредственно последующая команда не является командой загрузки или записи. В противном случае потери равны одному такту. Потери на запись части слова могут составлять от нуля до двух тактов. Моделирование показывает, что подавляющее большинство команд записи в действительности работают с однословным или двухсловным форматом.

Все операции с плавающей точкой, за исключением команд деления и вычисления квадратного корня, полностью конвейеризованы и имеют двухтактную задержку выполнения как в режиме с одинарной, так и с двойной точностью. Процессор может выдавать на выполнение независимые команды с плавающей точкой в каждом такте при отсутствии каких-либо потерь. Последовательные операции с зависимостями по регистрам приводят к потере одного такта. Команды деления и вычисления квадратного корня выполняются за 8 тактов при одиночной и за 15 тактов при двойной точности. Выполнение команд не останавливается из-за команд деления/вычисления квадратного корня до тех пор, пока не потребуется регистр результата или не будет выдаваться следующая команда деления/вычисления квадратного корня.

Процессор может выполнять параллельно одну целочисленную команду и одну команду с плавающей точкой. При этом "целочисленными командами" считаются и команды загрузки и записи регистров плавающей точки, а "команды плавающей точки" включают команды FMPYADD и FMPYSUB. Эти последние команды объединяют операцию умножения с операциями сложения или вычитания соответственно, которые выполняются параллельно. Пиковая производительность составляет 200 MFLOPS для последовательности команд FMPYADD, в которых смежные команды независимы по регистрам.

Потери для операций плавающей точки, использующих предварительную загрузку операнда командой LOAD, составляют один такт, если команды загрузки и плавающей арифметики являются смежными, и два такта, если они выдаются для выполнения одновременно. Для команды записи, использующей результат операции с плавающей точкой, потери отсутствуют, даже если они выполняются параллельно.

Потери, возникающие при промахах в кэше данных, минимизируются посредством применения четырех разных методов: "попадание при промахе" для команд LOAD и STORE, потоковый режим работы с кэшем данных, специальная кодировка команд записи, позволяющая избежать копирования строки, в которой произошел промах, и семафорные операции в кэш-памяти. Первое свойство позволяет во время обработки промаха в кэше данных выполнять любые типы других команд. Для промахов, возникающих при выполнении команды LOAD, обработка последующих команд может продолжаться до тех пор, пока регистр результата команды LOAD не потребуется в качестве регистра операнда для другой команды. Компилятор может использовать это свойство для предварительной выборки в кэш необходимых данных задолго до того момента, когда они действительно потребуются. Для промахов, возникающих при выполнении команды STORE, обработка последующих команд загрузки или операций записи в части одного слова продолжается до тех пор, пока не возникает обращений к строке, в которой произошел промах. Компилятор может использовать это свойство для выполнения команд на фоне записи результатов предыдущих вычислений. Во время задержки, связанной с обработкой промаха, другие команды LOAD и STORE, для которых происходит попадание в кэш данных, могут выполняться как и другие команды целочисленной арифметики и плавающей точки. В течение всего времени обработки промаха команды STORE, другие команды записи в ту же строку кэш-памяти могут происходить без дополнительных потерь времени. Для каждого слова в строке кэш-памяти процессор имеет специальный индикационный бит, предотвращающий копирование из памяти тех слов строки, которые были записаны командами STORE. Эта возможность применяется к целочисленным и плавающим операциям LOAD и STORE.

Выполнение команд останавливается, когда регистр-приемник команды LOAD, выполняющейся с промахом, требуется в качестве операнда другой команды. Свойство "потоковости" позволяет продолжить выполнение как только нужное слово или двойное слово возвращается из памяти. Таким образом, выполнение команд может продолжаться как во время задержки, связанной с обработкой промаха, так и во время заполнения соответствующей строки при промахе.

При выполнении блочного копирования данных в ряде случаев компилятор заранее знает, что запись должна осуществляться в полную строку кэш-памяти. Для оптимизации обработки таких ситуаций архитектура PA-RISC 1.1 определяет специальную кодировку команд записи ("блочное копирование"), которая показывает, что аппаратуре не нужно осуществлять выборку из памяти строки, при обращении к которой может произойти промах кэш-памяти. В этом случае время обращения к кэшу данных складывается из времени, которое требуется для копирования в память старой строки кэш-памяти по тому же адресу в кэше (если он "грязный") и времени, необходимого для записи нового тега кэша. В процессоре PA 7100 такая возможность реализована как для привилегированных, так и для непривилегированных команд.

Последнее улучшение управления кэшем данных связано с реализацией семафорных операций "загрузки с обнулением" непосредственно в кэш-памяти. Если семафорная операция выполняется в кэше, то потери времени при ее выполнении не превышают потерь обычных операций записи. Это не только сокращает конвейерные потери, но и снижает трафик шины памяти. В архитектуре PA-RISC 1.1 предусмотрен также другой тип специального кодирования команд, который устраняет требование синхронизации семафорных операций с устройствами ввода/вывода.

Управление кэш-памятью команд позволяет при промахе продолжить выполнение команд сразу же после поступления отсутствующей в кэше команды из памяти. 64-битовая магистраль данных, используемая для заполнения блоков кэша команд, соответствует максимальной полосе пропускания внешней шины памяти 400 Мбайт/с при тактовой частоте 100 МГц.

В процессоре предусмотрен также ряд мер по минимизации потерь, связанных с преобразованиями виртуальных адресов в физические.

Конструкция процессора обеспечивает реализацию двух способов построения многопроцессорных систем. При первом способе каждый процессор подсоединяется к интерфейсному кристаллу, который наблюдает за всеми транзакциями на шине основной памяти. В такой системе все функции по поддержанию когерентного состояния кэш-памяти возложены на интерфейсный кристалл, который посылает процессору соответствующие транзакции. Кэш данных построен на принципах отложенного обратного копирования и для каждого блока кэш-памяти поддерживаются биты состояния "частный" (private), "грязный" (dirty) и "достоверный" (valid), значения которых меняются в соответствии с транзакциями, которые выдает или принимает процессор.

