Личный кабинет        04.07.2019   

Объем оперативной памяти четвертого поколения эвм. Поколения ЭВМ

Параметры сравнения

Поколения ЭВМ

четвертое

Период времени

Элементная база (для УУ, АЛУ)

Электронные (или электрические) лампы

Полупроводники (транзисторы)

Интегральные схемы

Большие интегральные схемы (БИС)

Основной тип ЭВМ

Малые (мини)

Основные устройства ввода

Пульт, перфокарточный, перфоленточный ввод

Алфавитно-цифровой дисплей, клавиатура

Цветной графический дисплей, сканер, клавиатура

Основные устройства вывода

Алфавитно-цифровое печатающее устройство (АЦПУ), перфоленточный вывод

Графопостроитель, принтер

Внешняя память

Магнитные ленты, барабаны, перфоленты, перфокарты

Перфоленты, магнитный диск

Магнитные и оптические диски

Ключевые решения в ПО

Универсальные языки программирования, трансляторы

Пакетные операционные системы, оптимизирующие трансляторы

Интерактивные операционные системы, структурированные языки программирования

Дружественность ПО, сетевые операционные системы

Режим работы ЭВМ

Однопрограммный

Пакетный

Разделения времени

Персональная работа и сетевая обработка данных

Цель использования ЭВМ

Научно-технические расчеты

Технические и экономические расчеты

Управление и экономические расчеты

Телекоммуникации, информационное обслуживание

Таблица - Основные характеристики ЭВМ различных поколений

Поколение

Период, гг

1980-наст. вр.

Элементная база

Вакуумные электронные лампы

Полупроводниковые диоды и транзисторы

Интегральные схемы

Сверхбольшие интегральные схемы

Архитектура

Архитектура фон Неймана

Мультипрограммный режим

Локальные сети ЭВМ, вычислительные системы коллективного пользования

Многопроцессорные системы, персональные компьютеры, глобальные сети

Быстродействие

10 – 20 тыс. оп/с

100-500 тыс. оп/с

Порядка 1 млн. оп/с

Десятки и сотни млн. оп/с

Программное обеспечение

Машинные языки

Операционные системы, алгоритмические языки

Операционные системы, диалоговые системы, системы машинной графики

Пакеты прикладных программ, базы данных и знаний, браузеры

Внешние устройства

Устройства ввода с перфолент и перфокарт,

АЦПУ, телетайпы, НМЛ, НМБ

Видеотерминалы, НЖМД

НГМД, модемы, сканеры, лазерные принтеры

Применение

Расчетные задачи

Инженерные, научные, экономические задачи

АСУ, САПР, научно – технические задачи

Задачи управления, коммуникации, создание АРМ, обработка текстов, мультимедиа

Примеры

ENIAC , UNIVAC (США);
БЭСМ - 1,2, М-1, М-20 (СССР)

IBM 701/709 (США)
БЭСМ-4, М-220, Минск, БЭСМ-6 (СССР)

IBM 360/370, PDP -11/20, Cray -1 (США);
ЕС 1050, 1066,
Эльбрус 1,2 (СССР)

Cray T3 E, SGI (США),
ПК, серверы, рабочие станции различных производителей

На протяжении 50 лет появилось, сменяя друг друга, несколько поколений ЭВМ. Бурное развитие ВТ во всем мире определяется только за счет передовых элементной базы и архитектурных решений.
Так как ЭВМ представляет собой систему, состоящую из технических и программных средств, то под поколением естественно понимать модели ЭВМ, характеризуемые одинаковыми технологическими и программными решениями (элементная база, логическая архитектура, программное обеспечение). Между тем, в ряде случаев оказывается весьма сложным провести классификацию ВТ по поколениям, ибо грань между ними от поколения к поколению становиться все более размытой.
Первое поколение.
Элементная база- электронные лампы и реле; оперативная память выполнялась на триггерах, позднее на ферритовых сердечниках. Надежность - невысокая, требовалась система охлаждения; ЭВМ имели значительные габариты. Быстродействие- 5 - 30 тыс. арифметических оп/с; Программирование - в кодах ЭВМ (машинный код), позднее появились автокоды и ассемблеры. Программированием занимался узкий круг математиков, физиков, инженеров - электронщиков. ЭВМ первого поколения использовались в основном для научно-технических расчетов.

Второе поколение.
Полупроводниковая элементная база. Значительно повышается надежность и производительность, снижаются габариты и потребляемая мощность. Развитие средств ввода/вывода, внешней памяти. Ряд прогрессивных архитектурных решений и дальнейшее развитие технологии программирования- режим разделения времени и режим мультипрограммирования (совмещение работы центрального процессора по обработке данных и каналов ввода/вывода, а также распараллеливания операций выборки команд и данных из памяти)
В рамках второго поколения четко стала проявляться дифференциация ЭВМ на малые, средние и большие. Существенно расширилась сфера применения ЭВМ на решение задач - планово - экономических, управления производственными процессами и др.
Создаются автоматизированные системы управления (АСУ) предприятиями, целыми отраслями и технологическими процессами (АСУТП). Конец 50-х годов характеризуется появлением целого ряда проблемно-ориентированных языков программирования высокого уровня (ЯВУ): FORTRAN, ALGOL-60 и др. Развитие ПО получило в создании библиотек стандартных программ на различных языках программирования и различного назначения, мониторов и диспетчеров для управления режимами работы ЭВМ, планированием ее ресурсов, заложивших концепции операционных систем следующего поколения.

