Установка и настройка        17.05.2019   

Широкополосные сигналы. Широкополосные системы связи

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

хорошую работу на сайт">

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru//

Размещено на http://www.allbest.ru//

Введение

Системы связи с ШПС занимают особое место среди различных систем связи, что объясняется их свойствами. Во-первых, они обладают высокой помехозащищенностью при действии мощных помех. Во-вторых, обеспечивают кодовую адресацию большого числа абонентов и их кодовое разделение при работе в общей полосе частот. В-третьих, они обеспечивают совместимость приема-информации с высокой достоверностью измерения параметров движения объекта с высокими точностями и разрешающими способностями. Все эти свойства систем связи с ШПС были известны давно, но, поскольку мощности помех были относительно невысоки, а элементная база не позволяла реализовать устройства формирования.и обработки в приемлемых габаритах, то долгое время системы связи с ШПС широкого развития не получали. К настоящему моменту положение резко изменилось. Мощность помехи на входе приемника может на несколько порядков превышать мощность полезного сигнала. Для обеспечения высокой помехозащищенности при подобных помехах необходимо.использовать ШПС со сверхбольшими "базами (десятки-сотни тысяч), ансамбли (системы) сигналов должны состоять из десятков -- сотен миллионов ШПС со сверхбольшими базами. Следует отметить, что основы теории ШПС со сверхбольшими базами сформировались только в последнее время. В свою очередь реализация устройств формирования и обработки таких сигналов становится возможной в ближайшем будущем благодаря бурному развитию сверхбольших интегральных схем (СБИС), специализированных микропроцессоров (СМП), приборов с поверхностными акустическими волнами (ПАВ), приборов с зарядовой связью (ПЗС). Все эти причины и вызвали новый период расцвета систем связи с ШПС, в результате которого через некоторое время появятся такие системы второго поколения.

Комплексной целью данного учебно-методического пособия является укрепление и повышение знаний связанных с теоретическим курсом лекций - «Цифровые методы обработки сигналов». Данное пособие призвано поддержать теоретический курс с тем, чтобы студенты на практике при помощи персонального компьютера изучили широкополосные сигналы и системы связи.

Задачами учебно-методического пособия являются:

Знакомство с основными видами ШПС;

Изучение методов обработки ШПС;

Изучение фазоманипулированных сигналов на примерах кода Баркера и М-последовательностей;

Исследование свойств ШПС с помощью специальной компьютерной программы

Модуль: «Широкополосные системы связи»

Основные сведения о широкополосных сигналах

Определение ШПС. Применение ШПС в системах связи.

Широкополосными (сложными, шумоподобными) сигналами (ШПС) называют такие сигналы, у которых произведения активной ширины спектра F на длительность T много больше единицы. Это произведение называется базой сигнала B. Для ШПС

B = FT>>1 (1)

Широкополосными сигналы иногда называют сложными в отличие от простых сигналов (например, прямоугольные, треугольные и т.д.) с В=1. Поскольку у сигналов с ограниченной длительностью спектр имеет неограниченную протяженность, то для определения ширины спектра используют различные методы и приемы.

Повышение базы в ШПС достигается путем дополнительной модуляции (или манипуляции) по частоте или фазе на времени длительности сигнала. В результате, спектр сигнала F (при сохранении его длительности T) существенно расширяется. Дополнительная внутрисигнальная модуляция по амплитуде используется редко.

В системах связи с ШПС ширина спектра излучаемого сигнала F всегда много больше ширины спектра информационного сообщения.

ШПС получили применение в широкополосных системах связи (ШПСС), так как:

позволяют в полной мере реализовать преимущества оптимальных методов обработки сигналов;

обеспечивают высокую помехоустойчивость связи;

позволяют успешно бороться с многолучевым распространением радиоволн путем разделения лучей;

допускают одновременную работу многих абонентов в общей полосе частот;

позволяют создавать системы связи с повышенной скрытностью;

обеспечивают электромагнитную совместимость (ЭМС) ШПСС с узкополосными системами радиосвязи и радиовещания, системами телевизионного вещания;

обеспечивают лучшее использование спектра частот на ограниченной территории по сравнению с узкополосными системами связи.

Помехоустойчивость ШПСС.

Она определяется широко известным соотношением, связывающим отношение сигнал-помеха на выходе приемника q2 с отношением сигнал-помеха на входе приемника с2:

где с2 = Рс/Рп (Рс, Рп - мощности ШПС и помехи);

q2=2E/ Nп, Е - энергия ШПС, Nп - спектральная плотность мощности помехи в полосе ШПС. Соответственно Е = РсТ, a Nп = Рп /F;

В - база ШПС.

Отношение сигнал-помеха на выходе q2 определяет рабочие характеристики приема ШПС, а отношение сигнал-помеха на входе с2 -- энергетику сигнала и помехи. Величина q2 может быть получена согласно требованиям к системе (10...30 дБ) даже если с2<<1. Для этого достаточно выбрать ШПС с необходимой базой В, удовлетворяющей (2). Как видно из соотношения (2), прием ШПС согласованным фильтром или коррелятором сопровождается усилением сигнала (или подавлением помехи) в 2В раз. Именно поэтому величину

КШПС = q2/с2 (3)

называют коэффициентом усиления ШПС при обработке или просто усилением обработки. Из (2), (3) следует, что усиление обработки КШПС = 2В. В ШПСС прием информации характеризуется отношением сигнал помеха h2= q2/2, т.е.

Соотношения (2), (4) являются фундаментальными в теории систем связи с ШПС. Они получены для помехи в виде белого шума с равномерной спектральной плотностью мощности в пределах полосы частот, ширина которой равна ширине спектра ШПС. Вместе с тем эти соотношения справедливы для широкого круга помех (узкополосных, импульсных, структурных), что и определяет их фундаментальное значение.

Таким образом, одним из основных назначений систем, связи с ШПС является обеспечение надежного приема информации при воздействии мощных помех, когда отношение сигнал-помеха на входе приемника с2 может быть много меньше единицы. Необходимо еще раз отметить, что приведенные соотношения строго справедливы для помехи в виде гауссовского случайного процесса с равномерной спектральной плотностью мощности («белый» шум).

Основные виды ШПС

Известно большое число различных ШПС, свойства которых нашли отражение во многих книгах и журнальных статьях. ШПС подразделяются на следующие виды:

частотно-модулированные (ЧМ) сигналы;

многочастотные (МЧ) сигналы;

фазоманипулированные (ФМ) сигналы (сигналы с кодовой фазовой модуляцией - КФМ сигналы);

дискретные частотные (ДЧ) сигналы (сигналы с кодовой частотной модуляцией - КЧМ сигналы, частотно-манипулированные (ЧМ) сигналы);

дискретные составные частотные (ДСЧ) (составные сигналы с кодовой частотной модуляцией - СKЧM сигналы).

Частотно-модулированные (ЧМ) сигналы являются непрерывными сигналами, частота которых меняется по заданному закону. На рисунке 1а, изображен ЧМ сигнал, частота которого меняется по V -образному закону от f0-F/2 до f0+F/2, где f0 - центральная несущая частота сигнала, F - ширина спектра, в свою очередь, равная девиации частоты F= ?fд. Длительность сигнала равна Т.

На рисунке 1б представлена частотно-временная (f, t) - плоскость, на которой штриховкой приближенно изображено распределение энергии ЧМ сигнала по частоте и по времени. База ЧМ сигнала по определению (1) равна:

B = FT=?fдT (5)

Размещено на http://www.allbest.ru//

Размещено на http://www.allbest.ru//

Рисунок 1 - Частотно-модулированный сигнал и частотно-временная плоскость

Частотно-модулированные сигналы нашли широкое применение в радиолокационных системах, поскольку для конкретного ЧМ сигнала можно создать согласованный фильтр на приборах с поверхностными акустическими волнами (ПАВ). В системах связи необходимо иметь множество сигналов. При этом необходимость быстрой смены сигналов и переключения аппаратуры формирования и обработки приводят к тому, что закон изменения частоты становится дискретным. При этом от ЧМ сигналов переходят к ДЧ сигналам.

Многочастотные (МЧ) сигналы (рисунок 2а) являются суммой N гармоник u(t) ... uN(t), амплитуды и фазы которых определяются в соответствии с законами формирования сигналов. На частотно-временной плоскости (рисунок 2б) штриховкой выделено распределение энергии одного элемента (гармоники) МЧ сигнала на частоте fk. Все элементы (все гармоники) полностью перекрывают выделенный квадрат со сторонами F и T. База сигнала B равна площади квадрата. Ширина спектра элемента F0?1/Т. Поэтому база МЧ сигнала

т. е. совпадает с числом гармоник. МЧ сигналы являются непрерывными и для их формирования и обработки трудно приспособить методы цифровой техники. Кроме этого недостатка, они обладают также и следующими:

а) у них плохой пик-фактор (см. рисунок 2а);

б) для получения большой базы В необходимо иметь большое число частотных каналов N. Поэтому МЧ сигналы в дальнейшем не рассматриваются.

Фазоманипулированные (ФМ) сигналы представляют последовательность радиоимпульсов, фазы которых изменяются по заданному закону. Обычно фаза принимает два значения (0 или р). При этом радиочастотному ФМ сигналу соответствует видео- ФМ сигнал (рисунок 3а), состоящий из положительных и отрицательных импульсов. Если число импульсов N, то длительность одного импульса равна ф0 = T/N, а ширина его спектра равна приближенно ширине спектра сигнала F0 =1/ф0=N/Т. На частотно-временной плоскости (рисунок 3б)

Размещено на http://www.allbest.ru//

Размещено на http://www.allbest.ru//

Рисунок 2 - Многочастотный сигнал и частотно-временная плоскость

Размещено на http://www.allbest.ru//

Размещено на http://www.allbest.ru//

Рисунок 3 - Фазоманипулированный сигнал и частотно-временная плоскость

Штриховкой выделено распределение энергии одного элемента (импульса) ФМ сигнала. Все элементы перекрывают выделенный квадрат со сторонами F и Т. База ФМ сигнала

B = FT =F/ф0=N, (7)

т.е. B равна числу импульсов в сигнале.

Возможность применения ФМ сигналов в качестве ШПС с базами В = 104 ...106 ограничена в основном аппаратурой обработки. При использовании согласованных фильтров в виде приборов на ПАВ возможен оптимальный прием ФМ сигналов с максимальными базами Вмах=1000 ... 2000. ФМ сигналы, обрабатываемые такими фильтрами, имеют широкие спектры (порядка 10 ... 20 МГц) и относительно короткие длительности (60 ... 100 мкс). Обработка ФМ сигналов с помощью видеочастотных линий задержки при переносе спектра сигналов в область видеочастот позволяет получать базы В = 100 при F?1 МГц, Т? 100 мкс.

Весьма перспективными являются согласованные фильтры на приборах с зарядовой связью (ПЗС). Согласно опубликованным данным с помощью согласованных фильтров ПЗС можно обрабатывать ФМ сигналы с базами 102 ... 103 при длительностях сигналов 10-4 ... 10-1 с. Цифровой коррелятор на ПЗС способен обрабатывать сигналы до базы 4 104.

Следует отметить, что ФМ сигналы с большими базами целесообразно обрабатывать с помощью корреляторов (на БИС или на ПЗС). При этом, В = 4 104 представляется предельной. Но при использовании корреляторов необходимо в первую очередь решить вопрос об ускоренном вхождении в синхронизм. Так как ФМ сигналы позволяют широко использовать цифровые методы и технику формирования и обработки, и можно реализовать такие сигналы с относительно большими базами, то поэтомy ФМ сигналы являются одним из перспективных видов ШПС.

Дискретные частотные (ДЧ) сигналы представляют последовательность радиоимпульсов (рисунок 4а), несущие частоты которых изменяются по заданному закону. Пусть число импульсов в ДЧ сигнале равно М, длительность импульса равна Т0=Т/М, его ширина спектра F0=1/Т0=М/Т. Над каждым импульсом (рисунок 4а) указана его несущая частота. На частотно-временной плоскости (рисунок 4б) штриховкой выделены квадраты, в которых распределена энергия импульсов ДЧ сигнала.