Второй способ организации многопроцессорной системы позволяет объединить два процессора и контроллер памяти и ввода-вывода на одной и той же локальной шине памяти. В такой конфигурации не требуется дополнительных интерфейсных кристаллов и она совместима с существующей системой памяти. Когерентность кэш-памяти обеспечивается наблюдением за локальной шиной памяти. Пересылки строк между кэшами выполняются без участия контроллера памяти и ввода-вывода. Такая конфигурация обеспечивает возможность построения очень дешевых высокопроизводительных многопроцессорных систем.

Процессор поддерживает ряд операций, необходимых для улучшения графической производительности рабочих станций серии 700: блочные пересылки, Z-буферизацию, интерполяцию цветов и команды пересылки данных с плавающей точкой для обмена с пространством ввода/вывода.

Процессор построен на базе технологического процесса КМОП с проектными нормами 0.8 микрон, что обеспечивает тактовую частоту 100 МГц.

1.3.2 Характеристика и особенности процессора PA 7200

Процессор PA 7200 имеет ряд архитектурных усовершенствований по сравнению с PA 7100, главными из которых являются добавление второго целочисленного конвейера, построение внутрикристального вспомогательного кэша данных и реализация нового 64-битового интерфейса с шиной памяти.

Процессор PA 7200, как и его предшественник, обеспечивает суперскалярный режим работы с одновременной выдачей до двух команд в одном такте. Все команды процессора можно разделить на три группы: целочисленные операции, операции загрузки/записи и операции с плавающей точкой. PA 7200 осуществляет одновременную выдачу двух команд, принадлежащим разным группам, или двух целочисленных команд (благодаря наличию второго целочисленного конвейера с АЛУ и дополнительных портов чтения и записи в регистровом файле). Команды перехода выполняются в целочисленном конвейере, причем эти переходы могут составлять пару для одновременной выдачи на выполнение только с предшествующей командой.

Повышение тактовой частоты процессора требует упрощения декодирования команд на этапе выдачи. С этой целью предварительная дешифрация потока команд осуществляется еще на этапе загрузки кэш-памяти. Для каждого двойного слова кэш-память команд включает 6 дополнительных бит, которые содержат информацию о наличии зависимостей по данным и конфликтов ресурсов, что существенно упрощает выдачу команд в суперскалярном режиме.

В процессоре PA 7200 реализован эффективный алгоритм предварительной выборки команд, хорошо работающий и на линейных участках программ.

Как и в PA 7100 в процессоре реализован интерфейс с внешней кэш-памятью данных, работающей на тактовой частоте процессора с однотактным временем ожидания. Внешняя кэш-память данных построена по принципу прямого отображения. Кроме того, для повышения эффективности на кристалле процессора реализован небольшой вспомогательный кэш емкостью в 64 строки. Формирование, преобразование адреса и обращение к основной и вспомогательной кэш-памяти данных выполняется на двух ступенях конвейера. Максимальная задержка при обнаружении попадания равна одному такту.

Вспомогательный внутренний кэш содержит 64 32-байтовые строки. При обращении к кэш-памяти осуществляется проверка 65 тегов: 64-х тегов вспомогательного кэша и одного тега внешнего кэша данных. При обнаружении совпадения данные направляются в требуемое функциональное устройство.

При отсутствии необходимой строки в кэш-памяти производится ее загрузка из основной памяти. При этом строка поступает во вспомогательный кэш, что в ряде случаев позволяет сократить количество перезагрузок внешней кэш-памяти, организованной по принципу прямого отображения. Архитектурой нового процессора для команд загрузки/записи предусмотрено кодирование специального признака локального размещения данных ("spatial locality only"). При выполнении команд загрузки, помеченных этим признаком, происходит обычное заполнение строки вспомогательного кэша. Однако последующая запись строки осуществляется непосредственно в основную память минуя внешний кэш данных, что значительно повышает эффективность работы с большими массивами данных, для которых размера строки кэш-памяти с прямым отображением оказывается недостаточно.

Расширенный набор команд процессора позволяет реализовать средства автоиндексации для повышения эффективности работы с массивами, а также осуществлять предварительную выборку команд, которые помещаются во вспомогательный внутренний кэш. Этот вспомогательный кэш обеспечивает динамическое расширение степени ассоциативности основной кэш-памяти, построенной на принципе прямого отображения, и является более простым альтернативным решением по сравнению с множественно-ассоциативной организацией.

Процессор PA 7200 включает интерфейс новой 64-битовой мультиплексной системной шины Runway, реализующей расщепление транзакций и поддержку протокола когерентности памяти. Этот интерфейс включает буфера транзакций, схемы арбитража и схемы управления соотношениями внешних и внутренних тактовых частот.

1.3.3 Характеристика суперскалярного процессора PA 8000

Процессор PA-8000 был анонсирован в марте 1995 года на конференции COMPCON 95. Было объявлено, что показатели его производительности будут достигать 8.6 единиц SPECint95 и 15 единиц SPECfp95 для операций целочисленной и вещественной арифметики соответственно. В настоящее время этот очень высокий уровень производительности подтвержден испытаниями рабочих станций и серверов, построенных на базе этого процессора.

Процессор PA-8000 вобрал в себя все известные методы ускорения выполнения команд. В его основе лежит концепция "интеллектуального выполнения", которая базируется на принципе внеочередного выполнения команд. Это свойство позволяет PA-8000 достигать пиковой суперскалярной производительности благодаря широкому использованию механизмов автоматического разрешения конфликтов по данным и управлению аппаратными средствами. Эти средства хорошо дополняют другие архитектурные компоненты, заложенные в структуру кристалла: большое число исполнительных функциональных устройств, средства прогнозирования направления переходов и выполнения команд по предположению, оптимизированная организация кэш-памяти и высокопроизводительный шинный интерфейс.