Третье поколение.
Элементная база на интегральных схемах (ИС). Появляются серии моделей ЭВМ программно совместимых снизу вверх и обладающих возрастающими от модели к модели возможностями. Усложнилась логическая архитектура ЭВМ и их периферийное оборудование, что существенно расширило функциональные и вычислительные возможности. Частью ЭВМ становятся операционные системы (ОС). Многие задачи управления памятью, устройствами ввода/вывода и другими ресурсами стали брать на себя ОС или же непосредственно аппаратная часть ЭВМ. Мощным становиться программное обеспечение: появляются системы управления базами данных (СУБД), системы автоматизирования проектных работ (САПРы) различного назначения, совершенствуются АСУ, АСУТП. Большое внимание уделяется созданию пакетов прикладных программ (ППП) различного назначения.
Развиваются языки и системы программирования Примеры: -серия моделей IBM/360, США, серийный выпуск -с 1964г; -ЕС ЭВМ, СССР и страны СЭВ с 1972г.
Четвертое поколение.
Элементной базой становятся большие (БИС) и сверхбольшие (СБИС) интегральные схемы. ЭВМ проектировались уже на эффективное использование программного обеспечения (например, UNIX-подобные ЭВМ, наилучшим образом погружаемые в программную UNIX-среду; Prolog-машины, ориентированные на задачи искусственного интеллекта); современных ЯВУ. Получает мощное развитие телекоммуникационная обработка информации за счет повышения качества каналов связи, использующих спутниковую связь. Создаются национальные и транснациональные информационно-вычислительные сети, которые позволяют говорить о начале компьютеризации человеческого общества в целом.
Дальнейшая интеллектуализация ВТ определяется созданием более развитых интерфейсов "человек-ЭВМ", баз знаний, экспертных систем, систем параллельного программирования и др.
Элементная база позволила достичь больших успехов в минитюаризации, повышении надежности и производительности ЭВМ. Появились микро- и мини-ЭВМ, превосходящие по возможностям средние и большие ЭВМ предыдущего поколения при значительно меньшей стоимости. Технология производства процессоров на базе СБИС ускорила темпы выпуска ЭВМ и позволила внедрить компьютеры в широкие массы общества. С появление универсального процессора на одном кристалле (микропроцессор Intel-4004,1971г) началась эра ПК.
Первым ПК можно считать Altair-8800, созданным на базе Intel-8080, в 1974г. Э.Робертсом. П.Аллен и У.Гейтс создали транслятор с популярного языка Basic, существенно увеличив интеллектуальность первого ПК (впоследствии основали знаменитую компанию Microsoft Inc). Лицо 4-го поколения в значительной мере определяется и созданием супер-ЭВМ, характеризующихся высокой производительностью (среднее быстродействие 50 - 130 мегафлопсов. 1 мегафлопс= 1млн. операций в секунду с плавающей точкой) и нетрадиционной архитектурой (принцип распараллеливания на основе конвейерной обработки команд). Супер-ЭВМ используются при решении задач математической физики, космологии и астрономии, моделировании сложных систем и др. Так как важную коммутирующую роль в сетях играют и будут играть мощные ЭВМ, то сетевая проблематика часто обсуждается совместно с вопросами по супер-ЭВМ Среди отечественных разработок супер-ЭВМ можно назвать машины серии Эльбрус, вычислительные системы пс-2000 и ПС-3000, содержащие до 64 процессоров, управляемых общим потоком команд, быстродействие на ряде задач достигалось порядка 200 мегафлопсов. Вместе с тем, учитывая сложность разработки и реализации проектов современных супер-ЭВМ, требующих интенсивных фундаментальных исследований в области вычислительных наук, электронных технологий, высокой культуры производства, серьезных финансовых затрат, представляется весьма маловероятным создание в обозримом будущем отечественных супер-ЭВМ, по основным характеристикам не уступающим лучшим зарубежным моделям.
Следует заметить, при переходе на ИС-технологию производства ЭВМ определяющий акцент поколений все более смещается с элементной базы на другие показатели: логическая архитектура, программное обеспечение, интерфейс с пользователем, сферы приложения и т.д.
Пятое поколение.
Зарождается в недрах четвертого поколения и в значительной мере определяется результатами работы японского Комитета научных исследований в области ЭВМ, опубликованными в 1981г. Согласно этому проекту ЭВМ и вычислительные системы пятого поколения кроме высокой производительности и надежности при более низкой стоимости, вполне обеспечиваемые СБИС и др. новейшими технологиями, должны удовлетворять следующим качественно новым функциональным требованиям:

· обеспечить простоту применения ЭВМ путем реализации систем ввода/вывода информации голосом; диалоговой обработки информации с использованием естественных языков; возможности обучаемости, ассоциативных построений и логических выводов;

· упростить процесс создания программных средств путем автоматизации синтеза программ по спецификациям исходных требований на естественных языках

· улучшить основные характеристики и эксплуатационные качества ВТ для удовлетворения различных социальных задач, улучшить соотношения затрат и результатов, быстродействия, легкости, компактности ЭВМ; обеспечить их разнообразие, высокую адаптируемость к приложениям и надежность в эксплуатации.

Учитывая сложность реализации поставленных перед пятым поколением задач, вполне возможно разбиение его на более обозримые и лучше ощущаемые этапы, первый из которых во многом реализован в рамках настоящего четвертого поколения.

Первые проекты электронных вычислительных машин (ЭВМ) появились в конце 30-х — начале 40-х годов XX в. Отметим, что технические предпосылки для ϶ᴛᴏго уже были созданы, развивалась электроника и счетно-аналитическая вычислительная техника. В 1904 г. был изобретен первый ламповый диод, а в 1906 г. — первый триод (ϲᴏᴏᴛʙᴇᴛϲᴛʙенно двух- и трехэлектродная электронная лампа); в 1918 г. — электронное реле (ламповый триггер) Триггерные схемы стали широко применяться в электронике для переключения и релейной коммутации.

Другой технической предпосылкой создания ЭВМ стало развитие электромеханической счетно-аналитической техники. Благодаря накопленному опыту в области развития вычислительной техники в середине 30-х годов стало возможным создание программно-управляемых вычислительных машин, а построение ВМ на электронных схемах открывало широкие перспективы, связанные с увеличением надежности и быстродействия.

ЭВМ появились, когда возникла острая необходимость в проведении трудоемких и точных расчетов. Уровень прогресса в таких областях науки и техники, как, например, атомная энергетика, аэрокосмические исследования, во многом зависел от возможности выполнения сложных расчетов, кᴏᴛᴏᴩые нельзя было осуществить в рамках электромеханических счетных машин. Требовался переход к вычислительным машинам, работающим с большей производительностью.

В истории развития ЭВМ выделяют пять этапов, ϲᴏᴏᴛʙᴇᴛϲᴛʙующих пяти поколениям ЭВМ.