Как видно из рисунка 4б, энергия ДЧ сигнала распределена неравномерно на частотно-временной плоскости. База ДЧ сигналов

B = FT =МF0МТ0=М2F0Т0 = М2 (8)

поскольку база импульса F0T0 = l. Из (8) следует основное достоинство ДЧ сигналов: для получения необходимой базы В число каналов M =, т. е. значительно меньше, чем для МЧ сигналов. Именно это обстоятельство и обусловило внимание к таким сигналам и их применение в системах связи. Вместе с тем для больших баз В = 104 ... 106 использовать только ДЧ сигналы нецелесообразно, так как число частотных каналов М = 102 ... 103, что представляется чрезмерно большим.

Дискретные составные частотные (ДСЧ) сигналы являются ДЧ сигналами, у которых каждый импульс заменен шумоподобным сигналом. На рисунке 5а изображен видеочастотный ФМ сигнал, отдельные части которого передаются на различных несущих частотах. Номера частот указаны над ФМ сигналом. На рисунке 5б изображена частотно-временная плоскость, на которой штриховкой выделено распределение энергии ДСЧ сигнала. Рисунок 5б по структуре не отличается от рисунка 4б, но для рисунка 5б площадь F0T0 = N0 -равна числу импульсов ФМ сигнала в одном частотном элементе ДСЧ сигнала. База ДСЧ сигнала

B = FT =М2F0Т0 = N0М2 (9)

Число импульсов полного ФМ сигнала N=N0М

Изображенный на рисунке 5 ДСЧ сигнал содержит в качестве элементов ФМ сигналы. Поэтому такой сигнал сокращенно будем называть ДСЧ-ФМ сигнал. В качестве элементов ДСЧ сигнала можно взять ДЧ сигналы. Если база элемента ДЧ сигнала B = F0T0 = М02 то база всего сигнала B = М02М2

Такой сигнал можно сокращенно обозначать ДСЧ-ЧМ. Число частотных каналов в ДСЧ-ЧМ сигнале равно М0М. Если ДЧ сигнал (см. рисунок 4), и ДСЧ-ЧМ сигнал имеют равные базы, то они имеют и одинаковое число частотных каналов. Поэтому особых преимуществ ДСЧ-ЧМ сигнал перед ДЧ сигналом не имеет. Но принципы построения ДСЧ-ЧМ сигнала могут оказаться полезными при построении больших систем ДЧ сигналов. Таким образом, наиболее перспективными ШПС для систем связи являются ФМ, ДЧ, ДСЧ-ФМ сигналы.

Размещено на http://www.allbest.ru//

Размещено на http://www.allbest.ru//

Рисунок 4 - Дискретный частотный сигнал и частотно-временная плоскость

Размещено на http://www.allbest.ru//

Размещено на http://www.allbest.ru//

Рисунок 5 - Дискретный составной частотный сигнал с фазовой манипуляцией ДСЧ-ФМ и частотно-временная плоскость.

Принципы оптимальной фильтрации. Оптимальный фильтр ШПС

Прием и обработка сигналов различными радиотехническими устройствами, как правило, производится на фоне более или менее интенсивных помех. Выбор системы устройства зависит от того, какую из нижеперечисленных задач приходится при этом решать:

1 . Обнаружение сигнала, когда требуется только дать ответ, имеется ли в принятом колебании полезный сигнал или оно образовано только шумом.

2. Оценка параметров, когда требуется с наибольшей точностью определить значение одного или нескольких параметров полезного сигнала (амплитуду, частоту, временное положение и т.д.). Для теории радиотехнических цепей и сигналов наибольший интерес представляет изучение возможностей ослабления вредного действия помехи при заданном сигнале и заданной помехе путем правильного выбора передаточной функции приемника. Поэтому в дальнейшем будут определяться характеристики приемников, оптимально согласованных с сигналом и помехой. В зависимости от того, какая из перечисленных выше задач решается, критерии оптимальности фильтра данному сигналу при наличии помех с заданными статистическими характеристиками могут быть разными. Для задачи обнаружения сигнала в шумах наибольшее распространение получил критерий максимума отношения сигнал/шум на выходе фильтра.

Требования к фильтру, максимизирующему отношение сигнал-шум формулируются следующим образом. На вход линейного четырехполюсника с постоянными параметрами и передаточной функцией подается аддитивная смесь сигнала S(t) и шума n(t) (рисунок 6) .

Размещено на http://www.allbest.ru//

Размещено на http://www.allbest.ru//

Рисунок 6

Сигнал полностью известен, это значит что заданы его форма и положение на оси времени. Шум представляет собой вероятностный процесс с заданными статистическими характеристиками. Требуется синтезировать фильтр, обеспечивающий получение на выходе наибольшего возможного отношения пикового значения сигнала к среднеквадратичному значению шума, иными словами определить передаточную функцию. При этом не ставится условие сохранения формы сигнала на выходе фильтра, так как для обнаружения его в шумах форма значения не имеет.

Приведем результаты решения задачи для "стандартной" помехи типа белый шум. Напомним, что белый шум представляет собой случайный процесс с равномерным распределением энергии по спектру частот, т.е. W(щ) = W0 = const , причем 0<щ

Здесь А - произвольный постоянный коэффициент, - функция комплексно - сопряженная со спектральной функцией сигнала.

Из соотношения (10) вытекают два условия для фазочастотной (ФЧХ) и амплитудно - частотной (АЧХ) характеристик согласованного фильтра:

1) K(щ)=AS(щ) (11)

т.е. модуль передаточной функции с точностью до постоянного коэффициента А совпадает с амплитудным спектром сигнала и

2) цk=-[цs(щ)+щt0] (12)

цs(щ) - фазовый спектр сигнала.

Физический смысл полученных выражений для АЧХ (11) И ФЧХ (12) оптимального фильтра ясен из следующих соображений. При выполнении соотношения (11) энергия шума, занимающего бесконечную полосу частот на входе фильтра, ослабляется на выходе значительно сильнее энергии сигнала, имеющего такую же ширину спектра, как и полоса пропускания приемника.

Первое слагаемое в выражении для ФЧХ -цs(щ) компенсирует фазовую характеристику входного сигнала цs(щ), в результате прохождения через фильтр в момент t0 все гармоники сигнала складываются в фазе, образуя пик выходного сигнала. В то же время это приводит к изменению формы сигнала на выходе фильтра. Второе слагаемое щt0 означает задержку всех компонент сигнала на одно и то же время t0>Tc, где Тс - длительность сигнала. Физически это означает, что для полного использования энергии входного сигнала задержка отклика фильтра должна быть не менее длительности сигнала.

Использование выражения (10) сводит задачу синтеза согласованного фильтра к задаче построения электрической цепи по известному коэффициенту передачи.

Другой путь - определение импульсной характеристики цепи, а затем конструирование четырехполюсника с такой характеристикой.

По определению, импульсная характеристика цепи g(t) - это сигнал на ее выходе в ответ на воздействие в виде д - функции, т.е. имеющее равномерную спектральную плотность для всех частот. В этом случае спектральная плотность сигнала на выходе и вид сигнала на выходе, согласно преобразованию Фурье и учитывая соотношение (10),

Импульсная характеристика оптимального фильтра, т.е. реакция на д импульс, является, таким образом, зеркальным отображением того сигнала, с которым этот фильтр согласован. Ось симметрии проходит через точку t0/2 на оси абсцисс (рисунок 7).

Размещено на http://www.allbest.ru//

Размещено на http://www.allbest.ru//

Рисунок 7

Форму выходного сигнала оптимального фильтра можно определить, используя общее соотношение

По определению сигнал на выходе оптимального фильтра,

где Bs(t-t0) - автокорреляционная функция сигнала (АКФ).

Итак, сигнал на выходе согласованного фильтра с точностью до постоянного коэффициента А совпадает с автокорреляционной функцией входного сигнала. Отношение сигнал-шум на выходе является главной мерой эффективности оптимального фильтра (ОФ). Приведем лишь результат вычислений, согласно которым

где - среднеквадратичное значение шума на выходе фильтра, пиковое значение сигнала на выходе;

Е - энергия сигнала на входе фильтра;

W0 -спектральная плотность мощности белого шума.

Выражение (16), позволяющее определить эффективность согласованного фильтра, показывает, что при белом шуме отношение сигнал/шум на его выходе зависит только от энергии сигнала и энергетического спектра шума W0. В случае ШПС:

E = NE0 энергия сигнала, Е0 - энергия элементарной посылки, N - число посылок в сигнале, с - отношение сигнал / шум на входе ОФ.

Из выражений (15,17) следует: во-первых, ОФ увеличивает отношение сигнал - шум по мощности на выходе в N раз, во-вторых, одна из возможных реализаций оптимального фильтра - коррелятор или программа, вычисляющая АКФ сигнала.

Фазоманипулированные сигналы

В качестве внутрисигнальной модуляции часто используют фазовую манипуляцию. Фазоманипулированные (ФМ) сигналы представляют собой последовательность радиоимпульсов равной амплитуды, начальные фазы которых изменяются по заданному закону. В большинстве случаев ФМ сигнал состоит из радиоимпульсов с двумя значениями начальных фаз: 0 и.

На рисунке 8а приведен пример ФМ сигнала, состоящего из 7 радиоимпульсов. На рисунке 8б представлена огибающая (в общем случае комплексная) этого же сигнала. В рассматриваемом примере огибающая представляет собой последовательность положительных и отрицательных единичных видеоимпульсов прямоугольной формы. Такое предположение о прямоугольности импульсов, образующих ФМ сигнал, справедливо для теоретических исследований. Однако при формировании ФМ сигналов и их передаче по каналам связи с ограниченной полосой пропускания импульсы искажаются, и ФМ сигнал перестает быть таким идеальным как на рисунке 8а. Огибающая полностью характеризует ФМ сигнал. Поэтому в работе исследуется свойства именно огибающей ФМ сигнала.

Прямоугольный импульс u(t) c единичной амплитудой и длительностью 0, составляющей основу ФМ, записывается как u (t) = 1 при 0 t 0.

Огибающую, состоящую из N единичных видеоимпульсов можно представить в виде:

U(t) = an u

где амплитуда an принимает значения +1 или -1. Общая длительность ФМ сигнала T = N0.

Последовательность символов (амплитуд импульсов) A = (a1, a2 … an …aN) называется кодовой последовательностью. Возможны следующие равнозначные обозначения кодовых последовательностей:

A =(111-1-11-1) = (1110010) =(+ + + - - + -), здесь N = 7.

Размещено на http://www.allbest.ru//

Размещено на http://www.allbest.ru//

Рисунок 8 - ФМ сигнал, его комплексная огибающая

Спектр ФМ сигналов

Спектральные свойства ФМ сигналов определяются спектрами импульса u(t) и кодовой последовательности A. Спектр прямоугольного видеоимпульса S():

S() = 0 exp (- i0/2)

Спектр прямоугольного сигнала состоит из трех сомножителей. Первый - равный ф0 есть площадь импульса 1ф0 . Второй множитель sin(0/2)/(0/2) в виде функции отсчета sin(x)/x характеризует распределение спектра по частоте. Третий множитель является следствием смещения центра импульса относительно начала координат на половину длительности импульса 0/2.

Спектр ФМ сигнала G(), точнее спектр огибающей, с учетом теоремы о сдвиге, имеет следующий вид:

G() = S() an exp [-i(n-1)0]

Сумма в правой части является спектром кодовой последовательности A и обозначается в дальнейшем H(). Итак,

u(t) S(), A H(), U(t) G(),

Представление спектра ФМ сигнала в виде произведения удобно тем, что можно сначала отдельно найти спектры S() и H(), а затем, перемножив их, получить спектр ФМ сигнала. Свойства спектра прямоугольного импульса хорошо известны: он имеет лепестковую структуру с нулями в точках /, 2/ и т.д. Амплитудный спектр кодовой последовательности, в среднем, приближается к спектру белого шума и отличается значительными флуктуациями вокруг среднего, равного

Для фазового спектра кодовой последовательности также характерна значительная изрезанность.