Высокая производительность PA-8000 во многом определяется наличием большого набора функциональных устройств, который включает в себя 10 исполнительных устройств: два арифметико-логических устройства (АЛУ) для выполнения целочисленных операций, два устройства для выполнения операций сдвига/слияния данных, два устройства для выполнения умножения/сложения чисел с плавающей точкой, два устройства деления/вычисления квадратного корня и два устройства выполнения операций загрузки/записи.

Средства внеочередного выполнения команд процессора PA-8000 обеспечивают аппаратное планирование загрузки конвейеров и лучшее использование функциональных устройств. В каждом такте на выполнение могут выдаваться до четырех команд, которые поступают в 56-строчный буфер переупорядочивания. Этот буфер позволяет поддерживать постоянную занятость функциональных устройств и обеспечивает эффективную минимизацию конфликтов по ресурсам. конфликтов по ресурсам. Кристалл может анализировать все 56 командных строк одновременно и выдавать в каждом такте по 4 готовых для выполнения команды в функциональные устройства. Это позволяет процессору автоматически выявлять параллелизм уровня выполнения команд.

Суперскалярный процессор PA-8000 обеспечивает полный набор средств выполнения 64-битовых операций, включая адресную арифметику, а также арифметику с фиксированной и плавающей точкой. При этом кристалл полностью сохраняет совместимость с 32-битовыми приложениями. Это первый процессор, в котором реализована 64-битовая архитектура PA-RISC. Он сохраняет полную совместимость с предыдущими и будущими реализациями PA-RISC.

Кристалл изготовлен по 0.5-микронной КМОП технологии с напряжением питания 3.3 Вольт и можно рассчитывать на дальнейшее уменьшение размеров элементов в будущем.

2. ОСОБЕННОСТИ СЕРВЕРОВ КОМПАНИИ HEWLETT-PACKARD НА БАЗЕ ПРОЦЕССОРОВ С АРХИТЕКТУРОЙ PA- RISC

Компания Hewlett-Packard была учреждена в Калифорнии в 1938 году с целью создания электронного тестирующего и измерительного оборудования. В настоящее время компания разрабатывает, производит, осуществляет маркетинг и сервис систем для коммерческих приложений, автоматизации производственных процессов, процессов разработки, тестирования и измерений, а также аналитические и медицинские инструменты и системы, периферийное оборудование, калькуляторы и компоненты для использования в широком ряде отраслей промышленности. Она продает более 4500 изделий, используемых в промышленности, бизнесе, науке, образовании, медицине и инженерии.

Основой разработки современных компьютеров Hewlett-Packard является архитектура PA-RISC. Она была разработана компанией в 1986 году, и с тех пор, благодаря успехам интегральной технологии, прошла несколько стадий своего развития от многокристального до однокристального исполнения. Архитектура PA-RISC разрабатывалась с учетом возможности построения многопроцессорных систем, которые реализованы в старших моделях серверов.

2.1 Серверы HP9000 класса D

В секторе рынка серверов рабочих групп компания HP представлена довольно широкой серией систем HP9000 класса D. Это серия систем с относительно низкой стоимостью, которая конкурирует с серверами, построенными на базе ПК. Эти системы базируются на архитектуре процессоров PA-RISC (75 и 100 МГц PA-7100LC, 100 и 120 МГц PA-7200, а также 160 МГц PA-8000) и работают под управлением операционной системы HP-UNIX.

Модели D200, D210 и D310 представляют собой (согласно) однопроцессорные системы. Модели D250, D260, D270 и D350 могут оснащаться как одним, так и двумя процессорами. В своих моделях D3XX HP подчеркивает свойства обеспечения высокой готовности: возможность "горячей" замены внутренних дисковых накопителей, возможность организации дискового массива RAID и наличие источника бесперебойного питания. Эти модели обладают также расширенными возможностями по наращиванию оперативной памяти и подсистемы ввода/вывода.

В моделях D2XX имеется 5 гнезд расширения ввода/вывода и 2 отсека для установки дисковых накопителей с интерфейсом SCSI-2. В моделях D3XX количество гнезд расширения ввода/вывода расширено до 8, в 5 отсеках могут устанавливаться дисковые накопители с интерфейсом Fast/Wide SCSI-2, которые допускают замену без выключения питания системы.

Старшие модели серии обеспечивают возможность расширения оперативной ECC-памяти до 1.5 Гбайт, при этом коэффициент расслоения может увеличиваться до 12. Максимальный объем дискового пространства при использовании внешних дисковых массивов может достигать 5.0 Тбайт.

2.2 Серверы HP9000 класса K

Серверы HP9000 класса K представляют собой системы среднего класса, поддерживающие симметричную мультипроцессорную обработку (до 4 процессоров). Также как и системы класса D они базируются на архитектуре PA-RISC (120 МГц PA-7200 с кэш-памятью команд/данных первого уровня 256/256 Кбайт или 1/1 Мбайт, а также 160 и 180 МГц PA-8000 с кэш-памятью команд/данных первого уровня 1/1 Мбайт, работающей на тактовой частоте процессора).

Конструкция серверов класса К обеспечивает высокую пропускную способность систем. Основными компонентами поддержания высокой производительности являются системная шина с пиковой пропускной способностью 960 Мбайт/с, большая оперативная память с контролем и исправлением одиночных ошибок (ECC) емкостью до 4 Гбайт c 32-кратным расслоением, многоканальная подсистема ввода/вывода с пропускной способностью до 288 Мбайт/с, стандартная высокоскоростная шина Fast/Wide Differential SCSI-2, а также дополнительные возможности по подключению высокоскоростных сетей и каналов типа FDDI, ATM и Fibre Channel.

В конструкции сервера предусмотрены 4 отсека для установки дисковых накопителей, а с помощью специальных стоек (кабинетов) расширения емкость дисковой памяти системы может быть доведена до 8.3 Тбайт.