Период машин первого поколения начинается с переходом к серийному производству ЭВМ в начале 50-х годов XX в. В них были реализованы основные принципы, предложенные Джоном фон-Нейманом.

1. Принцип хранимой программы. Машина имеет память, в кᴏᴛᴏᴩой хранятся программа, данные и результаты промежуточных вычислений. Программа вводится в машину, так же как и данные, в виде двоичных кодов (а не штекерным методом, т.е. коммутацией проводов в определенной последовательности)

2. Адресный принцип. В команде указываются не сами числа, над кᴏᴛᴏᴩыми нужно выполнять арифметические действия, а адреса ячеек памяти, где данные числа находятся.

3. Автоматизм . После ввода программы и данных машина работает автоматически, выполняя предписания программы без вмешательства человека. Стоит сказать, для ϶ᴛᴏго машина запоминает адрес выполняемой команды, а каждая команда содержит указание об адресе следующей команды. Указание может быть одним из трех типов: неявным (перейти к команде, следующей по адресу за выполняемой), безусловным (перейти к команде по заданному адресу), условным (проверить заданное условие и в зависимости от его выполнения перейти к команде по тому или иному адресу)

4. Переадресация. Адреса ячеек памяти, указанные в команде, можно вычислять и преобразовывать как числа.

Структура ЭВМ, в кᴏᴛᴏᴩой реализованы принципы фон-Неймана, впоследствии получила название структуры «фон-Неймана» (или классической) Все дальнейшее развитие ЭВМ шло двумя путями: совершенствование структуры фон-Неймана и поиск новых структур.

Отметим, что технической основой элементной базы процессоров первых ЭВМ были электронные вакуумные лампы (ЭВЛ), а в качестве оперативных запоминающих устройств использовались электронно-лучевые трубки (ЭЛТ) Это были громоздкие по габаритам машины, занимающие много места и потребляющие много электроэнергии. Стоит заметить, что они делали несколько тысяч операций в секунду и обладали памятью в несколько тысяч машинных слов. Эти машины предполагали монопольный режим использования, т.е. в распоряжении пользователя были все ресурсы машины и ее управление. Программист повествовал ϲʙᴏю программу в машинных кодах и отлаживал ее за пультом машины, кᴏᴛᴏᴩая на время отладки была полностью в его распоряжении. При ϶ᴛᴏм 90% времени машина простаивала в ожидании команд, т.е. использование машинных ресурсов было малоэффективным из-за отсутствия развитой операционной системы. Использовались ЭВМ первого поколения в основном для научных расчетов. Первой отечественной ЭВМ была МЭСМ (малая электронная счетная машина), разработанная в 1947 — 1951 гг. под руководством акад. С.А. Лебедева. В 1952 г. была введена в эксплуатацию БЭСМ (большая электронная счетная машина), созданная под руководством С.А. Лебедева. В 1955 г. начался выпуск малой ЭВМ «Урал-1» (руководитель проекта Б.И. Рамеев) Примером зарубежной серийной модели ЭВМ будет IBM-701 (США)

Второе поколение ЭВМ (конец 50-х — середина 60-х годов) называют транзисторно-ферритовым, так как транзисторы (твердые диоды и триоды) заменили электронные лампы в процессорах, а ферритовые (намагничиваемые) сердечники — электронно-лучевые трубки в оперативных запоминающих устройствах.

Применение транзисторов существенно повлияло на характеристики и структуру машин. Транзисторные схемы позволили повысить плотность монтажа электронной аппаратуры на порядок и существенно (на несколько порядков) снизить потребляемую электроэнергию. Срок службы транзисторов на два-три порядка превосходил срок службы электронных ламп. Скорость ЭВМ возросла до сотен тысяч операций в секунду, а память — до десятков тысяч машинных слов.

Создание долговременной памяти на магнитных дисках и лентах, а также возможность подключения к ЭВМ изменяемого состава внешних устройств существенно расширили функциональные возможности вычислительных машин.

В организации вычислительного процесса крупным достижением было совмещение во времени вычислений и ввода-вывода информации, переход от монопольного режима использования ресурсов машины к пакетной обработке. Задания для ЭВМ (на перфокартах, магнитных лентах или дисках) собирались в пакет, кᴏᴛᴏᴩый обрабатывался без перерыва между заданиями. Это позволило более экономно использовать ресурсы машины.

В программировании были разработаны методы программирования в символических обозначениях, созданы первые алгоритмические языки и трансляторы с данных языков, созданы библиотеки стандартных программ.

В наибольшей степени широкое применение нашли отечественные ЭВМ, такие, как БЭСМ-4, М-220, «Минск-32». Типичным представителем зарубежной ЭВМ второго поколения будет IBM-7090.

Третье поколение ЭВМ (конец 60-х — начало 70-х годов) характеризуется появлением в качестве элементной базы процессора интегральных полупроводниковых схем (вместо отдельных транзисторов), что привело к дальнейшему увеличению скорости до миллиона операций в секунду и памяти до сотен тысяч слов.

ЭВМ третьего поколения также характеризуются крупнейшими сдвигами в архитектуре ЭВМ, их программном обеспечении, организации взаимодействия человека с машиной. Это прежде всего наличие развитой конфигурации внешних устройств (алфавитно-цифровые терминалы, графопостроители и т.п.) с использованием стандартных средств сопряжения, развитая операционная система, обеспечивающая работу в мультипрограммном режиме (несколько одновременно размещаемых в оперативной памяти программ совместно используют ресурсы процессора) Метод использования ресурсов ЭВМ — режим разделения времени совместно с пакетной обработкой. Высокое быстродействие позволяет время обслуживания пользователей разбить на кванты, обрабатывая в течение кванта задание каждого, возвращаться к пользователю за такое малое время, что у него за дисплеем создается иллюзия, что он один пользуется ресурсами машины.

Решающее значение в развитии вычислительной техники во всем мире сыграло создание семейства вычислительных машин на интегральных схемах с широким диапазоном вычислительной мощности и совместимых снизу вверх на уровне машинных языков, внешних устройств, модулей конструкции и системы элементов. Программная совместимость снизу вверх машин одного и того же семейства предполагает, что любая программа, выполнявшаяся на младшей машине, должна без всяких переделок выполняться на старшей.