Автокорреляционная функция (АКФ).

АКФ ФМ сигналов имеет вид типичный для всех типов ШПС. Нормированная АКФ состоит из центрального (основного) типа с амплитудой 1, размещенного на интервале (-,) и боковых (фоновых) максимумов, распределенных на интервале (-,) и (,).

Амплитуды боковых типов принимают различные значения, но у сигналов с “хорошей” корреляцией они малы, т.е. существенно меньше амплитуды центрального пика. Отношение амплитуды центрального пика (в данном случае 1) к максимальной амплитуде боковых максимумов называют коэффициентом подавления К. Для произвольных ШПС с базой В

Для ФМ ШПС К1. Пример АКФ ШПС дан на рисунке 9. Величина К существенно зависит от вида кодовой последовательности А. При правильном выборе закона формирования А можно добиться максимального подавления, а в ряде случаев - равенства амплитуд всех боковых максимумов.

Сигналы Баркера

Кодовая последовательность сигнала Баркера состоит из символов 1 и характеризуется нормированной АКФ вида:

где l = 0, 1, ... (N-1)/2.

Знак в последней строчке зависит от величины N. На рисунках 8-9 показаны ФМ сигнал, его комплексная огибающая и АКФ семизначного кода Баркера.

Из (18) следует, что одна из особенностей сигнала Баркера - равенство амплитуд всех (N-1) боковых максимумов АКФ, и все они имеют минимально возможный уровень, не превышающий 1/N. В таблице 1 приведены известные кодовые последовательности Баркера и их уровни боковых типов АКФ. Кодовые последовательности, обладающие свойствами (18), для N 13 не найдены.

Размещено на http://www.allbest.ru//

Размещено на http://www.allbest.ru//

Рисунок 9 - АКФ семизначного кода Баркера

Таблица 1 Кодовые последовательности Баркера

Кодовая последовательность

Уровень боковых лепестков

1 1 1 -1 -1 1 -1

1 1 1 -1 -1 -1 1 -1 -1 1

1 1 1 1 1 -1 -1 1 1 -1 1 -1 1

Формирование и обработка сигналов Баркера. Формирование сигналов Баркера может осуществляться несколькими способами, так же, как и произвольного ФМ сигнала. Поскольку сигналы Баркера были первыми ПШС, причем с наилучшими АКФ, рассмотрим кратко один из возможных способов формирования и обработки сигналов Баркера.

На рисунке 10 изображен генератор сигнала Баркера с N=7. Генератор синхроимпульсов (ГСИ) формирует узкие прямоугольные синхроимпульсы, период следования которых равен длительности сигнала Баркера Т=7ф0, а ф0 - длительность одиночного (единичного) прямоугольного импульса. Генератор синхроимпульсов запускает генератор одиночных импульсов (ГОИ), который в свою очередь формирует одиночные прямоугольные импульсы длительностью ф0 и периодом Т. Одиночные прямоугольные импульсы поступают на вход многоотводной линии задержки (МЛЗ), которая имеет N-1=6 секций с отводами через интервалы времени, равные ф0. Число отводов, включая начало линии, равно 7. Так как кодовая последовательность Баркера с N =7 имеет вид 111-1 -11 -1, то импульсы с первого, второго, третьего и шестого отводов (счет ведется от начала линии) поступают на вход сумматора (+) непосредственно, а импульсы с четвертого, пятого и седьмого отводов поступают на вход сумматора через инверторы (ИН), которые превращают положительные одиночные импульсы в отрицательные, т. е. осуществляют изменение фазы на р. Поэтому инверторы называются также фазовращателями. На выходе сумматора имеет место видеосигнал Баркера (рисунок 8б), который затем поступает на один вход балансного модулятора (БМ), на другой вход которого подается радиочастотное колебание на несущей частоте, формируемое генератором несущей частоты (ГНЧ). Балансный модулятор осуществляет фазовую манипуляцию радиочастотного колебания ГНЧ в соответствии с кодовой последовательностью Баркера: видеоимпульсу с амплитудой 1 соответствует радиоимпульс с фазой 0, а видеоимпульсу с амплитудой -1 - радиоимпульс с фазой р. Таким образом, на выходе балансного модулятора имеет место радиочастотный сигнал Баркера (рисунок 8а).

Размещено на http://www.allbest.ru//

Размещено на http://www.allbest.ru//

Рисунок 10 - Генератор сигнала Баркера с N = 7

Оптимальная обработка сигналов Баркера так же, как и других ШПС, производится либо с помощью согласованных фильтров, либо с помощью корреляторов. Возможно несколько способов построения согласованных фильтров и корреляторов, отличающихся друг от друга в техническом выполнении, но обеспечивающих одно и то же максимальное отношение сигнал-помеха на выходе. На рисунке 11 приведена схема согласованного фильтра для сигнала Баркера с N = 7. С выхода усилителя промежуточной частоты приемника сигнал поступает на согласованный фильтр одиночного импульса (СФОИ), который производит оптимальную обработку (фильтрацию) одиночного прямоугольного радиоимпульса с центральной частотой, равной промежуточной частоте приемника. На выходе СФОИ радиоимпульс имеет треугольную огибающую. Треугольные радиоимпульсы с длительностью по основанию 2 ф0 поступают на МЛЗ, которая имеет 6 секций и 7 отводов (включая начало линии). Отводы следуют через ф0. Так как импульсная характеристика согласованного фильтра совпадает с зеркально отраженным сигналом, то кодовую импульсную характеристику фильтра для сигнала Баркера с N=7 следует устанавливать в соответствии с последовательностью -11-1-1111. Поэтому радиоимпульсы со второго, пятого, шестого и седьмого отводов МЛЗ поступают в сумматор (+) непосредственно, а радиоимпульсы с первого, третьего и четвертого отводов -- через инверторы (ИН), которые меняют фазу на р. На выходе сумматора имеет место АКФ сигнала Баркера, огибающая которой приведена рисунке 9.

Размещено на http://www.allbest.ru//

Размещено на http://www.allbest.ru//

Рисунок 11 - Согласованный фильтр сигнала Баркера с N = 7

М - последовательности

Среди фазоманипулированных сигналов особое значение занимают сигналы, кодовые последовательности которых являются последовательностями максимальной длины или М -последовательностями.

М - последовательности принадлежат к разряду двоичных линейных рекуррентных последовательностей и представляют собой набор N периодически повторяющихся двоичных символов. Причем каждый текущий символ dj образуется в результате сложения по модулю 2 некоторого числа m предыдущих символов, одни из которых умножаются на 1, а другие - на 0.

Для j-го символа имеем:

d j = a i d j - i = a 1 d j -1 . . . a m d j -m(4)

Где а1…аm - числа 0 или 1.

Технически генератор М-последовательности строится в виде регистра (последовательно включенных триггеров) с отводами, с цепью обратной связи и с сумматором по модулю 2. Пример такого генератора приведен на рисунке 12. Умножение на а1…аm в (4) означает просто наличие или отсутствие отвода, т.е. связи соответствующего триггера (разряда регистра) с сумматором. В m-разрядном регистре максимальный период равен: Nm - 1. Величина m называется памятью последовательности. Если отводы выбраны произвольно, то не всегда на выходе генератора будет наблюдаться последовательность максимальной длины. Правило выбора отводов, позволяющее получить последовательность с периодом Nm-1, предполагает найти неприводимые примитивные полиномы степени m с коэффициентами, равными 0 и 1. Не равные нулю коэффициенты в полиномах определяют номера отводов в регистре.

Так, при m=6 существует 3 примитивных многочлена:

а6 а5 а4 а3 а2 а1 а0

p1 (x) = x 6 + x + 1 1 0 0 0 0 1 1

p2 (x) = x 6 + x 5 + x 2 + x + 1 1 1 0 0 1 1 1

p3 (x) = x 6 + x 5 + x 3 + x 2 + 1 1 1 0 1 1 0 1

На рисунке 12 реализован первый вариант.

Рисунок 12 - Генератор М-последовательности с периодом N = 26 - 1 = 63

Особенности автокорреляционной функции М-последовательности. Наибольший интерес представляет нормированная автокорреляционная функция (АКФ). Различают два случая получения такой функции: в периодическом (ПАКФ) и апериодическом режимах. Периодическая АКФ имеет основной, равный единице, пик и ряд боковых выбросов, амплитуды которых 1/N. С ростом N ПАКФ приближается к идеальной, когда боковые пики становятся по сравнения с основным пренебрежимо малы.

Боковые пики АКФ в апериодическом режиме существенно больше боковых пиков ПАКФ. Среднеквадратичное значение боковых пиков (вычисленное через дисперсию) равно

Усеченные М-последовательности

Разбивая М-последовательность (полный период N) на сегменты длительности Nс, можно получить большое число ШПС, рассматривая каждый из сегментов как самостоятельный сигнал. Если сегменты не перекрываются, то их число равно n = N/(Nc-1). Таким образом, можно получить большое число псевдослучайных последовательностей. Автокорреляционные свойства таких последовательностей значительно хуже, чем у М-последовательности той же длительности и зависят от Nc. Установленно, что у 90% сегментов uб 3 /, а у 50% - 2 /.

сигнал частотный фильтр последовательность

Литература

1. Шумоподобные сигналы в системах передачи информации. Под ред. В.Б. Пестрякова. - М., “Сов. радио”, 1973, -424c.

2. Ю.С. Лёзин. Введение в теорию радиотехнических систем. - М.: Радио и связь, 1985, -384c.

3. Л.Е. Варакин. Системы связи с шумоподобными сигналами. - М.: Радио и связь, 1985, -384c.

Размещено на Allbest.ru

...

Подобные документы

    Импульсная характеристика оптимального фильтра. Отклик оптимального фильтра на принятый сигнал. Сжатие сигнала во времени. Частотная характеристика оптимального фильтра. Эквивалентность характеристик обнаружения при корреляционной и фильтровой обработке.

    реферат , добавлен 21.01.2009

    Алгоритм расчета фильтра во временной и частотной областях при помощи быстрого дискретного преобразования Фурье (БПФ) и обратного быстрого преобразования Фурье (ОБПФ). Расчет выходного сигнала и мощности собственных шумов синтезируемого фильтра.

    курсовая работа , добавлен 26.12.2011

    Принципы кодирования источника при передаче дискретных сообщений. Процесс принятия приёмником решения при приёме сигнала. Расчёт согласованного фильтра. Построение помехоустойчивого кода. Декодирование последовательности, содержащей двукратную ошибку.

    курсовая работа , добавлен 18.10.2014

    Разработка модели системы передачи дискретных сообщений. Принципы кодирования источника при передаче информации. Расчёт вероятностей двоичных символов; энтропии и избыточности кода. Импульсная и комплексно-частотная характеристика согласованного фильтра.

    курсовая работа , добавлен 27.03.2016

    Назначение и характеристики широкополосных систем связи. Основы применения шумоподобных сигналов. Системы псевдослучайных последовательностей. Структурные схемы генераторов линейных кодовых последовательностей. Генерирование кодов с высокой скоростью.

    курсовая работа , добавлен 04.05.2015

    Дискретные системы связи. Дифференциальная импульсно-кодовая модуляция. Квантование по уровню и кодирование сигнала. Помехоустойчивость систем связи с импульсно-кодовой модуляцией. Скорость цифрового потока. Импульсный сигнал на входе интегратора.

    реферат , добавлен 12.03.2011

    Нахождение корреляционной функции входного сигнала. Спектральный и частотный анализ входного сигнала, амплитудно-частотная и фазочастотная характеристика. Переходная и импульсная характеристика цепи. Определение спектральной плотности выходного сигнала.