2.3 Симметричные многопроцессорные серверы HP9000 класса Т

Самым мощным и расширяемым рядом корпоративных серверов компании HP на базе ОС UNIX является семейство HP9000 класса T. Это следующее поколение серверов, которое было разработано компанией вслед за HP9000 model 870. В начале на рынке появились системы HP9000 T500, допускающие установку до 12 процессоров PA7100, затем HP объявила 14-процессорные системы T520, построенные на базе процессора 120 МГц PA7150. В настоящее время объявлены 12-процессорные системы Т600 на базе процессора PA-8000, поставки которых должны начаться в 1997 году. Существующие системы (Т500 и Т520) допускают замену старых процессоров на процессоры PA-8000.

Характерной особенностью архитектуры серверов класса Т является большая емкость кэш-памяти команд (1 Мбайт) и данных (1 Мбайт) у каждого процессора системы. Серверы класса T используют 64-битовую шину с расщеплением транзакций, которая поддерживает до 14 процессоров, работающих на частоте 120 МГц. Эффективность этой шины, как и шины Runway, составляет 80%, что обеспечивает в установившемся режиме пропускную способность 768 Мбайт/с при пиковой производительности 960 Мбайт/с.

Серверы класса T могут поддерживать до 8 каналов HP-PB (HP Precision Bus), работающих со скоростью 32 Мбайт/с, однако в стойке основной системы поддерживается только один канал HP-PB. Для обеспечения полной конфигурации подсистемы ввода/вывода необходима установка 7 стоек расширения, занимающих достаточно большую площадь. Общая пиковая полоса пропускания подсистемы в/в в полностью сконфигурированной 8-стоечной системе составляет 256 Мбайт/с, что меньше полосы пропускания подсистемы в/в серверов класса К. Однако максимальная емкость дисковой памяти при использовании RAID-массивов достигает 20 Тбайт.

Указанная двухярусная шинная структура сервера обеспечивает оптимальный баланс между требованиями процессоров и подсистемы ввода/вывода, гарантируя высокую пропускную способность системы даже при тяжелой рабочей нагрузке. Доступ процессоров к основной памяти осуществляется посредством мощной системной шины процессор-память, поддерживающей когерентное состояние кэш-памятей всей системы. В будущих системах планируется 4-кратное увеличение пропускной способности подсистемы ввода/вывода.

2.4 Семейство корпоративных параллельных серверов HP9000

Одним из последних продуктов, выпущенных компанией HP, является семейство параллельных систем, представленных в настоящее время двумя моделями ESP21 и ESP30. Основная концепция, лежащая в основе этих систем достаточно проста. Она заключается в создании комбинированной структуры, в которой объединяются возможности и сильные стороны проверенной временем высокопроизводительной симметричной мультипроцессорной обработки с практически неограниченным потенциалом по росту производительности и масштабируемости, который может быть достигнут посредством параллельной архитектуры. Результатом такого объединения является высокопроизводительная архитектура, обеспечивающая чрезвычайно высокую степень распараллеливания вычислений.

В отличие от некоторых других параллельных архитектур, которые используют слабо связанные однопроцессорные узлы, параллельная архитектура серверов ESP21 и ESP30 использует высокопроизводительную SMP-технологию в качестве масштабируемых строительных блоков. Преимущество такого подхода заключается в том, что прикладные системы могут пользоваться вычислительной мощностью и возможностями множества тесно связанных процессоров в инфраструктуре SMP и достаточно эффективно обеспечивать максимально возможную производительность приложений. По мере необходимости дополнительные SMP-модули могут быть добавлены в систему для увеличения степени параллелизма для масштабирования общей производительности системы, ее емкости, пропускной способности в/в, или таких системных ресурсов как основная и дисковая память.

Изделия этой серии предназначены главным образом для обеспечения масштабируемости, превышающей обычные возможности SMP-архитектуры, для крупномасштабных систем принятия решений, систем оперативной обработки транзакций, построения хранилищ данных во Всемирной Паутине Internet. Для большинства приложений модели ESP обеспечивают практически линейный рост уровня производительности. Это достигается посредством использования высокопроизводительной шинной архитектуры SMP узлов ESP в сочетании с возможностями установки дополнительных SMP-узлов с помощью разработанного компанией HP коммутатора оптоволоконных каналов (Fiber Channel Enterprise Switch). Управление всеми ресурсами системы осуществляется с единой консоли управления.

При необходимости обеспечения высокой готовности системы ESP поддерживают специальный слой программных средств MC/ServiceGuard. Эти средства позволяют создать эффективное сочетание свойств высокой производительности, масштабируемости и высокой готовности, и помимо стандартных возможностей RAS (надежности, готовности и удобства обслуживания) обеспечивают замену узлов без останова работы системы.

По сути серия EPS предоставляет средства для объединения моделей класса К (EPS21) и Т(EPS30) в единую систему. 16-канальный коммутатор Fiber Channel позволяет объединить до 64 процессоров в модели EPS21 (до 256 процессоров в будущем) и до 224 процессоров в модели EPS30 (до 768 процессоров в будущем). Общая пиковая пропускная способность систем может достигать уровня 15 Гбайт/с.

Введение

На данном этапе научно-технического развития выбор аппаратной платформы и конфигурации системы представляет собой чрезвычайно сложную задачу. Это связано, в частности, с характером прикладных систем, который в значительной степени может определять рабочую нагрузку вычислительного комплекса в целом. Однако часто оказывается просто трудно с достаточной точностью предсказать саму нагрузку, особенно в случае, если система должна обслуживать несколько групп разнородных по своим потребностям пользователей. Следует отметить, что выбор той или иной аппаратной платформы и конфигурации определяется и рядом общих требований, которые предъявляются к характеристикам современных вычислительных систем. К ним относятся: отношение стоимость/производительность, надежность и отказоустойчивость, масштабируемость, совместимость и мобильность программного обеспечения. Основная задача при проектировании всего ряда моделей системы PA-RISC заключалась в создании такой архитектуры, которая была бы одинаковой с точки зрения пользователя для всех моделей системы независимо от цены и производительности каждой из них. Огромные преимущества такого подхода, позволяющего сохранять существующий задел программного обеспечения при переходе на новые модели были быстро оценены как производителями компьютеров, так и пользователями и начиная с этого времени практически все фирмы-поставщики компьютерного оборудования взяли на вооружение эти принципы, поставляя серии совместимых компьютеров.