Широкое распространение получили также семейства мини-ЭВМ. Сущность их конструкторского решения состояла в такой минимизации аппаратуры центрального процессора, кᴏᴛᴏᴩая позволяла на уровне технологии того времени создать универсальные ЭВМ, способные осуществлять управление в реальном масштабе времени, при кᴏᴛᴏᴩом темп выдачи управляющих воздействий на объект управления согласован со скоростью протекания процессов в ϶ᴛᴏм объекте.

В нашей стране в период машин третьего поколения была создана Единая Система ЭВМ (ЕС ЭВМ), в основных чертах копирующая IBM-360 и IBM-370, а также серия мини-ЭВМ СМ ЭВМ, ориентированная на зарубежные модели. Вклад отечественной науки в мировое развитие электронной вычислительной техники в ϶ᴛᴏт период связан с промышленным внедрением многопроцессорной ЭВМ М-10.

В период машин третьего поколения произошел крупный сдвиг в области применения ЭВМ. В случае если раньше ЭВМ использовались в основном для научно-технических расчетов, то в 60 — 70-е годы первое место стала занимать обработка символьной информации, в основном экономической.

Машины серии ЕС ЭВМ имеют универсальное назначение, а основной областью применения СМ ЭВМ будет автоматизация технологических процессов, научных экспериментов и испытательных установок, проектно-конструкторских работ.

Переход к машинам четвертого поколения — ЭВМ на больших интегральных схемах (БИС) — происходил во второй половине 70-х годов и завершился приблизительно к 1980 г. Отметим, что теперь на одном кристалле размером 1 см 2 стали размещаться сотни тысяч электронных элементов. Скорость и объем памяти возросли в десятки тысяч раз по сравнению с машинами первого поколения и составили примерно 10 9 оп/с и 10 7 слов ϲᴏᴏᴛʙᴇᴛϲᴛʙенно.

Характерными особенностями машин четвертого поколения будут тесная связь аппаратурной и программной реализаций в структуре машины, отход от принципа минимизации аппаратуры и поручение ей функций программы, что стало возможным благодаря относительно низкой стоимости БИС.

Развитие архитектуры ЭВМ в период машин четвертого поколения привело к появлению структур, в кᴏᴛᴏᴩых вычислительный процесс может протекать по нескольким ветвям параллельно, что приводит к увеличению производительности вычислительных машин. Идея параллелизма была технически реализована в многопроцессорных системах, состоящих из двух или более взаимосвязанных процессоров, работающих с общей памятью и управляемых общей операционной системой.

В результате возросшего быстродействия ЭВМ стало возможным расширить оперативную память за счет введения виртуальной памяти основанной на страничном обмене информации между внешней и основной памятью.

В наибольшей степени крупным достижением, связанным с применением БИС, стало создание микропроцессоров, а затем на их основе микроЭВМ. В случае если прежние поколения ЭВМ требовали для ϲʙᴏего расположения специальных помещений, системы вентиляции, специального оборудования для электропитания, то требования, предъявляемые к эксплуатации микроЭВМ, ничем не отличаются от условий эксплуатации бытовых электроприборов. При ϶ᴛᴏм они имеют достаточно высокую производительность, экономичны в эксплуатации и дешевы. МикроЭВМ могут быть использованы в измерительных комплексах, системах числового программного управления, в управляющих системах различного назначения.

Дальнейшее развитие микроЭВМ привело к созданию персональных компьютеров (ПК), широкое распространение кᴏᴛᴏᴩых началось с 1975 г., когда фирма IBM выпустила ϲʙᴏй первый персональный компьютер IBM PC. Сейчас такие компьютеры (совместимые с IBM PC) составляют около 90% всех производимых в мире ПК. В ПК реализован принцип открытой архитектуры, кᴏᴛᴏᴩый означает, что по мере улучшения характеристик основных блоков ПК возможна легкая замена устаревших частей, а модернизированный блок будет совместим с ранее используемым оборудованием. Другими преимуществами ПК будут развитые средства диалога, высокая надежность, удобство эксплуатации, наличие программного обеспечения, охватывающего практически все сферы человеческой деятельности.

В период машин четвертого поколения стали также серийно производиться и суперЭВМ. Рост степени интеграции БИС стал технологической основой производительности ЭВМ. В нескольких серийных моделях была достигнута производительность свыше 1 млрд. операций в секунду. К числу наиболее значительных разработок машин четвертого поколения относится ЭВМ «Крей-3», спроектированная на базе принципиально новой технологии — замены кремниевого кристалла арсенидом галлия, имеющая производительность до 16 млрд. операций в секунду. Примером отечественной суперЭВМ будет многопроцессорный вычислительный комплекс «Эльбрус» с быстродействием до 1,2-10 8 оп/с.

С конца 80-х годов в истории развития вычислительной техники наступила пора пятого поколения ЭВМ. Отметим, что технологические, конструкторские, структурные и архитектурные идеи машин пятого поколения принципиально отличаются от машин предшествующих поколений. Прежде всего их структура и архитектура отличаются от фон-неймановской (классической) Высокая скорость выполнения арифметических вычислений дополняется высокими скоростями логического вывода. Даже скорость предполагается выражать в единицах логического вывода. Машина состоит из нескольких блоков. Блок общения обеспечивает интерфейс между пользователем и ЭВМ на естественном языке и дисциплина программирования как наука для пользователя перестает в будущем быть актуальной. Не стоит забывать, что важное место в структуре ЭВМ занимает блок, представляющий базу знаний, в кᴏᴛᴏᴩом хранятся знания, накопленные человечеством в различных предметных областях, кᴏᴛᴏᴩые постоянно расширяются и пополняются. Следующий блок, называемый решателем, организует подготовку программы решения задачи на основании знаний, получаемых из базы знаний и исходных данных, полученных из блока общения. Ядро вычислительной системы составляет ЭВМ высокой производительности. Материал опубликован на http://сайт

В связи с появлением новой базовой структуры ЭВМ в машинах пятого поколения широко могут быть использованы модели и средства, разработанные в области искусственного интеллекта.

Компьютерная грамотность предполагает наличие представления о пяти поколениях ЭВМ, которое Вы получите после ознакомления с данной статьей.