    курсовая работа , добавлен 27.04.2012

    Временные функции, частотные характеристики и спектральное представление сигнала. Граничные частоты спектров сигналов. Определение разрядности кода. Интервал дискретизации сигнала. Определение кодовой последовательности. Построение функции автокорреляции.

    курсовая работа , добавлен 09.02.2013

    Проблема помехоустойчивости связи, использование фильтров для ее решения. Значение емкости и индуктивности линейного фильтра, его параметры и характеристики. Моделирование фильтра и сигналов в среде Electronics Workbench. Прохождение сигнала через фильтр.

    курсовая работа , добавлен 20.12.2012

    Вычисление Z-преобразования дискретной последовательности отсчетов сигнала. Определение дискретной свертки. Порядок построения схемы нерекурсивного фильтра, которому соответствует системная функция. Отсчеты дискретного сигнала по заданным параметрам.

В настоящее время для борьбы с селективными замираниями и многолучевостью (эхо-сигналами) применяются последователь­ные ШПС с символами одинаковой частоты и параллельные ШПС с символами различной частоты . Формирование первых из упомянутых ШПС достигается манипуляцией фазы символов п -значной М-последовательностью. Вторые из применяемых ШПС составляются из элементарных сигналов, образующих множество ортогональных функций на интервале времени, равном длитель­ности элемента сигнала то (например, ортогональных гармониче­ских колебаний, полиномов Эрмита и др.).

Физически эффективность использования ШПС для борьбы с замираниями можно объяснить следующим образом. Во-первых, ввиду того, что энергия ШПС распределена в широком диапазо­не частот, некоррелированные замирания в отдельных участках спектра (селективные замирания) не могут в значительной сте­пени повлиять на прием всего сигнала в целом. Здесь можно про­вести определенную аналогию с частотно-разнесенным приемом. Во-вторых, имеется возможность выделить в приемном устройстве только один из приходящих лучей, так как ШПС, как известно, имеют ярко выраженный пик функции автокорреляции (рис. 2.31). Этот наиболее радикальный метод избавления от интерфе­ренции между приходящими лучами, т. е. от селективных зами­раний и явления эха, можно реализовать, если длительность им­пульсов на выходе приемного устройства меньше минимального времени взаимного запаздывания лучей ( < ). Данное условие легко выполняется правильным выбором базы ШПС. В-третьих, из возможности селекции только одного луча логично вытекает принципиальная возможность раздельного приема всех лучей.

Дополнительным условием решения этой задачи, кроме отме­ченного выше ( < ), является выполнение неравенства < т.е. максимальное время взаимного запаздыва­ния лучей должно быть меньше длительности элемента сигнала, что обеспечивается рациональным выбором скорости передачи сигналов. Осуществив раздельный прием лучей и произведя их оптимальное сложение (после соответствующего фазирования), можно не только избавиться от селективных замираний и явле­ния эха, но и заметно повысить достоверность приема при дан­ной мощности передатчика или снизить мощность передатчика при заданной достоверности .



Принцип построения системы широкополосной связи иллюст­рируется рис. 5.6. Первичный узкополосный сигнал с шириной спектра поступает на смеситель, куда подаются также колебания с полосой частот от генератора широкополосно­го сигнала (ГШС). Этим достигается формирование ШПС, ко­торым модулируется несущая частота передатчика (ПРД). Ши­рина спектра передаваемого сигнала определяется полосой частот .

На приемной стороне происходят обратные преобразования. Для нормального функционирования системы генераторы широ­кополосных сигналов передающего и приемного устройства долж­ны быть идентичными и должны работать синхронно и синфазно. Необходимым этапом обработки принятого сигнала является его прохождение либо через коррелятор, либо через согласованный фильтр (СФ), как это показано на рис. 5.6. Выделение основного максимума функции автокорреляции осуществляется решающим устройством (РУ). В бинарной системе связи оно принимает ре­шение о приеме либо сигнала посылки, либо сигнала паузы.

Широкополосные системы связи являются радикальным средством борьбы не только с замираниями. Они обеспечивают эф­фективную борьбу с аддитивными сосредоточенными и импульс­ными помехами при сохранении устойчивости к флуктуационным помехам. Действительно, если на вход приемника широкополос­ного сигнала с полосой поступают ШПС мощностью Р С , сос­редоточенная помеха мощностью (например, от узкополос­ной радиостанции) и флуктуационные шумы со спектральной плотностью , то отношение сигнал/помеха на входе приемника равно

(5.13)

С увеличением мешающее действие сосредоточенной по­мехи падает, а стремится к .

Помехи, создаваемые ШПС в узкополосных системах, по своему характеру подобны флуктуационным шумам и их влияние обратно пропорционально отношению , где - ширина спектра узкополосного сигнала. Этим определяется возмож­ность совместной работы широкополосных и узкополосных систем радиосвязи.

В результате обработки ШПС в приемном устройстве отноше­ние сигнал/шум на выходе коррелятора (согласованного фильтра) растет согласно теории потенциальной помехоустойчивости про­порционально базе сигналаВ :

Значит, увеличивая В при заданном , можно передавать информацию и в случае , что затрудняет прием ШПС, если их форма не известна, и повышает энергетическую скрыт­ность связи. Наконец, широкополосные системы связи обеспечи­вают многоадресную передачу информации в полосе частот более узкой, чем при использовании узкополосных сигналов и одинако­вом числе корреспондентов.

МЕТОД ПРЕРЫВИСТОЙ СВЯЗИ

За последние годы все большее внимание уделяется системам прерывистой связи, обеспечивающим повышение верности и сред­ней скорости передачи информации по радиоканалам.

При использовании для дальней связи тропосферного и ионо­сферного рассеяния радиоволн в отдельные промежутки времени из-за плохих условий их распространения никакой метод приема не обеспечивает получения результирующего сигнала выше уров­ня, необходимого для нормального приема. Наиболее эффектив­ным методом передачи информации в таких случаях является ме­тод прерывистой связи. В системе прерывистой связи информация передается только в те промежутки времени, в течение которых обеспечивается надежный прием сигналов.

Метод основан на использовании обратного канала связи, обес­печивающего оценку условий распространения радиоволн. Перед началом очередного сеанса связи излучается зондирующий сиг­нал, а информация накапливается на передающем конце в запо­минающем устройстве. Когда отношение сигнал/помеха в пункте приема выше определенного порогового значения , по обратному каналу посылается специальная команда на передачу накопленной информации, которая «выстреливается», т. е. пере­дается со скоростью, во много раз превышающей скорость пере­дачи в непрерывных системах связи. При снижении уровня сигна­ла приемный пункт прерывает передачу информации специальной командой, после чего начинает опять излучаться зон­дирующий сигнал и т. д.

В основе беспроводных стандартов 802 лежит технология широкополосного сигнала (ШПС, Spread Spectrum, SS). Разработанная с целью снижения мощности передатчика и повышения устойчивости к узкополосным помехам, технология ШПС направлена на преобразование изначально узкополосного полезного сигнала в сигнал гораздо более широкого спектра. При этом спектральная мощность сигнала перераспределяется по используемому частотному диапазону, и максимальная мощность передаваемого сигнала становится значительно ниже исходной.

Одинаковый эффект дает передача сигнала мощностью 10 Вт с шириной спектра в 1 МГц и сигнала с шириной спектра в 200 МГц, но мощностью всего лишь 200 мВт.
Поскольку используемый в широкополосных системах уровень сигнала сравним с уровнем естественного шума (noise floor), часто их называют системами шумоподобного сигнала. Низкий уровень сигнала снижает помехи, создаваемые широкополосного сигнала для других передатчиков и наоборот — узкополосные помехи слабо влияют на качество приема широкополосного сигнала.

В беспроводных сетях используются такие методы реализации технологии широкополосного сигнала, как метод прямой последовательности (Direct Sequence Spread Spectrum, DSSS), метод частотных скачков (Frequency Hopping Spread Spectrum, FHSS).

Метод FSSS заключается в том, что приемник и передатчик синхронно перестраивают рабочую частоту после некоторого фиксированного времени передачи (dwell time). На рисунке представлена работа двух передатчиков, использующих технологию FHSS.

Как видно из рисунка, станции в каждый момент времени работают на различных частотах, что позволяет одновременно работать большому количеству передатчиков. В случае возникновения узкополосной помехи она будет искажать только часть передаваемого сигнала, что позволяет говорить о помехозащищенности данного метода. Кроме того, последовательность скачков может выбираться с использованием псевдослучайной функции, что усложняет прослушивание передаваемых данных со стороны третьих лиц, приемники которых не синхронизированы с передатчиками.

Недостатками метода частотных скачков являются невысокая максимальная скорость передачи, связанная с потерями на переключение между частотами (hop time), и относительно высокая мощность передачи на каждой из частот, что может мешать работе других передатчиков.

Метод DSSS использует для расширения спектра радиосигналов различные методы кодирования. С их помощью один символ (нуль или единица) кодируется последовательностью из нескольких прямоугольных импульсов меньшей длительности. Поскольку ширина спектра прямоугольного импульса обратно пропорциональна его длительности, передача нескольких импульсов (чипов) за время, отведенное под один импульс, расширяет частотный диапазон. В качестве методов преобразования используются код Баркера (Barker Code), комплиментарный код (Complementary Code Keying, ССК) или метод ортогонального частотного разделения с мультиплексированием (Orthogonal Frequency Division Multiplexing, OFDM).

При использовании метода OFDM поток передаваемых данных распределяется по нескольким подканалам и передача ведется параллельно на всех этих подканалах. При этом высокая пропускная способность достигается за счет одновременной передачи на нескольких подканалах, поскольку скорости передачи всех подканалов суммируются. Частоты несущих для подканалов выбираются таким образом, чтобы они были ортогональны друг другу, т.е., чтобы их произведение, усредненное на некотором интервале, равнялось нулю. Это позволяет выбирать в качестве подканалов перекрывающиеся частоты, поскольку ортогональность несущих гарантирует отсутствие межканальной интерференции.

Глубокое погружение в особенности реализации физического уровня беспроводных сетей хотя и выглядит очень заманчивой перспективой, но явно грозит увести нас далеко от основной цели. В связи с этим мы предлагаем пытливому читателю самому разобраться в этом вопросе, а в качестве приложения (кроме, естественно самих стандартов, http://standards.ieee.Org/getieee802/802.11.html) приводим список рекомендованной литературы на русском языке:

  • Сергеев П., Технологии беспроводных сетей семейства 802.11,
  • Пировских А., Чеканов Д., Стандарт 802.11 п: первый взгляд.

В. Ф. Попов

«МЕТОДЫ И УСТРОЙСТВА ФОРМИРОВАНИЯ И ОБРАБОТКИ ШИРОКОПОЛОСНЫХ СИГНАЛОВ»

Учебное пособие

Издательство ОмГТУ

УДК 621.396(075)

ББК 32.811я73

Рецензенты:

В.И.Сединин, д-р техн. наук, проф., зав. кафедрой «САПР»

Сибирского государственного университета телекоммуникаций и информатики;

В.А. Алгазин, к. ф.- м. наук, доцент, зам. Директора ОФИМ СОРАН по информатизации

Попов В.Ф.

П58 Методы и устройства формирования и обработки широкополосных сигналов : учеб. пособие /В.Ф.Попов. – Омск: Изд-во ОмГТУ, 2011, - 116 с.

ISBN978-5-8149-0817-9

В учебном пособии излагаются основные теоретические положения формирования, оценки качества и обработки ФМ и частотно-дискретных широкополосных сигналов (ШПС) на основе линейных и нелинейных псевдослучайных последовательностей (ПСП). Эти положения необходимы для решения задач синтеза и анализа современных и перспективных помехозащищенных широкополосных систем радиолокации или связи с кодовым разделением абонентов и большим объемом ансамбля ШПС, которые реализуются методами прямого расширения спектра сигнала, псевдослучайной перестройки рабочей частоты (ППРЧ).