Постановка задачи

В ходе выполнения данного курсового проекта необходимо рассмотреть существующие виды архитектур процессоров, охарактеризовать их преимущества и недостатки. Следует детально рассмотреть какую-либо архитектуру (в данном случае это архитектура PA-RISC компании Hewlett Packard), а также рассмотреть области применения процессоров с выбранной архитектурой (характеристика серверов компании Hewlett Packard на основе PA-RISC процессоров). Также необходимо разработать программу-драйвер передачи информации между рабочими станциями в локальной сети.

Заключение

В данном курсовом проекте рассмотрены основные архитектектуры процессоров. Детально рассмотрена архитектура PA-RISC компании Hewlett Packard, проанализированы преимущества и недостатки этой архитектуры. Также рассмотрены области применения процессоров с архитектурой PA-RISC (характеристика серверов компании Hewlett Packard на основе PA-RISC процессоров). В приложении приведена программа обеспечивающая передачу информации между рабочими станциями в локальной сети.

Реферат по дисциплине “Организация ЭВМ и систем”

Тема: «Процессоры CISCи RISC».

Введение………………………………………………………….3

1.CISC и RISC архитектура процессора……………………..4

2. CISC или RISC?........................................................................6

3. CISC-архитектура……………………………………………………...9

4. RISC-архитектура……………………………………………………..11

Заключение……………………………………………………………….14

Введение

Так уж исторически сложилось, что поначалу совершенствование процессоров было направлено на то, чтобы сконструировать по возможности более функциональный компьютер, который позволил бы выполнять как можно больше разных инструкций. Во-первых, так было удобнее для программистов (компиляторы языков высокого уровня еще только начинали развиваться, и все по-настоящему важные программы писались на ассемблере), а во-вторых, использование сложных инструкций зачастую позволяло сильно сократить размеры написанной на ассемблере программы. А где меньше инструкций – меньше и затраченное на исполнение программы время.

Надо признать, что достигнутые на этом пути успехи действительно впечатляли - в последних версиях ЭВМ выразительность ассемблерного листинга зачастую не уступала выразительности программы, написанной на языке высокого уровня. Одной-единственной машинной инструкцией можно было сказать практически все, что угодно. К примеру, такие машины, как DEC VAX, аппаратно поддерживали инструкции "добавить элемент в очередь", "удалить элемент из очереди" и даже "провести интерполяцию полиномом" (!); а знаменитое семейство процессоров Motorola 68k почти для всех инструкций поддерживало до двенадцати (!) режимов адресации памяти, вплоть до взятия в качестве аргумента инструкции "данных, записанных по адресу, записанному вон в том регистре, со смещением, записанным вот в этом регистре". Отсюда и общее название соответствующих архитектур: CISC - Complex Instruction Set Computers ("компьютеры с набором инструкций на все случаи жизни").


  1. ^ CISC и RISC архитектура процессора
Итак, рассмотрим и дадим краткое определение рассматриваемым процессорам:

Процессоры с CISC-архитектурой, реализующие так называемую полную систему команд (Complicated Instruction Set Computer);

Процессоры с RISC-архитектурой, реализующие сокращенную систему команд (Reduced Instruction Set Computer).

CISC-процессоры выполняют большой набор команд с развитыми возможностями адресации, давая разработчику возможность выбрать наиболее подходящую команду для выполнения необходимой операции. В применении к 8-разрядным МК процессор с CISC-архитектурой может иметь однобайтовый, двухбайтовый и трехбайтовый (редко четырехбайтовый) формат команд. Время выполнения команды может составлять от 1 до 12 циклов. К МК с CISC-архитектурой относятся МК фирмы Intel с ядром MCS-51, которые поддерживаются в настоящее время целым рядом производителей, МК семейств НС05, НС08 и НС11 фирмы Motorola и ряд других.

В процессорах с RISC-архитектурой набор исполняемых команд сокращен до минимума. Для реализации более сложных операций приходится комбинировать команды. При этом все команды имеют формат фиксированной длины (например, 12, 14 или 16 бит), выборка команды из памяти и ее исполнение осуществляется за один цикл (такт) синхронизации. Система команд RISC-процессора предполагает возможность равноправного использования всех регистров процессора. Это обеспечивает дополнительную гибкость при выполнении ряда операций. К МК с RISC-процессором относятся МК AVR фирмы Atmel, МК PIC16 и PIC17 фирмы Microchip и другие.

На первый взгляд, МК с RISC-процессором должны иметь более высокую производительность по сравнению с CISC МК при одной и той же тактовой частоте внутренней магистрали. Однако на практике вопрос о производительности более сложен и неоднозначен.

С точки зрения организации процессов выборки и исполнения команды в современных 8-разрядных МК применяется одна из двух уже упоминавшихся архитектур МПС: фон-неймановская (принстонская) или гарвардская.

Основное преимущество архитектуры Фон-Неймана – упрощение устройства МПС, так как реализуется обращение только к одной общей памяти. Кроме того, использование единой области памяти позволяло оперативно перераспределять ресурсы между областями программ и данных, что существенно повышало гибкость МПС с точки зрения разработчика программного обеспечения. Размещение стека в общей памяти облегчало доступ к его содержимому. Неслучайно поэтому фон-неймановская архитектура стала основной архитектурой универсальных компьютеров, включая персональные компьютеры.