Когда говорят о поколениях, то в первую очередь говорят об историческом портрете электронно-вычислительных машин (ЭВМ).

Фотографии в фотоальбоме по истечении определенного срока показывают, как изменился во времени один и тот же человек. Точно так же поколения ЭВМ представляют серию портретов вычислительной техники на разных этапах ее развития.

Всю историю развития электронно-вычислительной техники принято делить на поколения. Смены поколений чаще всего были связаны со сменой элементной базы ЭВМ, с прогрессом электронной техники. Это всегда приводило к росту быстродействия и увеличению объема памяти. Кроме этого, как правило, происходили изменения в архитектуре ЭВМ, расширялся круг задач, решаемых на ЭВМ, менялся способ взаимодействия между пользователем и компьютером.

ЭВМ первого поколения

Онибыли ламповыми машинами 50-х годов. Их элементной базой были электровакуумные лампы. Эти ЭВМ были весьма громоздкими сооружениями, содержавшими в себе тысячи ламп, занимавшими иногда сотни квадратных метров территории, потреблявшими электроэнергию в сотни киловатт.

Например, одна из первых ЭВМ – представляла собой огромный по объему агрегат длиной более 30 метров, содержала 18 тысяч электровакуумных ламп и потребляла около 150 киловатт электроэнергии.

Для ввода программ и данных применялись перфоленты и перфокарты. Не было монитора, клавиатуры и мышки. Использовались эти машины, главным образом, для инженерных и научных расчетов, не связанных с переработкой больших объемов данных. В 1949 году в США был создан первый полупроводниковый прибор, заменяющий электронную лампу. Он получил название транзистор .

ЭВМ второго поколения

Транзисторы

В 60-х годах транзисторы стали элементной базой для ЭВМ второго поколения. Машины стали компактнее, надежнее, менее энергоемкими. Возросло быстродействие и объем внутренней памяти. Большое развитие получили устройства внешней (магнитной) памяти: магнитные барабаны, накопители на магнитных лентах.

В этот период стали развиваться языки программирования высокого уровня: ФОРТРАН, АЛГОЛ, КОБОЛ. Составление программы перестало зависеть от конкретной модели машины, сделалось проще, понятнее, доступнее.

В 1959 г. был изобретен метод, позволивший создавать на одной пластине и транзисторы, и все необходимые соединения между ними. Полученные таким образом схемы стали называться интегральными схемами или чипами. Изобретение интегральных схем послужило основой для дальнейшей миниатюризации компьютеров.

В дальнейшем количество транзисторов, которое удавалось разместить на единицу площади интегральной схемы, увеличивалось приблизительно вдвое каждый год.

ЭВМ третьего поколения

Это поколение ЭВМ создавалось на новой элементной базе – интегральных схемах (ИС) .

Микросхемы

ЭВМ третьего поколения начали производиться во второй половине 60-х годов, когда американская фирма IBM приступила к выпуску системы машин IBM-360. Немного позднее появились машины серии IBM-370.

В Советском Союзе в 70-х годах начался выпуск машин серии ЕС ЭВМ (Единая система ЭВМ) по образцу IBM 360/370. Скорость работы наиболее мощных моделей ЭВМ достигла уже нескольких миллионов операций в секунду. На машинах третьего поколения появился новый тип внешних запоминающих устройств – магнитные диски.

Успехи в развитии электроники привели к созданию больших интегральных схем (БИС) , где в одном кристалле размещалось несколько десятков тысяч электрических элементов.

Микропроцессор

В 1971 году американская фирма Intel объявила о создании микропроцессора. Это событие стало революционным в электронике.

Микропроцессор – это миниатюрный мозг, работающий по программе, заложенной в его память.

Соединив микропроцессор с устройствами ввода-вывода и внешней памяти, получили новый тип компьютера: микро-ЭВМ.

ЭВМ четвертого поколения

Микро-ЭВМ относится к машинам четвертого поколения. Наибольшее распространение получили персональные компьютеры (ПК). Их появление связано с именами двух американских специалистов: и Стива Возняка. В 1976 году на свет появился их первый серийный ПК Apple-1, а в 1977 году – Apple-2.

Однако с 1980 года «законодателем мод» на рынке ПК становится американская фирма IBM. Ее архитектура стала фактически международным стандартом на профессиональные ПК. Машины этой серии получили название IBM PC (Personal Computer). Появление и распространение ПК по своему значению для общественного развития сопоставимо с появлением книгопечатания.

С развитием этого типа машин появилось понятие «информационные технологии», без которых невозможно обойтись в большинстве областей деятельности человека. Появилась новая дисциплина – информатика.

ЭВМ пятого поколения

Они будут основаны на принципиально новой элементной базе. Основным их качеством должен быть высокий интеллектуальный уровень, в частности, распознавание речи, образов. Это требует перехода от традиционной фон-неймановской к архитектурам, учитывающим требования задач создания искусственного интеллекта.

Таким образом, для компьютерной грамотности необходимо понимать, что на данный момент создано четыре поколения ЭВМ :

  • 1-ое поколение: 1946 г. создание машины ЭНИАК на электронных лампах.
  • 2-ое поколение: 60-е годы. ЭВМ построены на транзисторах.
  • 3-ье поколение: 70-е годы. ЭВМ построены на интегральных микросхемах (ИС).
  • 4-ое поколение: Начало создаваться с 1971 г. с изобретением микропроцессора (МП). Построены на основе больших интегральных схем (БИС) и сверх БИС (СБИС).

Пятое поколение ЭВМ строится по принципу человеческого мозга, управляется голосом. Соответственно, предполагается применение принципиально новых технологий. Огромные усилия были предприняты Японией в разработке компьютера 5-го поколения с искусственным интеллектом, но успеха они пока не добились.

Введение

1. Первое поколение ЭВМ 1950-1960-е годы

2. Второе поколение ЭВМ: 1960-1970-е годы

3. Третье поколение ЭВМ: 1970-1980-е годы

4. Четвертое поколение ЭВМ: 1980-1990-е годы

5. Пятое поколение ЭВМ: 1990-настоящее время

Заключение

Введение

Начиная с 1950 года, каждые 7-10 лет кардинально обновлялись конструктивно-технологические и программно-алгоритмические принципы построения и использования ЭВМ. В связи с этим правомерно говорить о поколениях вычислительных машин. Условно каждому поколению можно отвести 10 лет.