Пособие содержит примеры решения задач и перечень задач для самостоятельной работы студентов.

Пособие предназначено для студентов дневной и заочной форм обучения специальности 210402 «Средства связи с подвижными объектами» и 210302 «Радиотехника», магистров направлений «Инфокоммуникационные технологии и системы связи», «Телекоммуникация» и «Радиотехника», а также может быть полезным радиоинженерам и студентам других специальностей.

Печатается по решению редакционно-издательского совета

Омского государственного технического университета

УДК 621.396(075)

ББК 32.811я73

ISBN978-5-8149-0817-9 ГОУ ВПО «Омский государственный

Технический университет», 2011

Введение

Решение задач статистического синтеза и анализа устройств формирования, приема и обработки широкополосных шумоподобных сигналов (ШПС) широкополосных систем связи (ШСС) и радиолокации требует от студентов достаточно высокой математической подготовки и встречает определенные затруднения.

Целью издания учебного пособия является ознакомление студентов с современными достижениями отечественных и зарубежных ученых по синтезу ШПС и систем ШПС на основе линейных и нелинейных псевдослучайных последовательностей (ПСП) и выработка у студентов навыков по синтезу и анализу качества ШПС, ШСС в целом и ее элементов.



В пособии изложены основные свойства, типы ШПС, методы построения ШСС, свойства и методы формирования и обработки линейных и нелинейных фазоманипулированных (ФМ) ШПС, дискретно частотных сигналов (ДЧС). Кроме того дана оценка помехоустойчивости асинхронно-адресной ШСС с кодовым разделением абонентов при различных видах помех, рассмотрены методы реализации поиска и синхронизации ШПС и приведены оценки временных затрат поиска и синхронизации.

В приложении приведены примеры синтеза согласованных фильтров (СФ) ШПС, а также периодически повторяющихся сигналов с накоплением в рециркуляторе. Даны теоретические сведения, рекомендации для решения задач и перечень задач, которые предназначены для домашних заданий, а также для использования при выполнении курсовых работ и проектов по следующим разделам курса:

1. Синтез производных систем ФМ, ДЧ ШПС с большим ансамблем сигналов.

2. ШСС с прямым расширением спектра, псевдослучайной перестройкой частоты (ППРЧ) и помехоустойчивым кодированием.

При подготовке пособия использованы материалы монографий, книг известных ученых в области теории связи и радиолокации: Л.Е. Варакина, Дж. Прокиса и др., а также материалы статей Ю.В. Гуляева, В.Я. Кислова и др., опубликованных в периодической литературе по данной тематике, в том числе и работы автора учебного пособия.

ШИРОКОПОЛОСНЫЕ СИГНАЛЫ, СВОЙСТВА, ТИПЫ,

Свойства ШПС

Широкополосные сигналы позволяют:

1). Обеспечить высокую помехозащищенность ШСС, определяемую помехоустойчивостью, энергетической и структурной скрытностью ШПС. При корреляционном приеме ШПС или приеме на согласованный фильтр (СФ) увеличение выходного отношения сигнал/шум (ОСШ)

относительно входного h вх 2 =Р с /Р П равно .

При больших В можно обеспечить высокую помехоустойчивость при h вх 2 <<1 (в отличие от пороговой ЧМ) и энергетическую скрытность , т. к. время обнаружения ШПС при априорной неопределенности наличия сигнала пропорционально полосе ШПС



T обн ≈ а∙F , (1.4)

где а - const , зависящая от параметров приемника радиоразведки;

2). Организовать одновременную работу многих абонентов в общей полосе частот асинхронно-адресной системы связи (ААСС) с кодовым разделением абонентов (СDМА), за счет большого объема L системы ШПС, определенной единым правилом построения . Для малых систем L < В, нормальных L = В , а для больших L >> В число сигналов в системеравно:

где с, n const и n >1 .

Кроме того смена ШПС из ансамбля L в сеансе связи обеспечивает структурную (параметрическую) скрытность ШСС.

Сигналы, входящие в систему, должны обеспечивать минимум взаимных помех, определяемый уровнем максимальных пиков взаимокорреляционной функции (ВКФ) R ij сигналов i и j

, (1.6)

где α -пик-фактор ВКФ; чем меньше α , тем лучше ВКФ;

3). Бороться с многолучевостью сигнала разделением лучей. Минимальная задержка между разделяемыми лучами определена полосой F ШПС:

(1.7)

где τ 0 – ширина АКФ R (τ ) ШПС;

4). Обеспечить совместимость передачи информации с измерением параметров расстояния и скорости движения объекта в системах подвижной связи. Среднеквадратическая погрешность измерения :

Расстояния (по задержке сигнала) равна

; (1.8)

Скорости (по доплеровскому смещению частоты) равна

, (1.9)

т.е. зависят от составляющих базы ШПС, изменяемых независимо;

5). Обеспечить электромагнитную совместимость ШСС с узкополосными системами связи (УПС). Помехоустойчивость ШПС при УПС помехи равна (1.3), где h вх 2 =Р ШПС /Р У , а усиление обработки В.

Мощность ШПС помехи на выходе приемника УПС равна (Р ШПС /F F У ипомехоустойчивость УПС равна также (1.3), где h вх 2 =Р У /Р ШПС и В=F/F У .

1.2. Основные типы ШПС

Различают: Частотно-модулированные (ЧМ) сигналы; Многочастотные (МЧ) сигналы; фазоманипулированные (ФМ) сигналы, в том числе сигналы с кодовой фазовой манипуляцией (КФМ сигналы); дискретные частотные сигналы (ДЧС), в том числе сигналы с кодовой частотной модуляцией (КЧМ) и дискретные составные частотные (ДСЧ) сигналы (составные сигналы с кодовой частотной модуляцией – СКЧМ сигналы). Иногда ФМ сигналы называют ШПС, а ДЧ сигналы - сигналами с “прыгающей частотой”.

Частотно-модулированные (ЧМ) сигналы . Частота сигнала

меняется по заданному закону Рис.1.1.

Рис. 1.1. ЧМ сигнал с модуляцией по V – закону на интервале 2Т, состоящий из

двух сигналов с линейной ЧМ (ЛЧМ): , где

мгновенная частота , знак «-» для эпюры 1, а знак «+» для эпюры2; а -скорость изменения ЛЧМ; -девиация частоты.

На рисунке представлена частотно-временная (f , t) – плоскость, на которой штриховкой приближенно изображено распределение энергии ЧМ сигналов по частоте и по времени. База ЧМ сигналов равна

, (1.10)

где - девиация частоты. Такие сигналы используются в радиолокации, связи с приемом СФ на ПАВ.

Многочастотные (МЧ) сигналы являются суммой N гармонических сигналов u 1 (t), … u k (t) ..u N (t) , амплитуды и фазы которых определяются в соответствии с законами модуляции сигнала, например, сигналы ОFDM.

На частотно-временной плоскости Рис.1.2 штриховкой выделено распределение энергии одного элемента МЧ сигнала на частоте f k . Все элементы полностью перекрывают квадрат со сторонами F и T . База сигнала B равна площади квадрата. Ширина спектра элемента .

f

Рис. 1.2. МЧ сигнал на частотно-временной плоскости.

Поэтому база МЧ сигнала:

(1.11)

совпадает с числом гармонических сигналов и для большой базы B требуется большое число частотных каналов N . Однако, для уменьшения влияния многолучевости весьма эффективны сигналы ОFDM с Т>> , занимающие по величине B промежуточное положение между ШПС и УПС. Недостатком МЧ сигналов является большой пик – фактор.

Фазоманипулированные (ФМ) сигналы представляют последовательность радиоимпульсов, фазы которых изменяются по заданному закону (рис.1.3а)

Рис.1.3. Фазоманипулированные (ФМ) сигналы.

Модулированный по амплитуде и фазе радиосигнал можно записать в общем виде

где медленно меняющиеся по закону модулирующего сигнала:

- A(t) огибающая АМ сигнала (рис.10.3.б)

, (1.13)

где - преобразование Гильбертаот u(t) ;

- Ө(t) фаза ФМ сигнала рис.1.3.в (принимает обычно значения 0 или ).

Сигнал (1.12) является реальной частью комплексного сигнала

где комплексная огибающая сигнала равна

(1.15)

а модуль - огибающая (1.13) сигнала u(t) .

Огибающая U(t) ФМ сигнала при значениях и A(t) =1 является действительной функцией времени (мнимая синусная составляющая равна нулю) и принимает значения +1 и -1 (рис.1.3г ). В общем случае огибающая U(t) является комплексной, например, для многофазных или КАМ сигналов, но всегда является НЧ видеосигналом.

Таким образом, ФМ радиочастотному сигналу (1.12) соответствует видео ФМ сигнал U(t) , состоящий из положительных и отрицательных импульсов (рис.1.4) с симметричным спектром относительно .

U(t) 1 2 . . . . . . N

F≈2/

0 t

Рис. 1.4. Фазоманипулированный видеосигнал и ЧВП.

Если число импульсов N , то длительность одного импульса , а ширина его спектра равна приближенно ширине спектра сигнала . На частотно-временной плоскости (ЧВП) штриховкой выделено распределение энергии одного элемента (импульса) ФМ сигнала.

Все элементы перекрывают выделенный квадрат со сторонами F и T . База сигнала равна:

т. е. числу импульсов в сигнале.

Применение ФМ сигналов в качестве ШПС с прямым расширением спектра и базой B=10 4 ...10 6 ограничено в основном аппаратурой обработки и точностью синхронизации. При использовании СФ на ПАВ возможен оптимальный прием ФМ сигналов с максимальной базой B max =1000…2000 . ФМ сигналы, обрабатываемые такими фильтрами, имеют спектр 10...20 МГц и относительно малую длительность 50..100 мкс.

СФ на приборах с зарядовой связью (ПЗС) позволяют обрабатывать сигналы с базой 10 2 ...10 3 при длительностях сигналов 10 -4 …10 -1 с . Цифровой коррелятор на ПЗС позволяет обрабатывать сигналы с базой не более . При формировании и приеме ФМ ШПС широко используют цифровые методы обработки.

Дискретные частотные сигналы (ДЧС)представляют последовательность радиоимпульсов, несущие частоты которых изменяются по заданному закону. Если число импульсов в ДЧ сигнале равно M , то длительность импульса , а ширина его спектра . Энергия этих сигналов распределена не равномерно на ЧВП. База ДЧ сигналов

т.к. база импульса .

Достоинство ДЧ сигналов перед МЧ сигналами состоит в том, что для получения необходимой базы значение значительно меньше. Однако, более эффективны ДСЧ сигналы.

Дискретные составные частотные сигналы (ДСЧ) являются ДЧ сигналами, у которых каждый импульс заменен псевдослучайным ШПС. На рис. 1.5а изображен видео ФМ сигнал, отдельные части которого передаются на различных несущих частотах. На рис. 1.5б штриховкой выделено распределение энергии ДСЧ сигнала.


U(t)

f 2 f 3 f 7 f 1 f 5 f 6 f 4 а)

f

f 0 +F/2

f 0 -F/2

Рис. 1.5. ДСЧ-ФМ сигнал. (Составной сигнал с кодовой ЧМ и ФМ (СКЧМ-ФМ)).

Площадь - равна числу импульсов ФМ сигнала в одном частотном элементе ДСЧ сигнала. База ДСЧ сигнала

При этом число импульсов полного (на интервале Т) ФМ сигнала равно

Такой сигнал называют ДСЧ-ФМ сигналом. Известны ДСЧ-ЧМ сигналы на основе кодовой ЧМ и частотной манипуляции (ДЧС вместо ФМ ШПС).

Методы построения ШСС.

ШПС являются псевдослучайными сигналами со свойствами случайного шума и могут формироваться по детерминированным законам.