Гарвардская архитектура почти не использовалась до конца 70-х годов, пока производители МК не поняли, что она дает определенные преимущества разработчикам автономных систем управления.

Дело в том, что, судя по опыту использования МПС для управления различными объектами, для реализации большинства алгоритмов управления такие преимущества фон-неймановской архитектуры как гибкость и универсальность не имеют большого значения. Анализ реальных программ управления показал, что необходимый объем памяти данных МК, используемый для хранения промежуточных результатов, как правило, на порядок меньше требуемого объема памяти программ. В этих условиях использование единого адресного пространства приводило к увеличению формата команд за счет увеличения числа разрядов для адресации операндов. Применение отдельной небольшой по объему памяти данных способствовало сокращению длины команд и ускорению поиска информации в памяти данных.

Кроме того, гарвардская архитектура обеспечивает потенциально более высокую скорость выполнения программы по сравнению с фон-неймановской за счет возможности реализации параллельных операций. Выборка следующей команды может происходить одновременно с выполнением предыдущей, и нет необходимости останавливать процессор на время выборки команды. Этот метод реализации операций позволяет обеспечивать выполнение различных команд за одинаковое число тактов, что дает возможность более просто определить время выполнения циклов и критичных участков программы.

Большинство производителей современных 8-разрядных МК используют гарвардскую архитектуру. Однако гарвардская архитектура является недостаточно гибкой для реализации некоторых программных процедур. Поэтому сравнение МК, выполненных по разным архитектурам, следует проводить применительно к конкретному приложению.

В настоящее время наиболее яркими представителями микроконтроллеров CISC и RISC, имеющих соответственно фон-неймановскую и гарвардскую архитектуры являются микроконтроллеры i8051 и AVR – микроконтроллеры фирмы Atmel, которые по ряду характеристик превзошли очень известные PIC – микроконтроллеры. Поэтому рассмотрим организацию и устройство вышеперечисленных представителей.

2^ . CISC или RIS C?

Двумя основными архитектурами набора команд, используемыми компьютерной промышленностью на современном этапе развития вычислительной техники, являются архитектуры CISC и RISC. Основоположником CISC-архитектуры – архитектуры с полным набором команд (CISC – Complete Instruction Set Computer) можно считать фирму IBM с ее базовой архитектурой IBM/360, ядро которой используется с 1964 г. и дошло до наших дней, например, в таких современных мейнфреймах, как IBM ES/9000.

Лидером в разработке микропроцессоров с полным набором команд считается компания Intel с микропроцессорами X86 и Pentium. Это практически стандарт для рынка микропроцессоров.

Сегодня разница в производительности между RISC и CISC наиболее очевидна в вычислениях с плавающей точкой, где на микропроцессор падает большая математическая нагрузка. Высокая производительность RISC в вычислениях с плавающей точкой используется в финансово-торговых системах и сложных инженерных приложениях. Однако для большинства приложений бизнес-серверов высокой производительности вычислений с плавающей точкой не требуется. Им нужна производительность усложненных вычислений. Целые вычисления работают с целыми числами, для представления которых требуется меньшее число бит. Следовательно, они требуют меньше процессорных действий. Большинство бизнес-приложений, которые обеспечивают число заказанных изделий или вычисляют количество товаров на складе, используют главным образом усложненные вычисления.

Простота архитектуры RISC-процессора обеспечивает его компактность, практическое отсутствие проблем с охлаждением кристалла, чего нет в процессорах фирмы Intel, упорно придерживающейся пути развития архитектуры CISC. Формирование стратегии CISC-архитектуры произошло за счет технологической возможности перенесения "центра тяжести" обработки данных с программного уровня системы на аппаратный, так как основной путь повышения эффективности для CISC-компьютера виделся, в первую очередь, в упрощении компиляторов и минимизации исполняемого модуля. На сегодняшний день CISC-процессоры почти монопольно занимают на компьютерном рынке сектор персональных компьютеров, однако RISC-процессорам нет равных в секторе высокопроизводительных серверов и рабочих станций.

Основные черты RISC-архитектуры с аналогичными по характеру чертами CISC-архитектуры отображаются следующим образом (табл.1):


CISC- архитектура

RISC-архитектура

Многобайтовые команды

Однобайтовые команды

Малое количество регистров

Большое количество регистров

Сложные команды

Простые команды

Одна или менее команд за один цикл процессора

Несколько команд за один цикл процессора

Традиционно одно исполнительное устройство

Несколько исполнительных устройств
^ Таблица 1.Основные черты архитектуры

Одним из важных преимуществ RISC-архитектуры является высокая скорость арифметических вычислений. RISC-процессоры первыми достигли планки наиболее распространенного стандарта IEEE 754, устанавливающего 32-разрядный формат для представления чисел с фиксированной точкой и 64-разрядный формат "полной точности" для чисел с плавающей точкой. Высокая скорость выполнения арифметических операций в сочетании с высокой точностью вычислений обеспечивает RISC-процессорам безусловное лидерство по быстродействию в сравнении с CISC-процессорами.

Другой особенностью RISC-процессоров является комплекс средств, обеспечивающих безостановочную работу арифметических устройств: механизм динамического прогнозирования ветвлений, большое количество оперативных регистров, многоуровневая встроенная кэш-память.

Организация регистровой структуры – основное достоинство и основная проблема RISC. Практически любая реализация RISC-архитектуры использует трехместные операции обработки, в которых результат и два операнда имеют самостоятельную адресацию – R1: = R2, R3. Это позволяет без существенных затрат времени выбрать операнды из адресуемых оперативных регистров и записать в регистр результат операции. Кроме того, трехместные операции дают компилятору большую гибкость по сравнению с типовыми двухместными операциями формата "регистр – память" архитектуры CISC. В сочетании с быстродействующей арифметикой RISC-операции типа "регистр – регистр" становятся очень мощным средством повышения производительности процессора.