ЭВМ проделали большой эволюционный путь в смысле элементной базы (от ламп к микропроцессорам) а также в смысле появления новых возможностей, расширения области применения и характера их использования.

Деление ЭВМ на поколения - весьма условная, нестрогая классификация вычислительных систем по степени развития аппаратных и программных средств, а также способов общения с ЭВМ.

К первому поколению ЭВМ относятся машины, созданные на рубеже 50-х годов: в схемах использовались электронные лампы. Команд было мало, управление - простым, а показатели объема оперативной памяти и быстродействия - низкими. Быстродействие порядка 10-20 тысяч операций в секунду. Для ввода и вывода использовались печатающие устройства, магнитные ленты, перфокарты и перфоленты.

Ко второму поколению ЭВМ относятся те машины, которые были сконструированы в 1955-65 гг. В них использовались как электронные лампы, так и транзисторы. Оперативная память была построена на магнитных сердечниках. В это время появились магнитные барабаны и первые магнитные диски. Появились так называемые языки высокого уровня, средства которых допускают описание всей последовательности вычислений в наглядном, легко воспринимаемом виде. Появился большой набор библиотечных программ для решения различных математических задач. Машинам второго поколения была свойственна программная несовместимость, которая затрудняла организацию крупных информационных систем, поэтому в середине 60х годов наметился переход к созданию ЭВМ, программно совместимых и построенных на микроэлектронной технологической базе.

Третье поколение ЭВМ. Это машины, создаваемые после 60х годов, обладающих единой архитектурой, т.е. программно совместимых. Появились возможности мультипрограммирования, т.е. одновременного выполнения нескольких программ. В ЭВМ третьего поколения применялись интегральные схемы.

Четвертое поколение ЭВМ. Это нынешнее поколение ЭВМ, разработанных после 1970 г. Машины 4го поколения проектировались в расчёте на эффективное использование современных высокоуровневых языков и упрощение процесса программирования для конечного пользователя.

В аппаратурном отношении для них характерно использование больших интегральных схем как элементной базы и наличие быстродействующих запоминающих устройств с произвольной выборкой, объемом несколько Мбайт.

Машины 4-го поколения- многопроцессорные, многомашинные комплексы, работающие на внеш. память и общее поле внеш. устройств. Быстродействие достигает десятков миллионов операций в сек, память - нескольких млн. слов.

Переход к пятому поколению ЭВМ уже начался. Он заключается в качественном переходе от обработки данных к обработке знаний и в повышении основных параметров ЭВМ. Основной упор будет сделан на «интеллектуальность».

На сегодняшний день реальный «интеллект», демонстрируемый самыми сложными нейронными сетями, находится ниже уровня дождевого червя, однако, как бы ни были ограничены возможности нейронных сетей сегодня, множество революционных открытий, могут быть не за горами.

1. Первое поколение ЭВМ 1950-1960-е годы

Логические схемы создавались на дискретных радиодеталях и электронных вакуумных лампах с нитью накала. В оперативных запоминающих устройствах использовались магнитные барабаны, акустические ультразвуковые ртутные и электромагнитные линии задержки, электронно-лучевые трубки (ЭЛТ). В качестве внешних запоминающих устройств применялись накопители на магнитных лентах, перфокартах, перфолентах и штекерные коммутаторы.

Программирование работы ЭВМ этого поколения выполнялось в двоичной системе счисления на машинном языке, то есть программы были жестко ориентированы на конкретную модель машины и «умирали» вместе с этими моделями.

В середине 1950-х годов появились машинно-ориентированные языки типа языков символического кодирования (ЯСК), позволявшие вместо двоичной записи команд и адресов использовать их сокращенную словесную (буквенную) запись и десятичные числа. В 1956 году был создан первый язык программирования высокого уровня для математических задач - язык Фортран, а в 1958 году - универсальный язык программирования Алгол.

ЭВМ, начиная от UNIVAC и заканчивая БЭСМ-2 и первыми моделями ЭВМ «Минск» и «Урал», относятся к первому поколению вычислительных машин.

2. Второе поколение ЭВМ: 1960-1970-е годы

Логические схемы строились на дискретных полупроводниковых и магнитных элементах (диоды, биполярные транзисторы, тороидальные ферритовые микротрансформаторы). В качестве конструктивно-технологической основы использовались схемы с печатным монтажом (платы из фольгированного гетинакса). Широко стал использоваться блочный принцип конструирования машин, который позволяет подключать к основным устройствам большое число разнообразных внешних устройств, что обеспечивает большую гибкость использования компьютеров. Тактовые частоты работы электронных схем повысились до сотен килогерц.

Стали применяться внешние накопители на жестких магнитных дисках1 и на флоппи-дисках - промежуточный уровень памяти между накопителями на магнитных лентах и оперативной памятью.

В 1964 году появился первый монитор для компьютеров - IBM 2250. Это был монохромный дисплей с экраном 12 х 12 дюймов и разрешением 1024 х 1024 пикселов. Он имел частоту кадровой развертки 40 Гц.

Создаваемые на базе компьютеров системы управления потребовали от ЭВМ более высокой производительности, а главное - надежности. В компьютерах стали широко использоваться коды с обнаружением и исправлением ошибок, встроенные схемы контроля.

В машинах второго поколения были впервые реализованы режимы пакетной обработки и телеобработки информации.

Первой ЭВМ, в которой частично использовались полупроводниковые приборы вместо электронных ламп, была машина SEAC (Standarts Eastern Automatic Computer), созданная в 1951 году.

В начале 60-х годов полупроводниковые машины стали производиться и в СССР.

3. Третье поколение ЭВМ: 1970-1980-е годы

В 1958 году Роберт Нойс изобрел малую кремниевую интегральную схему, в которой на небольшой площади можно было размещать десятки транзисторов. Эти схемы позже стали называться схемами с малой степенью интеграции (Small Scale Integrated circuits - SSI). А уже в конце 60-х годов интегральные схемы стали применяться в компьютерах.