Форма и свойства ШПС определяется модулирующей псевдослучайной двоичной последовательностью (ПСП) с элементами 0 и 1, которая преобразуется в бинарную ПСП с элементами +1 и -1 согласно:

(1.19)

где b k , k =0,1,2..(N -1) - символы ПСП, принимающие значение 0 или 1;

a k =(2 b k - 1) – коэффициенты ПСП, принимающие значение +1 или -1;

q(t) - функция, определяющая форму элементарного символа длительностью τ 0 псевдослучайного сигнала U(t) .

В ШСС с ШПС ширина спектра огибающей модулированного радиосигнала не определяется (в отличие от УПС) скоростью передачи информации, а определяется шириной спектра ПСП.

Прямое расширение спектра (ПРС) в ШСС с ФМ-2 реализуют модуляцией информационного сигнала U инф. (t) БВНс амплитудами ±1 сигналом БВН U(t) ПСП (1.19), т.е. перемножением. Сигнал БВН этого произведения U прс (t) =U инф. (t)U(t) с амплитудами ±1 является модулирующим сигналом ФМ-2 ШПС с ПРС и является огибающей радиосигнала ФМ-2 ШПС с ПРС, который можно записать в виде:

Структурная схема ШСС ФМ-2 ШПС с ПРС дана на рис.1.6.

Рис. 1.6. ШСС с ПРС ФМ-2 ШПС (база В = ): С- синхронизатор,

СМ- смеситель, У - усилитель, РУ- решающее устройство, СЧ- синтезатор частот.

При расширении спектра радиосигнала скачками по частоте (СЧ) частота несущего колебания изменяется дискретно во времени (ДЧС), принимая конечное число разных значений. Последовательность её значений можно рассматривать как ПСП, которая формируется в соответствии с некоторым кодом. Структурная схема ШСС с СЧ представлена на рис.1.7, а база ДЧС сигнала определена выражением (1.17).

ШСС с ДСЧ-ФМ сигналом (рис. 1.5) можно построить комбинацией формирователей ФМ ШПС (рис. 1.6.) и ДЧС ШПС (рис.1.7.): первоначально формируется ФМ-2 ШПС, а затем ДЧС ШПС. Другие варианты реализации ШСС с ПРС и СЧ рассмотрены в работах .

Сигналы

Максимальные уровни боковых пиков апериодических АКФ ПСП конечной длительности можно уменьшить, применяя многофазные сигналы и амплитудно-фазоманипулированные сигналы.

Многофазные сигналы можно построить дискретизацией аналоговых сигналов с ЧМ, например, линейно-частотной модуляцией (ЛЧМ). На рис.2.8, изображена зависимость фазы θ от t огибающей сигнала с ЛЧМ (рис.1.1) в форме записи (1.15).

Рис.2.8. Зависимость фазы θ огибающей сигнала с ЛЧМ

ЛЧМ сигнал длительностью Т можно представить в виде последовательности N радиоимпульсов с мгновенной частотой, линейно изменяющейся в течение импульса Значения линейно-ломанной аппроксимирующей дискретной функции совпадают с непрерывной θ(t) в точках, кратных τ 0 , т.е. θ n =θ (n τ 0), n = 0,1,…N -1.

Если в качестве начальных фаз многофазного сигнала ЧМ взять

θ ф n =(θ n +θ n +1)/ 2, то начальные фазы n -го импульса многофазного сигнала, соответствующего аналоговому сигналу ЛЧМ, равны:

θ ф n =(n 2 +n) π/N . (2.41)

Меняя β (т.е. θ ф n ) получим систему многофазных сигналов.

Модуль АКФ такого многофазного сигнала равен

. (2.42)

В качестве аналогового сигнала можно взять также сигнал с квадратичной частотой модуляцией (КЧМ). Известно, что модули АКФ этих аналоговых и соответствующих многофазных сигналов близки, а боковые пики

Амплитудно-фазоманипулированные (АФМ) сигналы. Можно показать , на основании (2.8), что идеальной АКФ ФМ ПСП без боковых пиков соответствует бесконечная ПСП. Реальные конечные ПСП, уменьшающие боковые пики АКФ ПСП символов a n , n =0,1…N , можно построить, уменьшая амплитуды крайних оставленных и отброшенных символов бесконечной ПСП, отсчитываемых от середины ПСП. При этом известно, что лучшим АФМ сигналом является ПСП символов рис.2.9а с квадратичным фазовым спектром Ψ(ω) (2.7) КП и огибающей (1.13) с косинусной формой, т. е. пик - фактором .

Если произвести двоичное квантование (клипирование) по уровню АФМ сигнала (рис.2.9а), т.е. получить (рис.2.9б), то получим ФМ сигнал, АКФ которого будет обладать большими, но все же достаточно малыми боковыми пиками.

Рис.2.9. АФМ сигнал (а ), ФМ сигнал (б), АКФ ФМ сигнала (в ).

Например, АФМ сигнал с квадратичным фазовым спектром при N=37 имеет максимальный боковой пик АКФ 1,5%. При этом максимальный боковой пик АКФ ФМ сигнала (рис.2.9в) равен 5/37=0.135, что несколько меньше Можно показать, что среднеквадратичное значение боковых пиков АКФ таких ФМ сигналов (при оптимальном выборе их параметров) равно т.е. такие сигналы можно отнести к оптимальным (или минимаксным) ФМ сигналам.

Минимаксными ФМ сигналами называют сигналы, у которых максимальные боковые пики АКФ минимальны.

2.4.3.Cистемы ФМ сигналов

Ранее отмечалось, что для помехозащищенных ШСС требуется большой объем L (1.5) нормальных и больших систем ФМ ШПС.

К такому объему можно приблизиться, реализуя системы сигналов на основе, например, систем Уолша или производные системы ФМ сигналов на основе М-последовательностей.

Система сигналов Уолша . Многие системы ФМ сигналов образованы на базе систем сигналов Уолша, построенных на основе матрицы Адамара

, (2.43)

где H N - матрица Адамара порядка N , а H 2 N - порядка 2N .

Полагая H 1 =1 из (2.43) можно получить матрицы порядка 2

или 4,8…2 т , где т -целое число. Например, порядка 8

(2.43")

В качестве КП системы Уолша можно брать строки или столбцы матрицы Адамара. Число этих КП (объём системы) равно порядку матрицы N .

Обозначим j-ю кодовую последовательность Уолша в (2.43") как {W j }, , а её п -ый символ через W j (п ). На основании уравнения ортогональности матриц Адамара , где в обычном произведении матриц Т - знак транспонирования, а I- единичная матрица, можно записать уравнение ортогональности ПСП Уолша

. (2.44)

На рис.2.10 приведены ПСП системы Уолша согласно матрице Н 8 , которые упорядочены по числу блоков μ в последовательности.

Рис.2.10. Система сигналов Уолша.

Отметим, что число блоков μ в различных последовательностях изменяется от 1 до N , и плохо согласуется с блоковой структурой кода СП (2.23), (2.27). Поэтому система сигналов Уолша обладает плохими корреляционными свойствами, т.е. АКФ и ВКФ имеют большие боковые пики.

При этом спектр (2.6) кодовой ПСП Уолша с μ=1 имеет максимум (рис.2.1) при ω = 0, а с μ = N имеет максимум при ω = π/τ 0 и оба максимума равны N . Соответственно максимум СПМ равен N 2 . У остальных ПСП максимумы лежат между ω = 0 и ω = π/τ 0 .

На базе систем Уолша можно строить производные системы сигналов.

Производным сигналом называют сигнал, образованный посимвольным произведением двух или более исходного и производящего сигналов, которые могут быть узкополосными и широкополосными.

К таким системам можно отнести:

-сегментные cистемы , реализуемые путем выделения перекрывающихся или не перекрывающихся сегментов (отрезков) из ПСП на основе М-последовательности большой длины N ;

- циклические системы Голда, Касами.

Выбор производящего сигнала зависит от исходного сигнала. Если исходный сигнал U широкополосный, то производящий V тоже широкополосный с малыми уровнями боковых пиков ФН. Если исходный сигнал узкополосный, то для производящего сигнала достаточно многократное превышение полосы исходного сигнала и малый уровень боковых пиков АКФ.

Производные сегментные системы сигналов . Обозначим комплексную огибающую (1.15) исходной М-последовательности U(t) , где

0 ≤ t ≤T, а модуль огибающей (1.13) производящего сигнала V(t) =1, 0 ≤ t ≤ T 0 , гдеT 0 < T. В этом случае выделение сегмента из ПСП эквивалентно применению узкополосного производящего сигнала с прямоугольной огибающей и длительностью, равной длительности сегмента T 0 .

Производный сигнал

S p (t)=U(t+t p)∙V(t) (2.45)

называют р -м сегментом, расположенным на отрезке , который вырезается из исходного сигнала (ПСП) на отрезке [t p , t p +T 0 ]. Последовательность сегментов образует систему сигналов

с объемом системы при примыкающих сегментах и длительностью сегмента .

ВКФ сегментов и максимальные боковые пики ВКФ сегментов равны:

При проектировании системы сигналов задается эффективное значение ВКФ При заданном Q и известном, например, N ПСП из (2.46) определяют длительность сегмента и объем системы .

Производный сигнал может формироваться и при перекрывающихся сегментах.

Производные циклические системысигналов . Пусть для циклических систем даны две кодовые ПСП {А(ν)}, {В(ν)} , где ν- номер символа в ПСП, а символы А(ν), В(ν) принадлежат мультипликативной комплексно-сопряженной р -ичной группе.

Если р >2, то будем называть сигнал многофазным . Этим ПСП можно поставить в однозначное соответствие цифровые кодовые ПСП {а(ν)}, {b(ν)}, символы которых а(ν), b(ν) принадлежат аддитивным р -ичным группам.

При р =2 символами ПСП {А(ν)}, {В(ν)} являются 1 и -1, а символами цифровых ПСП являются 0 и 1.

Формирование КФ (2.18) сводится к перемножению символов А(ν) и В*(ν) с последующим суммированием, где *-знак комплексной сопряженности.

При переходе к символам а(ν), b(ν) КФ определяется через разности этих символов по mod p на основе сравнения (Примечание стр.23)

Т.е. . (2.47)

Для циклических систем ФМ сигналов ПСП {а(ν)}, {b(ν)} должны обладать следующим циклическим свойством: разность по mod p ПСП {а(ν)} и её циклической перестановкой {а(ν+μ)} является другой циклической перестановкой {а(ν+λ)} исходной ПСП, т.е.

{а(ν)} - {а(ν+μ)}= {а(ν+λ)}, (2.48)

где λ≠0 и λ≠μ(mod p). Аналогично:

{ b(ν)}- {b(ν+μ)}= {b(ν+λ)}.

Равенства (2.48) выполняются для М-последовательностей согласно их аддитивно-циклическим свойствам.

Пример. Циклические перестановки получаются так : исходная ПСП {а(ν)} записывается в виде периодической бесконечной ПСП:

a(N-2),a(N-1), a(0), a(1),…a( ν),… a(μ),… a(N-2), a(N-1 ), a(0), a(1),a(μ), ..

Т.е. она начинается с символа a(0) и заканчивается символом a(N-1) . Циклическая перестановка {а(ν+μ)} начинается с символа a(μ) при ν=0 и заканчивается при ν = N-1символом a(μ +N-1).

Циклическая система сигналов состоит из последовательностей {С j (ν)}, символы которых определяются равенством

C j (ν)=a(ν)-b(ν+j), (2.49)

где

Каждая ПСП циклической системы равна разности между ПСП {а(ν)} и ПСП циклической перестановки {b(ν+j)}, т.е.

{C j (ν)}={a(ν)-b(ν+j)} (2.50)

Такие циклические системы являются производными, где система последовательностей {b(ν+j)} является исходной , а ПСП

{а(ν)} - производящей .

Известно, что ВКФ сигналов циклической системы определяются периодическими ВКФ, ВФН образующих последовательностей. Поэтому для построения циклической системы минимаксных сигналов (R max →min) необходимо, чтобы периодические ВКФ и ВФН образующих сигналов имели малые боковые пики (R max (λ)→min). Общего метода построений таких сигналов нет.