Вместе с тем опора на регистры является ахиллесовой пятой RISC-архитектуры. Проблема в том, что в процессе выполнения задачи RISC-система неоднократно вынуждена обновлять содержимое регистров процессора, причем за минимальное время, чтобы не вызывать длительных простоев арифметического устройства. Для CISC-систем подобной проблемы не существует, поскольку модификация регистров может происходить на фоне обработки команд формата "память – память".

Существуют два подхода к решению проблемы модификации регистров в RISC-архитектуре: аппаратный, предложенный в проектах RISC-1 и RISC-2, и программный, разработанный специалистами IВМ и Стэндфордского университета. Принципиальная разница между ними заключается в том, что аппаратное решение основано на стремлении уменьшить время вызова процедур за счет установки дополнительного оборудования процессора, тогда как программное решение базируется на возможностях компилятора и является более экономичным с точки зрения аппаратуры процессора.

Вечный вопрос - что лучше?

Ответ зависит от конкретных условий. Технология RISC не всегда подходит для применения в тех случаях, когда набор задач ограничен. Например, для сетевого оборудования встроенные вычислительные средства RISC, как правило, не подходят, поскольку большинство ситуаций, в которых вы можете оказаться, можно предвидеть, а использование для их решения множества небольших команд замедляет работу устройства. Технология CISC предпочтительна при решении большинства задач, так или иначе относящихся к серверам (например, совместное использование файлов и принтеров), поскольку требования к процессорам в данном случае легко предвидеть. С другой стороны, технология RISC предпочтительна в "непредсказуемых" случаях, например, при обслуживании баз данных и приложений.

3. CISC-архитектура

К типу CISC можно отнести практически все ВМ, выпускавшиеся до середины 80-х годов и значительную часть из выпускаемых в настоящее время.

Характерные для CISC способы решения проблемы семантического разрыва, вместе с тем ведут к усложнению архитектуры ВМ, главным образом устройства управления, что, в свою очередь, негативно сказывается на производительности в целом. Кроме того, в CISC очень сложно организовать эффективный конвейер команд, который, как уже отмечалось, является одним из наиболее перспективных путей повышения производительности ВМ. Все это заставило более внимательно проанализировать программы, получаемые после компиляции с ЯВУ. Был предпринят комплекс исследований , в результате которых обнаружились интересные закономерности:

Реализация сложных команд, эквивалентных операторам ЯВУ, требует увеличения емкости управляющей памяти в микропрограммном УУ. Микропрограм-как их доля в общем объеме программы зачастую не превышает 0,2%.

В откомпилированной программе операторы ЯВУ реализуются в виде процедур (подпрограмм), поэтому на операции вызова процедуры и возврата из нее приходится от 15 до 45% вычислительной нагрузки.

При вызове процедуры вызывающая программа передает этой процедуре некоторое количество аргументов. Согласно , в 98% случаев число передаваемых аргументов не превышает шести. Примерно такое же положение сложилось и с параметрами, которые процедура возвращает вызывающей программе. Более 80% переменных, используемых программой , являются локальными, то есть создаются при входе в процедуру и уничтожаются при выходе из нее. Количество локальных переменных, создаваемых отдельной процедурой, в 92% случаев не превышает шести .

Почти половину операций в ходе вычислений составляет операция присваива

Ния, сводящаяся к пересылке данных между регистрами, ячейками памяти или регистрами и памятью.

Чтобы машинный код CISC-компьютеров из-за сложных инструкций не разрастался до огромного размера, машинные инструкции в большинстве этих архитектур имели неоднородную структуру (разное расположение и размеры кода операции и ее операндов) и сильно отличающуюся длину (в x86, например, длина инструкций варьируется от 1 до 15 байт). Еще одной проблемой стало то, что при сохранении приемлемой сложности процессора многие инструкции оказалось принципиально невозможно выполнить "чисто аппаратно", и поздние CISC-процессоры были вынуждены обзавестись специальными блоками, которые "на лету" заменяли некоторые сложные команды на последовательности более простых. В результате все CISC-процессоры оказались весьма трудоемкими в проектировании и изготовлении. Но что самое печальное, к моменту расцвета CISC-архитектур стало ясно, что все эти конструкции изобретались в общем-то зря - исследования программного обеспечения того времени, проведенные IBM, наглядно показали, что даже программисты, пишущие на ассемблере, все эти "сверхвозможности" почти никогда не использовали, а компиляторы языков высокого уровня - и не пытались использовать.

К началу восьмидесятых годов классические CISC полностью исчерпали себя. Расширять набор инструкций в рамках этого подхода дальше не имело смысла, наоборот - технологи столкнулись с тем, что из-за высокой сложности CISC-процессоров оказалось трудно наращивать их тактовую частоту, а из-за "тормознутости" оперативной памяти тех времен зашитые в память процессора расшифровки сложных инструкций зачастую работают медленнее, чем точно такие же цепочки команд, встречающиеся в основной программе. Короче говоря, стало очевидным, что CISC-процессоры нужно упрощать - и на свет появился RISC, Reduced Instruction Set Computer.

4. RISC-архитектура

В 70-е годы XX века ученые выдвинули революционную по тем временам идею создания микропроцессора, "понимающего" только минимально возможное количество команд.

Замысел RISC- процессора (Reduced Instruction Set Computer, компьютер с сокращенным набором команд) родился в результате практических исследований частоты использования команд программистами, проведенных в 70-х годах в США и Англии. Их непосредственный итог - известное "правило 80/20": в 80% кода типичной прикладной программы используется лишь 20% простейших машинных команд из всего доступного набора.