Логические схемы ЭВМ 3-го поколения уже полностью строились на малых интегральных схемах. Тактовые частоты работы электронных схем повысились до единиц мегагерц. Снизились напряжения питания (единицы вольт) и потребляемая машиной мощность. Существенно повысились надежность и быстродействие ЭВМ.

В оперативных запоминающих устройствах использовались миниатюрнее ферритовые сердечники, ферритовые пластины и магнитные пленки с прямоугольной петлей гистерезиса. В качестве внешних запоминающих устройств широко стали использоваться дисковые накопители.

Появились еще два уровня запоминающих устройств: сверхоперативные запоминающие устройства на триггерных регистрах, имеющие огромное быстродействие, но небольшую емкость (десятки чисел), и быстродействующая кэш-память.

Начиная с момента широкого использования интегральных схем в компьютерах, технологический прогресс в вычислительных машинах можно наблюдать, используя широко известный закон Мура. Один из основателей компании Intel Гордон Мур в 1965 году открыл закон, согласно которому количество транзисторов в одной микросхеме удваивается через каждые 1,5 года.

Ввиду существенного усложнения как аппаратной, так и логической структуры ЭВМ 3-го поколения часто стали называть системами.

Так, первыми ЭВМ этого поколения стали модели систем IBM (ряд моделей IBM 360) и PDP (PDP 1). В Советском Союзе в содружестве со странами Совета Экономической Взаимопомощи (Польша, Венгрия, Болгария, ГДР и др1.) стали выпускаться модели единой системы (ЕС) и системы малых (СМ) ЭВМ.

В вычислительных машинах третьего поколения значительное внимание уделяется уменьшению трудоемкости программирования, эффективности исполнения программ в машинах и улучшению общения оператора с машиной. Это обеспечивается мощными операционными системами, развитой системой автоматизации программирования, эффективными системами прерывания программ, режимами работы с разделением машинного времени, режимами работы в реальном времени, мультипрограммными режимами работы и новыми интерактивными режимами общения. Появилось и эффективное видеотерминальное устройство общения оператора с машиной - видеомонитор, или дисплей.

Большое внимание уделено повышению надежности и достоверности функционирования ЭВМ и облегчению их технического обслуживания. Достоверность и надежность обеспечиваются повсеместным использованием кодов с автоматическим обнаружением и исправлением ошибок (корректирующие коды Хеммин-га и циклические коды).

Модульная организация вычислительных машин и модульное построение их операционных систем создали широкие возможности для изменения конфигурации вычислительных систем. В связи с этим возникло новое понятие «архитектура» вычислительной системы, определяющее логическую организацию этой системы с точки зрения пользователя и программиста.

4. Четвертое поколение ЭВМ: 1980-1990-е годы

Революционным событием в развитии компьютерных технологий третьего поколения машин было создание больших и сверхбольших интегральных схем (Large Scale Integration - LSI и Very Large Scale Integration - VLSI), микропроцессора (1969 г.) и персонального компьютера. Начиная с 1980 года практически все ЭВМ стали создаваться на основе микропроцессоров. Самым востребованным компьютером стал персональный.

Логические интегральные схемы в компьютерах стали создаваться на основе униполярных полевых CMOS-транзисторов с непосредственными связями, работающими с меньшими амплитудами электрических напряжений (единицы вольт), потребляющими меньше мощности, нежели биполярные, и тем самым позволяющими реализовать более прогрессивные нанотехнологии (в те годы - масштаба единиц микрон).

Первый персональный компьютер создали в апреле 1976 года два друга, Стив Джобе (1955 г. р.) - сотрудник фирмы Atari, и Стефан Возняк (1950 г. р.), работавший на фирме Hewlett-Packard. На базе интегрального 8-битного контроллера жестко запаянной схемы популярной электронной игры, работая вечерами в автомобильном гараже, они сделали простенький программируемый на языке Бейсик игровой компьютер «Apple», имевший бешеный успех. В начале 1977 года была зарегистрирована Apple Сотр., и началось производство первого в мире персонального компьютера Apple.

5. Пятое поколение ЭВМ: 1990-настоящее время

Особенности архитектуры современного поколения компьютеров подробно рассматриваются в данном курсе.

Кратко основную концепцию ЭВМ пятого поколения можно сформулировать следующим образом:

1. Компьютеры на сверхсложных микропроцессорах с параллельно-векторной структурой, одновременно выполняющих десятки последовательных инструкций программы.

2. Компьютеры с многими сотнями параллельно работающих процессоров, позволяющих строить системы обработки данных и знаний, эффективные сетевые компьютерные системы.

Шестое и последующие поколения ЭВМ

Электронные и оптоэлектронные компьютеры с массовым параллелизмом, нейронной структурой, с распределенной сетью большого числа (десятки тысяч) микропроцессоров, моделирующих архитектуру нейронных биологических систем.

Заключение

Все этапы развития ЭВМ принято условно делить на поколения.

Первое поколение создавалось на основе вакуумных электроламп, машина управлялась с пульта и перфокарт с использованием машинных кодов. Эти ЭВМ размещались в нескольких больших металлических шкафах, занимавших целые залы.

Втрое поколение появилось в 60-е годы 20 века. Элементы ЭВМ выполнялись на основе полупроводниковых транзисторов. Эти машины обрабатывали информацию под управлением программ на языке Ассемблер. Ввод данных и программ осуществлялся с перфокарт и перфолент.

Третье поколение выполнялось на микросхемах, содержавших на одной пластинке сотни или тысячи транзисторов. Пример машины третьего поколения - ЕС ЭВМ. Управление работой этих машин происходило с алфавитно-цифровых терминалов. Для управления использовались языки высокого уровня и Ассемблер. Данные и программы вводились как с терминала, так и с перфокарт и перфолент.

Четвертое поколение было создано на основе больших интегральных схем (БИС). Наиболее яркие представители четвертого поколения ЭВМ - персональные компьютеры (ПК). Персональной называется универсальная однопользовательская микроЭВМ. Связь с пользователем осуществлялась посредством цветного графического дисплея с использованием языков высокого уровня.

Пятое поколение создано на основе сверхбольших интегральных схем (СБИС), которые отличаются колоссальной плотностью размещения логических элементов на кристалле.