Циклические системы Голда . По методу Голда образующим двоичным (p=2 ) М-последовательностям длины N=2 n -1 должны соответствовать примитивные многочлены, корнями которых являются α -ν для первой и (α 2 l +1 ) -ν для второй последовательностей, где l -любое целое число, взаимно-простое с п .

Примитивным называют неприводимый (не может быть представлен в виде произведения) многочлен, одним из корней которого является примитивный элемент поля Галуа GF(2 n).

Корень α называется примитивным, если все его степени (α 0 , α 1 ,..α N = α 0 ) дают различные элементы поля.

Такие образующие ПСП выбираются по известным таблицам неприводимых многочленов и периодические нормированные ВКФ ПСП циклической системы сигналов являются случайными уровнями с

максимальными боковыми пиками

R max (λ) ≤ 1,4/ , (2.51)

что меньше в 2 раза, чем для полного кода (3/ ).

Пример . Полагая обозначения n=k эквивалентными, возьмем в качестве образующих М-последовательностей пару при k =5 предпочтительных ПСП длины N=2 k -1 =31, которым соответствуют полиномы 101001 и 111011(см. раздел 2.4.1):

f 1 (x) =а 0 x 5 +а 3 x 2 + 1

f 2 (x) = а 0 x 5 +а 1 x 4 + а 3 x 2 + а 4 x +1. (2.50")

Эти ПСП имеют трехуровневую периодическую ВКФ {-1, -t(k), t(k) -2}, где уровень t(k) определен (2.32").

Из этой пары ПСП {a(ν )} и {b(ν )} образуем согласно (2.50) ансамбль

последовательностей {C j (ν) }, длины N каждая, взяв для каждого циклического сдвига j посимвольную сумму по mod2 символов последовательности {a(ν )} и символов циклически сдвинутой на j версии ПСП {b(ν+j )} или наоборот. Таким образом, получим N новых периодических последовательностей с периодом N =2 k -1.

Если включить в этот ансамбль и исходные ПСП {a(ν )} и {b(ν )}, то получим ансамбль из (N+2)=33 ПСП. Эти ПСП называют последовательностями Голда, из которых 31 ПСП не являются последовательностями максимальной длины. Схема реализации генератора предпочтительных М-последовательностей, которым соответствуют примитивные многочлены (2.50"), и генератора ПСП Голда представлена на рис.2.10".

Рис.2.10". Схема реализации генератора предпочтительных

М-последовательностей (2.50") и соответсвующих ПСП Голда

АКФ ансамбля из 31 ПСП Голда не являются в отличие от М-последо-вательностей двоичными. Голд показал, что значения ВКФ любой пары ПСП ансамбля (N+2) последовательностей Голда и пиковые значения не нормированной АКФ R max являются троичными с возможными значениями {-1,-t (k ), t k -2}, где уровень t (k ) определен (2.32").

Циклические последовательности Касами образуются аналогичными процедурами согласно (2.50), где, если ввести задержку D(j) , то можно записать в виде:

{C j (ν)}={А(ν)} {D(j)B(ν)}, (2.52)

где символ - посимвольное умножение последовательностей {А(ν)} и {D(j)B(ν)} , а произведение D(j)B(ν) является символом B(ν), сдвинутым на j тактов. Число всех ПСП равно N +2 (N сдвигов плюс две исходных ПСП).

Для малой системы Касами с ансамблем

предложено брать исходные М - последовательности: {А(ν)} с периодом , а { B(ν)} с периодом и .

Пример . Рассмотрим процедуру генерации ансамбля ПСП Касами из L =2 k /2 двоичных ПСП периода N =2 k -1, когда k –четно.

В этой процедуре начинаем с М-последовательности {a} и формируем двоичную последовательность {b}, взяв каждый (2 k /2 +1) символ из {a}, т.е. последовательность {b} формируется путем децимации (прореживания) {a} через (2 k /2 +1) символ. Полученная последовательность {b} периодическая с периодом (2 k /2 -1), например, при k =10 период ПСП {a} равен N =2 k -1=1023, а период {b} равен (2 k -1)=31. Следовательно, если мы будем наблюдать 1023 символа последовательности {b}, то увидим 33 повторения 31 символьных последовательностей.

Теперь, взяв N =2 k -1 символа из ПСП {a} и {b}, мы формируем новый ансамбль ПСП путем суммирования по mod2 символов из {a} и символов {b} и всех (2 k /2 -2)=30 циклических сдвигов символов из {b}.

Включая ПСП {a} в ансамбль, мы получим ансамбль объемом из L =2 k /2 (1 ПСП {a}+1 ПСП{b}+30 ПСП{b} циклической перестановки) двоичных ПСП длины N =2 k -1 каждая, которые называются последовательностями Касами.

АКФ и ВКФ (не нормированные) этих ПСП имеют значения из ряда: {-1,-(2 k /2 +1), 2 k /2 -1 }, а максимальное значение ВКФ для любой пары ПСП этого ансамбля равно . Эта величина удовлетворяет нижней границе , найденной Уолшем для любой пары двоичных ПСП периода N объем большой системы Кассами: ,

а при соответственно

При больших п объем боль

А.Резников, В.Копейкин, Б.Любимов, В.Куликов

Новое перспективное направление в гражданской электросвязи - применение шумоподобных сигналов (ШПС) по сравнению с обычными узкополосными телекоммуникационными системами - обладает рядом преимуществ.

Уже сегодня область применения техники ШПС распространяется на беспроводные локальные компьютерные сети, сотовую связь (вплоть до глобальных информационных систем), персональные системы телекоммуникаций. Эта техника приобретает все более заметный вес на пути к информационному обществу. Именно техника ШПС во многом поможет сделать доступным каждому в любом месте в любое время обмениваться речевыми сообщениями, видеоинформацией, передавать данные и т.д.

В чем же суть, значение, в чем новые качества шумоподобных сигналов? Является ли использование ШПС эволюцией или революцией в современной связи?

Основная задача любой системы связи - передача сообщений от источника информации к потребителю наиболее экономичным образом. Обычно в системах радиосвязи для эффективной передачи информации используется относительно узкая полоса частот. Как известно, перенос информации в радиочастотный диапазон осуществляется изменением (модуляцией) одного или нескольких параметров несущего ВЧ колебания. На приемной стороне осуществляется обратная операция - демодуляция.

Метод модуляции выбирают так, чтобы свести к минимуму действие помех и искажений. Традиционные методы модуляции позволяют максимально увеличить мощность на основной частоте и предельно сузить занимаемую полосу частот. Общепринятым критерием эффективности метода модуляции обычно является оценка концентрации мощности сигнала по спектру для заданной скорости передачи информации. Такой подход представляется интуитивно правильным и соответствующим здравому смыслу. Это стремление нашло, например, свою реализацию при переходе от амплитудной модуляции (AM) к однополосной (SSB). Подавление несущей и одной из боковых полос позволяет вдвое сократить занимаемую полосу частот в эфире и сконцентрировать всю мощность передатчика в одной боковой полосе. Похожим образом формируется и телевизионный сигнал. Если внимательно проанализировать любую традиционную систему передачи, можно увидеть, что все они содержат один модуляционный процесс - несущее колебание модулируется передаваемой информацией.

В системах связи с шумоподобными сигналами в свете традиционного подхода может показаться неожиданным движение в строго противоположном направлении - от узкополосных систем связи к широкополосным. В аппаратуре ШПС всегда осуществляются два модуляционных процесса, один из которых предназначен специально для значительного расширения спектра. Однако при этом системы связи не только ничего не теряют, а приобретают новые качества.

В чем же заключается смысл дополнительной модуляции?

Расширение спектра частот передаваемого сообщения осуществляется либо прямым расширением спектра, либо скачкообразным изменением частоты несущей. При реализации первого метода на один вход балансного смесителя модулятора передатчика подается информационный сигнал, на другой - периодически повторяющаяся двоичная псевдослучайная последовательность (ПСП) сигналов с определенным числом бит. Почему псевдослучайная? Это связано с тем, что внешне она выглядит как случайная последовательность знаков "+1" и "-1". Но это только на первый взгляд. В действительности эта последовательность генерируется вполне регулярными методами с помощью цифровых автоматов и обладает определенными свойствами.

Его мощность распределяется в очень широкой полосе частот, и сигнал становится незаметным на фоне помех. Прием такого сигнала возможен в том случае, если известны параметры используемой в передатчике псевдослучайной последовательности.

На приемной стороне возрастает помехоустойчивость по отношению к узкополосным помехам большой мощности. Это связано с тем, что узкополосные помехи поражают небольшую часть спектра сигнала и не нарушают его целостности. Для обычных узкополосных систем такая помеха в полосе рабочих частот может полностью вывести ее из строя. Шумоподобный же сигнал, лишенный помехой части спектра, можно реконструировать на приемной стороне без существенных потерь информации. Это объясняется тем, что мешающие сигналы в приемнике ШПС проявляют себя не более чем слабым повышением уровня шумового фона, а не срывом сеанса связи.

Именно эта эффективность подавления помехи объясняет то, что ШПС широко применялись и применяются в военных системах связи, и работы в этой области длительное время были закрытыми. Однако первые публикации по их использованию в многоадресных системах с кодовым разделением появились в открытой печати еще в середине 60-х годов, и среди этих публикаций необходимо отметить статьи Л.Е.Варакина.

А уже в 80-е годы методы использования ШПС заняли свое место в гражданской связи. Федеральная комиссия связи США к этому времени официально разрешила коммерческое применение ШПС в целой группе диапазонов, что определило начало выпуска большого количества оборудования. В 1993 г. Ассоциацией промышленности связи США использование кодового разделения в мобильной телефонной сотовой связи было узаконено как стандарт IS-95, что открыло путь к развертыванию соответствующих систем.

Именно поэтому технику связи с использованием таких сигналов нельзя отнести к открытиям последних лет. Она уже давно используется в радиолокации, где, кстати, впервые проявились основные преимущества подобных сигналов. В радиолокации дальность обнаружения цели определяется энергией импульса, т.е. произведением мощности на его длительность. Увеличение дальности обнаружения путем наращивания мощности имеет свои технические пределы, увеличение длительности импульса ухудшает другой параметр - разрешающую способность, которая определяет возможность обнаруживать цели. Возникающее противоречие оказалось возможным разрешить, применяя сложные сигналы, представляющие длинный высокочастотный импульс, манипулированный по фазе по закону ПСП.

В приемнике с помощью коррелятора длинный импульс сжимается до длительности элемента ПСП, энергия же существенно возрастает за счет увеличения числа элементов ПСП, благодаря чему улучшается разрешающая способность и увеличивается дальность обнаружения.

В результате дополнительной модуляции, о которой уже говорилось, получаем скрытый, помехоустойчивый канал связи, прием информации в котором возможен только в том случае, если известен метод и алгоритм расширения спектра, применяемый на передающей стороне.

Применение различных ПСП дает возможность большому числу пользователей одновременно работать в одной широкой полосе частот. Такой метод уплотнения канала и называется кодовым разделением. Подчеркнем еще раз: особенность кодового разделения состоит в том, что все сигналы передаются в одной общей широкой полосе частот одновременно. Спектр каждого сигнала сформирован с помощью индивидуального кода, что и обеспечивает одновременный доступ к каналу большого числа пользователей. В приемнике базовой станции по индивидуальному коду из ШПС выделяется нужная данному пользователю информация.

По этому принципу работает система CDMA (Code Division Multiplex Access), которая стала основой увеличения емкости сотовых сетей, степени покрытия обслуживаемой территории, качества передачи речи. Она фактически уже стала техникой следующего поколения средств связи.

Высокая степень интеграции элементной базы, удешевление технологии при массовом применении систем связи с кодовым разделением привели к тому, что CDMA - новая коммерческая реальность на рынке средств связи благодаря тому, что технология CDMA заявила о себе с самого начала возможностью резкого увеличения емкости сотовых систем по сравнению не только с аналоговыми, но и цифровыми системами. Простые расчеты показывают, что с помощью аппаратуры CDMA емкость сети можно увеличить примерно в 10 раз по сравнению, например, с узкополосными стандартами на основе частотного разделения.