Первый "настоящий" RISC-процессор с 31 командой был создан под руководством Дэвида Паттерсона из Университета Беркли, затем последовал процессор с набором из 39 команд. Они включали в себя 20-50 тыс. транзисторов. Плодами трудов Паттерсона воспользовалась компания Sun Microsystems, разработавшая архитектуру SPARC с 75 командами в конце 70-х годов. В 1981 г. в Станфордском университете стартовал проект MIPS по выпуску RISC-процессора с 39 командами. В итоге была основана корпорация Mips Computer в середине 80-х годов и сконструирован следующий процессор уже с 74 командами.

По данным независимой компании IDC, в 1992 году архитектура SPARC занимала 56% рынка, далее следовали MIPS - 15% и PA-RISC - 12,2%

Примерно в то же время Intel разработала серию 80386, последних "истинных" CISC-процессоров в семействе IA-32. В последний раз повышение производительности было достигнуто только за счет усложнения архитектуры процессора: из 16-разрядной она превратилась в 32-разрядную, дополнительные аппаратные компоненты поддерживали виртуальную память, и добавился целый ряд новых команд.

Основные особенности RISC-процессоров:


  • Сокращенный набор команд (от 80 до 150 команд).

  • Большинство команд выполняется за 1 такт.

  • Большое количество регистров общего назначения.

  • Наличие жестких многоступенчатых конвейеров.

  • Все команды имеют простой формат, и используются немногие способы адресации.

  • Наличие вместительной раздельной кэш-памяти.

  • Применение оптимизирующих компиляторов, которые анализируют исходный код и частично меняют порядок следования команд.

RISC-процессоры 3-го поколения

Самыми крупными разработчиками RISC-процессоров считаются Sun Microsystems (архитектура SPARC - Ultra SPARC), IBM (многокристальные процессоры Power, однокристальные PowerPC - PowerPC 620), Digital Equipment (Alpha - Alpha 21164), Mips Technologies (семейство Rxx00 -- R 10000), а также Hewlett-Packard (архитектура PA-RISC - PA-8000).

Все RISC-процессоры третьего поколения:


  • являются 64-х разрядными и суперскалярными (запускаются не менее 4-х команд за такт);

  • имеют встроенные конвейерные блоки арифметики с плавающей точкой;

  • имеют многоуровневую кэш-память. Большинство RISC-процессоров кэшируют предварительно дешифрованные команды;

  • изготавливаются по КМОП-технологии с 4 слоями металлизации.
Для обработки данных применяется алгоритм динамического прогнозирования ветвлений и метод переназначения регистров, что позволяет реализовать внеочередное выполнение команд.

Повышение производительности RISC-процессоров достигается за счет повышения тактовой частоты и усложнения схемы кристалла. Представителями первого направления являются процессоры Alpha фирмы DEC, наиболее сложными остаются процессоры компании Hewlett-Packard.

Уменьшение набора машинных команд в RISC-архитектуре позволило разместить на кристалле вычислительного ядра большое количество регистров общего назначения. Увеличение количества регистров общего назначения позволило минимизировать обращения к медленной оперативной памяти, оставив для работы с RAM только операции чтения данных из оперативной памяти в регистр и запись данных из регистра в оперативную память, все остальные машинные команды используют в качестве операндов регистры общего назначения.

Основными преимуществами RISC-архитектуры является наличие следующих свойств:


  • Большое число регистров общего назначения.

  • Универсальный формат всех микроопераций.

  • Равное время выполнения всех машинных команд.

  • Практически все операции пересылки данных осуществляются по маршруту регистр – регистр.

  • Равное время выполнения всех машинных команд позволяют обрабатывать поток командных инструкций по конвейерному принципу, т.е. выполняется синхронизация аппаратных частей с учетом последовательной передачи управления от одного аппаратного блока к другому.
Современные RISC-процессоры характеризуются следующим:

Упрощенным набором команд;

Используются команды фиксированной длины и фиксированного формата,

Простые способы адресации, что позволяет упростить логику декодирования команд;

Большинство команд выполняются за один цикл процессора;

Логика выполнения команд с целью повышения производительности ориентирована на аппаратную, а не на микропрограммную реализацию, отсутствуют макрокоманды, усложняющие структуру процессора и уменьшающие скорость его работы;

Взаимодействие с оперативной памятью ограничивается операциями

Пересылки данных;

Для обработки, как правило, используются трехадресные команды, что помимо упрощения дешифрации дает возможность сохранять большее число переменных в регистрах без их последующей перезагрузки;

Создан конвейер команд, позволяющий обрабатывать несколько из них одновременно;

Наличие большого количества регистров;

Используется высокоскоростная память.

Заключение

В данной курсовой работе рассмотрены микроконтроллеры с RISC и CISC архитектурой, особенности архитектур, их основные отличия.

На сегодняшний день существует более 200 модификаций микроконтроллеров, совместимых с i8051, выпускаемых двумя десятками компаний, и большое количество микроконтроллеров других типов. Популярностью у разработчиков пользуются 8-битные микроконтроллеры PIC фирмы Microchip Technology и AVR фирмы Atmel, шестнадцатибитные MSP430 фирмы TI, а также ARM, архитектуру которых разрабатывает фирма ARM и продаёт лицензии другим фирмам для их производства, процессоров - микроконтроллеры.

При проектировании микроконтроллеров приходится соблюдать баланс между размерами и стоимостью с одной стороны и гибкостью и производительностью с другой. Для разных приложений оптимальное соотношение этих и других параметров может различаться очень сильно. Поэтому существует огромное количество типов микроконтроллеров, отличающихся архитектурой процессорного модуля, размером и типом встроенной памяти, набором периферийных устройств, типом корпуса и т. д.

^ Список использованной литературы:

1. Каган Б.М. «Электронно-вычислительные машины и системы» Москва «Радио и связь»1991г.

2. Новиков Ю.В. , Скоробогатов П.К. «Основы микропроцессорной техники». 2006

3. Смирнов А.Д. «Архитектура вычислительных систем» Москва «Радио и связь» 1990 г.

4. Цилькер Б.Я., Орлов С.А. «Организация ЭВМ и систем». Спб.: Питер 2006.