Предполагается, что в будущем широко распространится ввод информации в ЭВМ с голоса, общения с машиной на естественном языке, машинное зрение, машинное осязание, создание интеллектуальных роботов и робототехнических устройств.

В соответствии с общепринятой методикой оценки развития вычислительной техники первым поколением считались ламповые компьютеры, вторым -транзисторные, третьим - компьютеры на интегральных схемах, а четвёртым - с использованием микропроцессоров.

Первое поколение ЭВМ (1948–1958) создавалось на основе вакуумных электроламп, машина управлялась с пульта и перфокарт с использованием машинных кодов. Эти ЭВМ размещались в нескольких больших металлических шкафах, занимавших целые залы.

Элементной базой машин этого поколения были электронные лампы – диоды и триоды. Машины предназначались для решения сравнительно несложных научно-технических задач. К этому поколению ЭВМ можно отнести: МЭСМ, БЭСМ-1, М-1, М-2, М-З, «Стрела», Минск-1, Урал-1, Урал-2, Урал-3, М-20, «Сетунь», БЭСМ-2, «Раздан» (рис. 2.1).

ЭВМ первого поколения были значительных размеров, потребляли большую мощность, имели невысокую надежность работы и слабое программное обеспечение. Быстродействие их не превышало 2–3 тысячи операций в секунду, емкость оперативной памяти – 2 кб или 2048 машинных слов (1 кб = 1024) длиной 48 двоичных знаков.

Второе поколение ЭВМ (1959–1967) появилось в 60-е гг. ХХ века. Элементы ЭВМ выполнялись на основе полупроводниковых транзисторов (рис. 2.2, 2.3). Эти машины обрабатывали информацию под управлением программ на языке Ассемблер. Ввод данных и программ осуществлялся с перфокарт и перфолент.

Элементной базой машин этого поколения были полупроводниковые приборы. Машины предназначались для решения различных трудоемких научно-технических задач, а также для управления технологическими процессами в производстве. Появление полупроводниковых элементов в электронных схемах существенно увеличило емкость оперативной памяти, надежность и быстродействие ЭВМ. Уменьшились размеры, масса и потребляемая мощность. С появлением машин второго поколения значительно расширилась сфера использования электронной вычислительной техники, главным образом за счет развития ПО.

Третье поколение ЭВМ (1968–1973). Элементная база ЭВМ – малые интегральные схемы (МИС), содержавшие на одной пластинке сотни или тысячи транзисторов. Управление работой этих машин происходило с алфавитно-цифровых терминалов. Для управления использовались языки высокого уровня и Ассемблер. Данные и программы вводились как с терминала, так и с перфокарт и перфолент. Машины предназначались для широкого использования в различных областях науки и техники (проведение расчетов, управление производством, подвижными объектами и др.). Благодаря интегральным схемам удалось существенно улучшить технико-эксплуатационные характеристики ЭВМ и резко снизить цены на аппаратное обеспечение. Например, машины третьего поколения по сравнению с машинами второго поколения имеют больший объем оперативной памяти, увеличенное быстродействие, повышенную надежность, а потребляемая мощность, занимаемая площадь и масса уменьшились.

Четвертое поколение ЭВМ (1974–1982). Элементная база ЭВМ – большие интегральные схемы (БИС). Наиболее яркие представители четвертого поколения ЭВМ – персональные компьютеры (ПК). Связь с пользователем осуществлялась посредством цветного графического дисплея с применением языков высокого уровня.

Машины предназначались для резкого повышения производительности труда в науке, производстве, управлении, здравоохранении, обслуживании и быту. Высокая степень интеграции способствовала увеличению плотности компоновки электронной аппаратуры, повышению ее надежности, что привело к увеличению быстродействия ЭВМ и снижению ее стоимости. Все это оказывает существенное воздействие на логическую структуру (архитектуру) ЭВМ и на ее ПО. Более тесной становится связь структуры машины и ее программного обеспечения, особенно операционной системы (ОС) (или монитора) – набора программ, которые организуют непрерывную работу машины без вмешательства человека

Пятое поколение ЭВМ (1990 – настоящее время) создано на основе сверхбольших интегральных схем (СБИС), которые отличаются колоссальной плотностью размещения логических элементов на кристалле.

6. Организация компьютерных систем

Процессоры

На рис. 2.1 показана структура обычного компьютера с шинной организацией. Центральный процессор - это мозг компьютера. Его задача - выполнять программы, находящиеся в основной памяти. Он вызывает команды из памяти, определяет их тип, а затем выполняет одну за другой. Компоненты соединены шиной, представляющей собой набор параллельно связанных проводов, по которым передаются адреса, данные и сигналы управления. Шины могут быть внешними (связывающими процессор с памятью и устройствами ввода-вывода) и внутренними.

Рис. 2.1. Схема компьютера с одним центральным процессором и двумя устройствами ввода-вывода

Процессор состоит из нескольких частей. Блок управления отвечает за вызов команд из памяти и определение их типа. Арифметико-логическое устройство выполняет арифметические операции (например, сложение) и логические операции (например, логическое И).

Внутри центрального процессора находится память для хранения промежуточных результатов и некоторых команд управления. Эта память состоит из нескольких регистров, каждый из которых выполняет определенную функцию. Обычно размер всех регистров одинаков. Каждый регистр содержит одно число, которое ограничивается размером регистра. Регистры считываются и записываются очень быстро, поскольку они находятся внутри центрального процессора.

Самый важный регистр - счетчик команд, который указывает, какую команду нужно выполнять следующей. Название «счетчик команд» не соответствует действительности, поскольку он ничего не считает, но этот термин употребляется повсеместно1. Еще есть регистр команд, в котором находится выполняемая в данный момент команда. У большинства компьютеров имеются и другие регистры, одни из них многофункциональны, другие выполняют лишь какие-либо специфические функции.

7. Программное обеспечение. Основная память.

Вся совокупность программ, хранящихся на всех устройствах долговременной памяти компьютера, составляет его программное обеспечение (ПО) .

Программное обеспечение компьютера делится на:

Системное ПО;
- прикладное ПО;
- инструментальное ПО.