Основная трудность построения систем временного (TDMA) и частотного (FDMA) методов разделения, как известно, лежит в необходимости частотного планирования, которое должно каждый раз пересматриваться при изменении конфигурации сети и добавлении новых сот. Новая технология вообще не требует какого-либо частотного планирования, все пользователи канала в полосе 1,25 МГц могут одновременно вести обмен в общей полосе частот, поскольку каждый применяет уникальный цифровой код. И та же полоса частот может повторно использоваться во всех других сотах сети. Это один из основных факторов значительного увеличения емкости сети.

Здесь следует упомянуть и об эффективном кодировании с использованием корректирующих кодов, что еще более увеличивает емкость системы и улучшает качество связи.

Кодовое разделение оказалось первой технологией, в которой стало возможным организовать "мягкую передачу" абонента из соты в соту. Это связано с тем, что кадр содержит данные лишь одного абонента, и центральная станция может выбирать лучший сигнал и "склеивать" его из кадров разных базовых станций по мере перехода абонента из соты в соту.

Системы с ШПС обладают превосходной электромагнитной совместимостью с обычными узкополосными системами. Последним не мешают ШПС с малой спектральной плотностью в полосе пропускания. Узкополосные сигналы в приемнике ШПС превращаются в широкополосные и эффективно подавляются, поскольку они не согласованы с кодом приемника.

Кроме помехоустойчивости, сложная кодовая структура ШПС обладает высокой степенью защищенности от несанкционированного доступа в сеть и обеспечивает любой требуемый уровень конфиденциальности в потоке данных.

Как же формируется спектр ШПС и какие методы объясняют масштабы его расширения?

В цифровых системах связи дополнительная модуляция сводится к тому, что передаваемая двоичная информация накладывается на поток из N расширяющих битов ПСП, следующих с гораздо большей скоростью, чем передаваемая информация. При этом при передаче информационного нуля знак ПСП не меняется, при передаче информационной единицы ("-1") используется инверсная ПСП (рис.1). Число битов ПСП, приходящихся на один бит информации и являющихся мерой расширения спектра, может достигать очень больших значений (от десятка до нескольких тысяч). Этот модулированный ПСП псевдослучайный поток данных манипулирует фазу несущего ВЧ колебания во втором модуляторе, которое после усиления излучается в эфир.

Схема модуляции данных псевдослучайной последовательностью длиной в 15 элементов.

Спектр шумоподобного сигнала определяется разными факторами - такими, как длина ПСП, скорость передачи информации и метод модуляции ВЧ сигнала.

Как выглядит на спектроанализаторе спектр ШПС? Спектр мощности (рис.2) симметричен относительно центральной частоты (несущей) и содержит большое число резких пиков. Центральная часть ограничивается двумя нулями, за которыми располагаются боковые максимумы, и содержит около 90% всей энергии сигнала. Остальные 10% приходятся на побочные излучения и обычно отфильтровываются при передаче. Ширина центрального максимума равна удвоенной частоте следования битов ПСП. Спектр содержит ярко выраженную мелкомасштабную структуру, детали этой структуры имеют ширину порядка скорости передачи информации и обычно гораздо меньше общей ширины спектра. Эффективная ширина спектра по уровню -3 дБ близка к скорости следования ПСП и составляет половину общей ширины спектра.


Распределение мощности ШПС по частоте для длины кода 128. Спектр широкий и неравномерный, частота отсчитывается от несущей и отнесена к полосе частот 1,25 МГц

Наверное уже понятно, что подобный дважды промодулированный сигнал должен и приниматься как-то по-другому. Приемник ШПС (рис.3) осуществляет дополнительную демодуляцию от расширяющего кода (ПСП) для того, чтобы выделить передаваемую информацию. Здесь и проявляются основные отличия приемника, предназначенного для приема ШПС. В обычной схеме, например, для приема дискретной информации типа телеграфного сигнала производится усиление в УВЧ и преобразование частоты в См1 (преобразований может быть несколько, это не меняет существа дела). После демодулятора передаваемая информация становится доступной для дальнейшей обработки - прием на слух или передача на печатающее устройство.


Теоретической основой метода приема сигналов с распределенным спектром является корреляция. Процесс корреляции осуществляется в главном узле приемника ШПС, называемом коррелятором. Принципиальная схема коррелятора состоит из балансного смесителя См2 и следующего за ним интегратора или узкополосного фильтра ФНЧ для усреднения. В смесителе принимаемый сигнал умножается на копию ПСП, используемую в передатчике. Настройка заключается в согласовании параметров расширяющей спектр ПСП в передатчике с копией ПСП в приемнике. Главное условие нормальной работы аппаратуры ШПС - строгое согласование частотных и временных параметров, типов модуляции принимаемых и опорных сигналов. Только при этом условии в корреляторе широкополосная модуляция устраняется в полезном сигнале и сохраняется в других. Такое согласование обеспечивает система синхронизации и обнаружения. В нее могут входить несколько следящих систем фазовой и частотной автоподстройки и система слежения за задержкой.

Корреляцию очень удобно представить как процесс перемножения двух двоичных последовательностей. Если значительное число нулей и единиц и порядок их следования в сравниваемых последовательностях совпадают, то на выходе перемножителя образуется длинная последовательность нулей или единиц, отражающая переданную информацию. Эта последовательность пропускается через узкополосный фильтр. При этом происходит улучшение отношения сигнал/шум на выходе коррелятора по отношению ко входу в N раз. В идеальном случае, в условиях полной синхронизации, расширение спектра полностью снимается как есть и после коррелятора можно наблюдать обычную последовательность длинных информационных посылок, как в любой узкополосной системе связи после синхронного детектора.

Такой метод приема определяет основные достоинства применения ШПС. При умножении на опорную копию кода остальные сигналы, модулированные другим кодом, не совпадающим хотя бы по одному параметру (частоте следования битов ПСП, их взаимному расположению, сдвигу начала кодовой последовательности), превращаются в хаотическую последовательность коротких импульсов с широким спектром. В результате через узкополосный фильтр проходит лишь малая часть энергии несогласованных сигналов. Так реализуется механизм кодового разделения. Аналогично узкополосная помеха при таком методе приема также дробится на беспорядочную последовательность коротких импульсов и ослабляется фильтром.

Таким образом, в одном узле обеспечивается как кодовое разделение, так и запас помехоустойчивости по отношению к большому числу помех разного типа. Однако при этом возникает несколько серьезных проблем. Одна из них - точность синхронизации принимаемого сигнала и сигнала генератора кода в приемнике, а кроме того, необходимо решение ряда других задач, связанных с обнаружением ШПС и вхождением в связь. Тем не менее все эти проблемы решаются, что обеспечивает реализацию преимуществ применения ШПС.

Пригодны ли все диапазоны частот для техники ШПС? В течение нескольких десятилетий ШПС применялись на всех частотах - от самых низких до очень высоких. В KB диапазоне, где в распространении сигналов решающую роль играет ионосфера, преимущество отдавалось узкополосным сигналам в обычном смысле (ширина спектра с учетом расширения не должна была превышать нескольких десятков килогерц). Это означает, что скорость передачи информации по такому каналу не могла быть более чем килобит/сек. В противном случае начинались искажения сигнала, связанные с неодинаковыми условиями распространения спектральных составляющих сигнала. Это объясняется тем, что прием ШПС представляет собой собирание сигнала в широкой полосе частот, а разбалансирование спектральных составляющих сигнала, особенно по фазе, приводит к селективным искажениям.

В полной мере преимущества ШПС реализуются в УКВ диапазонах и на более высоких частотах. При этом скорость передачи информации и степень расширения спектра ничем не ограничиваются, кроме трудностей технической реализации. В настоящее время шумоподобные сигналы используются на частотах 900, 2400 и 5600 МГц.

В ближайшее время планируется принятие международного стандарта (802.11), который определит технические требования к беспроводным сетям передачи данных с использованием ШПС. Это результат многолетних исследований по регламентации диапазонов частот, скоростей передачи, методов расширения спектра и других характеристик сетей. Суть стандарта сводится к следующему: он должен определить организацию беспроводной связи на ограниченной территории (в форме локальной сети). При этом несколько абонентов будут пользоваться равноправным доступом к общему каналу передачи данных.

Стандарт предполагает два диапазона: 902...928 МГц и 2400...2483,5 МГц. Основной акцент делается именно на последний, поскольку в России и Европе диапазон 900 МГц сильно перегружен и его можно рекомендовать к применению лишь внутри зданий. Гигагерцевый диапазон можно использовать как внутри зданий, так и снаружи.

Простейшим вариантом применения систем с ШПС может служить соединение "точка - точка" - это связь между двумя локальными сетями с внешней направленной антенной на расстояние от одного до нескольких десятков километров.

Очень велики перспективы применения ШПС в России. В Российской федерации применение техники ШПС определено в приказе №18 Министерства связи РФ от 24.02.1996 г. Для нее выделены частоты 828...821 и 873...876 МГц. Особое место методы ШПС могут занять при развитии местной сети. Приемлемым уровнем телефонизации принято считать не менее 50 телефонов на 100 жителей, что в масштабах нашей страны означает не менее 75 млн номеров. При дальнейшем развитии телефонизации основные трудности обусловлены созданием местных сетей, что и определяет стоимость номера. Назревает крайняя необходимость внедрения технологий ШПС - на местных сетях, сотовой, в системах мобильной связи. В фиксированной связи требуется меньшая мощность сигнала при том же качестве связи, а это позволяет увеличивать число пользователей в канале. Все сказанное, с учетом эффективного использования частоты, позволит снизить себестоимость и время развертывания таких сетей.

Кодовая структура ШПС делает их незаменимыми и для использования в навигационных системах при измерении расстояний. В этом отношении ШПС можно представить как линейку с делениями в единицах расстояния для измерения дистанции. Отраженный сигнал сравнивается с переданным и по сдвигу кодовой структуры находится задержка, что дает возможность определить расстояния до объекта. Примером спутниковой навигационной системы с ШПС является GPS. Ее применение иногда выходит за рамки навигации, и она используется для нивелировки сельскохозяйственных угодий, мониторинга линий разлома земной коры и других целей.

Приемники GPS могут входить составной частью в сложные устройства обеспечения временных отсчетов высокой точности, например, включаться в базовые станции сотовых телефонных систем с ШПС.

Каковы же дальнейшие перспективы внедрения техники ШПС?

Кодовое разделение начало свой путь в Северной Америке, крупнейшем рынке мобильной связи, где насчитывается более 34 млн пользователей. В специальных изданиях сообщается, что до 70% сотовых сетей США готовы к внедрению систем CDMA. В Южной Корее подобные сети будут способны в ближайшем будущем охватить до 75% потенциальных пользователей. Ряд японских компаний объявил о намерении модернизировать свои сотовые сети в 1998 г.

Несмотря на появление новых методов уплотнения, старые аналоговые системы с временным разделением, по-видимому, будут существовать еще достаточно долго, поэтому стратегия применения ШПС предусматривает совместную работу с сотовыми системами разных типов.

Необходимость такой совместимости учитывается при развертывании спутниковой системы Globalstar.

Как отмечалось выше, ШПС обладает многими необычными свойствами, особенно в отношении скрытности передачи в силу сложности процесса демодуляции. При использовании ШПС вне военных рамок требуется строгая регламентация применения ШПС.

Однако это, в принципе, не исключает участие и радиолюбителей в освоении методов ШПС. Например, специальным разделом инструкции федеральной комиссии связи США официально легализована работа радиолюбителей с применением ШПС в ряде диапазонов, вплоть до миллиметровых волн. Разрешается работа мощностью до 100 Вт - и это при том, что типичные мощности коммерческих применений не должны превышать 1 Вт, а в ряде случаев - и 10 мВт.